Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 324
Filtrar
1.
Plants (Basel) ; 13(16)2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39204766

RESUMO

In our previous research, we found that trichokonins' (TKs) employment improved the thermotolerance of the Lanzhou lily, a renowned edible crop species endemic to China that is relatively susceptible to high temperatures (HTs). Here, a novel Lanzhou lily GRAS gene, LzSCL9, was identified to respond to heat stress (HS) and HS+TKs treatment based on transcriptome and RT-qPCR analysis. TKs could improve the upregulation of LzSCL9 during long-term HS. The expression profile of LzSCL9 in response to HS with or without TKs treatment showed a significant positive correlation with LzHsfA2a-1, which was previously identified as a key regulator in TKs' conferred resilience to HT. More importantly, overexpression of LzSCL9 in the lily enhanced its tolerance to HTs and silencing LzSCL9 in the lily reduced heat resistance. Taken together, this study identified the positive role of LzSCL9 in TK-induced thermotolerance, thereby preliminarily establishing a molecular mechanism on TKs regulating the thermostability of the Lanzhou lily and providing a new candidate regulator for plant heat-resistant breeding.

2.
Mar Drugs ; 22(7)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39057414

RESUMO

Marine bacterial proteases have rarely been used to produce bioactive peptides, although many have been reported. This study aims to evaluate the potential of the marine bacterial metalloprotease A69 from recombinant Bacillus subtilis in the preparation of peanut peptides (PPs) with antioxidant activity and angiotensin-converting enzyme (ACE)-inhibitory activity. Based on the optimization of the hydrolysis parameters of protease A69, a process for PPs preparation was set up in which the peanut protein was hydrolyzed by A69 at 3000 U g-1 and 60 °C, pH 7.0 for 4 h. The prepared PPs exhibited a high content of peptides with molecular weights lower than 1000 Da (>80%) and 3000 Da (>95%) and contained 17 kinds of amino acids. Moreover, the PPs displayed elevated scavenging of hydroxyl radical and 1,1-diphenyl-2-picryl-hydrazyl radical, with IC50 values of 1.50 mg mL-1 and 1.66 mg mL-1, respectively, indicating the good antioxidant activity of the PPs. The PPs also showed remarkable ACE-inhibitory activity, with an IC50 value of 0.71 mg mL-1. By liquid chromatography mass spectrometry analysis, the sequences of 19 ACE inhibitory peptides and 15 antioxidant peptides were identified from the PPs. These results indicate that the prepared PPs have a good nutritional value, as well as good antioxidant and antihypertensive effects, and that the marine bacterial metalloprotease A69 has promising potential in relation to the preparation of bioactive peptides from peanut protein.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Antioxidantes , Arachis , Bacillus subtilis , Metaloproteases , Peptídeos , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/química , Antioxidantes/farmacologia , Antioxidantes/química , Metaloproteases/química , Metaloproteases/farmacologia , Arachis/química , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/enzimologia , Peptídeos/farmacologia , Peptídeos/química , Hidrólise , Peptidil Dipeptidase A/metabolismo , Peptidil Dipeptidase A/química
3.
Mar Genomics ; 76: 101126, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39009497

RESUMO

Isolated from intertidal sediment of the Yellow Sea, China, Bremerella sp. P1 putatively represents a novel species within the genus Bremerella of the family Pirellulaceae in the phylum Planctomycetota. The complete genome of strain P1 comprises a single circular chromosome with a size of 6,955,728 bp and a GC content of 55.26%. The genome contains 5772 protein-coding genes, 80 tRNA and 6 rRNA genes. A total of 147 CAZymes and 128 sulfatases have been identified from the genome of strain P1, indicating that the strain has the capability to degrade a wide range of polysaccharides. Moreover, a gene cluster related to bacterial microcompartments (BMCs) formation containing genes encoding the shell proteins and related enzymes to metabolize fucose or rhamnose is also found in the genome of strain P1. The genome of strain P1 represents the second complete one in the genus Bremerella, expanding the understanding of the physiological and metabolic characteristics, interspecies diversity, and ecological functions of the genus.


Assuntos
Genoma Bacteriano , Polissacarídeos , Polissacarídeos/metabolismo , Sequenciamento Completo do Genoma , China
4.
Sci Total Environ ; 948: 174723, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39002603

RESUMO

The deep marine sediments represent a major repository of organic matter whilst hosting a great number of uncultivated microbes. Microbial metabolism plays a key role in the recycling of organic matter in the deep marine sediments. D-amino acids (DAAs) and DAA-containing muropeptides, an important group of organic matter in the deep marine sediments, are primarily derived from bacterial peptidoglycan decomposition. Archaea are abundant in the deep ocean microbiome, yet their role in DAA metabolism remains poorly studied. Here, we report bioinformatic investigation and enzymatic characterization of deep marine sedimentary archaea involved in DAA metabolism. Our analyses suggest that a variety of archaea, particularly the Candidatus Bathyarchaeota and the Candidatus Lokiarchaeaota, can metabolize DAAs. DAAs are converted into L-amino acids via amino acid racemases (Ala racemase, Asp racemase and broad substrate specificity amino acid racemase), and converted into α-keto acid via d-serine ammonia-lyase, whereas DAA-containing di-/tri-muropeptides can be hydrolyzed by peptidases (dipeptidase and D-aminopeptidase). Overall, this study reveals the identity and activity of deep marine sedimentary archaea involved in DAA metabolism, shedding light on the mineralization and biogeochemical cycling of DAAs in the deep marine sediments.


Assuntos
Aminoácidos , Archaea , Sedimentos Geológicos , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Archaea/metabolismo , Aminoácidos/metabolismo
5.
J Hazard Mater ; 476: 135191, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39013318

RESUMO

Phthalate esters (PAEs) are emerging hazardous and toxic chemicals that are extensively used as plasticizers or additives. Diethyl phthalate (DEP) and dimethyl phthalate (DMP), two kinds of PAEs, have been listed as the priority pollutants by many countries. PAE hydrolases are the most effective enzymes in PAE degradation, among which family IV esterases are predominate. However, only a few PAE hydrolases have been characterized, and as far as we know, no crystal structure of any PAE hydrolases of the family IV esterases is available to date. HylD1 is a PAE hydrolase of the family IV esterases, which can degrade DMP and DEP. Here, the recombinant HylD1 was characterized. HylD1 maintained a dimer in solution, and functioned under a relatively wide pH range. The crystal structures of HylD1 and its complex with monoethyl phthalate were solved. Residues involved in substrate binding were identified. The catalytic mechanism of HylD1 mediated by the catalytic triad Ser140-Asp231-His261 was further proposed. The hylD1 gene is widely distributed in different environments, suggesting its important role in PAEs degradation. This study provides a better understanding of PAEs hydrolysis, and lays out favorable bases for the rational design of highly-efficient PAEs degradation enzymes for industrial applications in future.


Assuntos
Ácidos Ftálicos , Ácidos Ftálicos/química , Ácidos Ftálicos/metabolismo , Ésteres/química , Hidrólise , Cristalografia por Raios X , Catálise , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/metabolismo , Hidrolases de Éster Carboxílico/genética
6.
J Hazard Mater ; 476: 135137, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39024770

RESUMO

Arsenic is a toxic element widely distributed in the Earth's crust and ranked as a class I human carcinogen. Microbial metabolism makes significant contributions to arsenic detoxification, migration and transformation. Nowadays, research on arsenic is primarily in areas affected by arsenic pollution associated with human health activities. However, the biogeochemical traits of arsenic in the global marine ecosystem remain to be explicated. In this study, we revealed that seawater environments were primarily governed by the process of arsenate reduction to arsenite, while arsenite methylation was predominant in marine sediments which may serve as significant sources of arsenic emission into the atmosphere. Significant disparities existed in the distribution patterns of the arsenic cycle between surface and deep seawaters at middle and low latitudes, whereas these situations tend to be similar in the Arctic and Antarctic oceans. Significant variations were also observed in the taxonomic diversity and core microbial community of arsenic cycling across different marine environments. Specifically, γ-proteobacteria played a pivotal role in the arsenic cycle in the whole marine environment. Temperature, dissolved oxygen and phosphate were the crucial factors that related to these differentiations in seawater environments. Overall, our study contributes to a deeper understanding of the marine arsenic cycle.


Assuntos
Arsênio , Bactérias , Sedimentos Geológicos , Água do Mar , Poluentes Químicos da Água , Água do Mar/microbiologia , Água do Mar/química , Arsênio/metabolismo , Arsênio/análise , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/química , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Arseniatos/metabolismo , Microbiota
7.
Nat Commun ; 15(1): 4999, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866834

RESUMO

Cryptophytes are ancestral photosynthetic organisms evolved from red algae through secondary endosymbiosis. They have developed alloxanthin-chlorophyll a/c2-binding proteins (ACPs) as light-harvesting complexes (LHCs). The distinctive properties of cryptophytes contribute to efficient oxygenic photosynthesis and underscore the evolutionary relationships of red-lineage plastids. Here we present the cryo-electron microscopy structure of the Photosystem II (PSII)-ACPII supercomplex from the cryptophyte Chroomonas placoidea. The structure includes a PSII dimer and twelve ACPII monomers forming four linear trimers. These trimers structurally resemble red algae LHCs and cryptophyte ACPI trimers that associate with Photosystem I (PSI), suggesting their close evolutionary links. We also determine a Chl a-binding subunit, Psb-γ, essential for stabilizing PSII-ACPII association. Furthermore, computational calculation provides insights into the excitation energy transfer pathways. Our study lays a solid structural foundation for understanding the light-energy capture and transfer in cryptophyte PSII-ACPII, evolutionary variations in PSII-LHCII, and the origin of red-lineage LHCIIs.


Assuntos
Microscopia Crioeletrônica , Criptófitas , Complexos de Proteínas Captadores de Luz , Complexo de Proteína do Fotossistema II , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/química , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/química , Criptófitas/metabolismo , Fotossíntese , Modelos Moleculares , Transferência de Energia , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema I/química , Clorofila A/metabolismo , Clorofila A/química
8.
Open Life Sci ; 19(1): 20220860, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38840894

RESUMO

The aim of this study is to observe the changes in autophagy activities in lung tissues of mice with different degrees of pulmonary fibrosis (PF), and explore the association between PF and autophagy activity. The PF model was established by bleomycin (BLM, 25 and 35 mg/kg) atomization inhalation in C57BL/6 mice, samples were collected on the 7, 14, and 28 days after BLM administration. Hematoxylin-eosin staining was used to observe the pathological changes in lung tissues. Masson staining was utilized to assess areas of blue collagen fiber deposition in lung tissues. Quantitative real time polymerase chain reaction was used to detect the mRNA expressions of autophagy-related genes, including Atg5, Atg7, and Atg10 in lung tissues. Western blot was used to detect the protein expressions of autophagy-related genes, including p62 and LC3II/LC3I in lung tissues. Compared with control group, BLM dose-dependently decreased PaO2, mRNA expressions of Atg5, Atg7, Atg10, and LC3II/LC3I, while increased lung wet weight, lung coefficient, PF score, the blue area of collagen fibers, and p62 protein on the 7th, 14th, and 28th days. In conclusion, the more severe the PF induced by BLM, the lower the autophagy activity.

9.
Mar Drugs ; 22(5)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38786621

RESUMO

Alginate oligosaccharides (AOS), products of alginate degradation by endotype alginate lyases, possess favorable biological activities and have broad applications. Although many have been reported, alginate lyases with homogeneous AOS products and secretory production by an engineered host are scarce. Herein, the alginate lyase AlyC7 from Vibrio sp. C42 was characterized as a trisaccharide-producing lyase exhibiting high activity and broad substrate specificity. With PelB as the signal peptide and 500 mM glycine as the additive, the extracellular production of AlyC7 in Escherichia coli reached 1122.8 U/mL after 27 h cultivation in Luria-Bertani medium. The yield of trisaccharides from sodium alginate degradation by the produced AlyC7 reached 758.6 mg/g, with a purity of 85.1%. The prepared AOS at 20 µg/mL increased the root length of lettuce, tomato, wheat, and maize by 27.5%, 25.7%, 9.7%, and 11.1%, respectively. This study establishes a robust foundation for the industrial and agricultural applications of AlyC7.


Assuntos
Escherichia coli , Polissacarídeo-Liases , Trissacarídeos , Vibrio , Polissacarídeo-Liases/metabolismo , Trissacarídeos/biossíntese , Vibrio/enzimologia , Especificidade por Substrato , Alginatos , Zea mays , Oligossacarídeos
10.
Cell Commun Signal ; 22(1): 273, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755675

RESUMO

Small extracellular vesicles (sEVs) are important mediators of intercellular communication by transferring of functional components (proteins, RNAs, and lipids) to recipient cells. Some PTMs, including phosphorylation and N-glycosylation, have been reported to play important role in EV biology, such as biogenesis, protein sorting and uptake of sEVs. MS-based proteomic technology has been applied to identify proteins and PTM modifications in sEVs. Previous proteomic studies of sEVs from C2C12 myoblasts, an important skeletal muscle cell line, focused on identification of proteins, but no PTM information on sEVs proteins is available.In this study, we systematically analyzed the proteome, phosphoproteome, and N-glycoproteome of sEVs from C2C12 myoblasts with LC-MS/MS. In-depth analyses of the three proteomic datasets revealed that the three proteomes identified different catalogues of proteins, and PTMomic analysis could expand the identification of cargos in sEVs. At the proteomic level, a high percentage of membrane proteins, especially tetraspanins, was identified. The sEVs-derived phosphoproteome had a remarkably high level of tyrosine-phosphorylated sites. The tyrosine-phosphorylated proteins might be involved with EPH-Ephrin signaling pathway. At the level of N-glycoproteomics, several glycoforms, such as complex N-linked glycans and sialic acids on glycans, were enriched in sEVs. Retrieving of the ligand-receptor interaction in sEVs revealed that extracellular matrix (ECM) and cell adhesion molecule (CAM) represented the most abundant ligand-receptor pairs in sEVs. Mapping the PTM information on the ligands and receptors revealed that N-glycosylation mainly occurred on ECM and CAM proteins, while phosphorylation occurred on different categories of receptors and ligands. A comprehensive PTM map of ECM-receptor interaction and their components is also provided.In summary, we conducted a comprehensive proteomic and PTMomic analysis of sEVs of C2C12 myoblasts. Integrated proteomic, phosphoproteomic, and N-glycoproteomic analysis of sEVs might provide some insights about their specific uptake mechanism.


Assuntos
Vesículas Extracelulares , Mioblastos , Proteômica , Vesículas Extracelulares/metabolismo , Proteômica/métodos , Mioblastos/metabolismo , Animais , Camundongos , Ligantes , Fosfoproteínas/metabolismo , Linhagem Celular , Fosforilação , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo , Glicoproteínas/metabolismo , Glicosilação
11.
Microbiome ; 12(1): 77, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664737

RESUMO

BACKGROUND: The deep sea represents the largest marine ecosystem, driving global-scale biogeochemical cycles. Microorganisms are the most abundant biological entities and play a vital role in the cycling of organic matter in such ecosystems. The primary food source for abyssal biota is the sedimentation of particulate organic polymers. However, our knowledge of the specific biopolymers available to deep-sea microbes remains largely incomplete. One crucial rate-limiting step in organic matter cycling is the depolymerization of particulate organic polymers facilitated by extracellular enzymes (EEs). Therefore, the investigation of active EEs and the microbes responsible for their production is a top priority to better understand the key nutrient sources for deep-sea microbes. RESULTS: In this study, we conducted analyses of extracellular enzymatic activities (EEAs), metagenomics, and metatranscriptomics from seawater samples of 50-9305 m from the Mariana Trench. While a diverse array of microbial groups was identified throughout the water column, only a few exhibited high levels of transcriptional activities. Notably, microbial populations actively transcribing EE genes involved in biopolymer processing in the abyssopelagic (4700 m) and hadopelagic zones (9305 m) were primarily associated with the class Actinobacteria. These microbes actively transcribed genes coding for enzymes such as cutinase, laccase, and xyloglucanase which are capable of degrading phytoplankton polysaccharides as well as GH23 peptidoglycan lyases and M23 peptidases which have the capacity to break down peptidoglycan. Consequently, corresponding enzyme activities including glycosidases, esterase, and peptidases can be detected in the deep ocean. Furthermore, cell-specific EEAs increased at 9305 m compared to 4700 m, indicating extracellular enzymes play a more significant role in nutrient cycling in the deeper regions of the Mariana Trench. CONCLUSIONS: Transcriptomic analyses have shed light on the predominant microbial population actively participating in organic matter cycling in the deep-sea environment of the Mariana Trench. The categories of active EEs suggest that the complex phytoplankton polysaccharides (e.g., cutin, lignin, and hemicellulose) and microbial peptidoglycans serve as the primary nutrient sources available to deep-sea microbes. The high cell-specific EEA observed in the hadal zone underscores the robust polymer-degrading capacities of hadal microbes even in the face of the challenging conditions they encounter in this extreme environment. These findings provide valuable new insights into the sources of nutrition, the key microbes, and the EEs crucial for biopolymer degradation in the deep seawater of the Mariana Trench. Video Abstract.


Assuntos
Bactérias , Metagenômica , Nutrientes , Peptidoglicano , Fitoplâncton , Polissacarídeos , Água do Mar , Polissacarídeos/metabolismo , Água do Mar/microbiologia , Fitoplâncton/metabolismo , Fitoplâncton/genética , Nutrientes/metabolismo , Peptidoglicano/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Bactérias/isolamento & purificação , Microbiota
12.
Nat Commun ; 15(1): 2392, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493166

RESUMO

Symbiodinium are the photosynthetic endosymbionts for corals and play a vital role in supplying their coral hosts with photosynthetic products, forming the nutritional foundation for high-yield coral reef ecosystems. Here, we determine the cryo-electron microscopy structure of Symbiodinium photosystem I (PSI) supercomplex with a PSI core composed of 13 subunits including 2 previously unidentified subunits, PsaT and PsaU, as well as 13 peridinin-Chl a/c-binding light-harvesting antenna proteins (AcpPCIs). The PSI-AcpPCI supercomplex exhibits distinctive structural features compared to their red lineage counterparts, including extended termini of PsaD/E/I/J/L/M/R and AcpPCI-1/3/5/7/8/11 subunits, conformational changes in the surface loops of PsaA and PsaB subunits, facilitating the association between the PSI core and peripheral antennae. Structural analysis and computational calculation of excitation energy transfer rates unravel specific pigment networks in Symbiodinium PSI-AcpPCI for efficient excitation energy transfer. Overall, this study provides a structural basis for deciphering the mechanisms governing light harvesting and energy transfer in Symbiodinium PSI-AcpPCI supercomplexes adapted to their symbiotic ecosystem, as well as insights into the evolutionary diversity of PSI-LHCI among various photosynthetic organisms.


Assuntos
Complexos de Proteínas Captadores de Luz , Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema I/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Ecossistema , Microscopia Crioeletrônica , Fotossíntese
13.
Appl Environ Microbiol ; 90(1): e0170423, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38169280

RESUMO

Catabolism of algal polysaccharides by marine bacteria is a significant process of marine carbon cycling. ß1,3/1,4-Mixed-linkage xylan (MLX) is a class of xylan in the ocean, widely present in the cell walls of red algae. However, the catabolic mechanism of MLX by marine bacteria remains elusive. Recently, we found that a marine Bacteroidetes strain, Polaribacter sp. Q13, is a specialist in degrading MLX, which secretes a novel MLX-specific xylanase. Here, the catabolic specialization of strain Q13 to MLX was studied by multiomics and biochemical analyses. Strain Q13 catabolizes MLX with a canonical starch utilization system (Sus), which is encoded by a single xylan utilization locus, XUL-Q13. In this system, the cell surface glycan-binding protein SGBP-B captures MLX specifically, contributing to the catabolic specificity. The xylanolytic enzyme system of strain Q13 is unique, and the enzymatic cascade dedicates the stepwise hydrolysis of the ß1,3- and ß1,4-linkages in MLX in the extracellular, periplasmic, and cytoplasmic spaces. Bioinformatics analysis and growth observation suggest that other marine Bacteroidetes strains harboring homologous MLX utilization loci also preferentially utilize MLX. These results reveal the catabolic specialization of MLX degradation by marine Bacteroidetes, leading to a better understanding of the degradation and recycling of MLX driven by marine bacteria.IMPORTANCERed algae contribute substantially to the primary production in marine ecosystems. The catabolism of red algal polysaccharides by marine bacteria is important for marine carbon cycling. Mixed-linkage ß1,3/1,4-xylan (MLX, distinct from hetero-ß1,4-xylans from terrestrial plants) is an abundant red algal polysaccharide, whose mechanism of catabolism by marine bacteria, however, remains largely unknown. This study reveals the catabolism of MLX by marine Bacteroidetes, promoting our understanding of the degradation and utilization of algal polysaccharides by marine bacteria. This study also sets a foundation for the biomass conversion of MLX.


Assuntos
Flavobacteriaceae , Rodófitas , Xilanos/metabolismo , Ecossistema , Flavobacteriaceae/metabolismo , Polissacarídeos/metabolismo , Bacteroidetes/metabolismo , Plantas/metabolismo , Rodófitas/metabolismo , Carbono/metabolismo
14.
Respir Physiol Neurobiol ; 322: 104219, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38242336

RESUMO

Acute Lung Injury (ALI) manifests as an acute exacerbation of pulmonary inflammation with high mortality. The potential application of Danshensu methyl ester (DME, synthesized in our lab) in ameliorating ALI has not been elucidated. Our results demonstrated that DME led to a remarkable reduction in lung injury. DME promoted a marked increase in antioxidant enzymes, like superoxide dismutase (SOD), and glutathione (GSH), accompanied by a substantial decrease in reactive oxygen species (ROS), myeloperoxidase (MPO), and malondialdehyde (MDA). Moreover, DME decreased the production of IL-1ß, TNF-α and IL-6, in vitro and in vivo. TLR4 and MyD88 expression is reduced in the DME-treated cells or tissues, which further leading to a decrease of p-p65 and p-IκBα. Meanwhile, DME effectively facilitated an elevation in cytoplasmic p65 expression. In summary, DME could ameliorate ALI by its antioxidant functionality and anti-inflammation effects through TLR4/NF-κB, which implied that DME may be a viable medicine for lung injury.


Assuntos
Lesão Pulmonar Aguda , Lactatos , NF-kappa B , Humanos , NF-kappa B/metabolismo , Transdução de Sinais , Lipopolissacarídeos/toxicidade , Receptor 4 Toll-Like , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Glutationa
15.
Appl Environ Microbiol ; 90(2): e0202523, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38259074

RESUMO

Marine bacteria play important roles in the degradation and cycling of algal polysaccharides. However, the dynamics of epiphytic bacterial communities and their roles in algal polysaccharide degradation during kelp decay are still unclear. Here, we performed metagenomic analyses to investigate the identities and predicted metabolic abilities of epiphytic bacterial communities during the early and late decay stages of the kelp Saccharina japonica. During kelp decay, the dominant epiphytic bacterial communities shifted from Gammaproteobacteria to Verrucomicrobia and Bacteroidetes. In the early decay stage of S. japonica, epiphytic bacteria primarily targeted kelp-derived labile alginate for degradation, among which the gammaproteobacterial Vibrionaceae (particularly Vibrio) and Psychromonadaceae (particularly Psychromonas), abundant in alginate lyases belonging to the polysaccharide lyase (PL) families PL6, PL7, and PL17, were key alginate degraders. More complex fucoidan was preferred to be degraded in the late decay stage of S. japonica by epiphytic bacteria, predominantly from Verrucomicrobia (particularly Lentimonas), Pirellulaceae of Planctomycetes (particularly Rhodopirellula), Pontiellaceae of Kiritimatiellota, and Flavobacteriaceae of Bacteroidetes, which depended on using glycoside hydrolases (GHs) from the GH29, GH95, and GH141 families and sulfatases from the S1_15, S1_16, S1_17, and S1_25 families to depolymerize fucoidan. The pathways for algal polysaccharide degradation in dominant epiphytic bacterial groups were reconstructed based on analyses of metagenome-assembled genomes. This study sheds light on the roles of different epiphytic bacteria in the degradation of brown algal polysaccharides.IMPORTANCEKelps are important primary producers in coastal marine ecosystems. Polysaccharides, as major components of brown algal biomass, constitute a large fraction of organic carbon in the ocean. However, knowledge of the identities and pathways of epiphytic bacteria involved in the degradation process of brown algal polysaccharides during kelp decay is still elusive. Here, based on metagenomic analyses, the succession of epiphytic bacterial communities and their metabolic potential were investigated during the early and late decay stages of Saccharina japonica. Our study revealed a transition in algal polysaccharide-degrading bacteria during kelp decay, shifting from alginate-degrading Gammaproteobacteria to fucoidan-degrading Verrucomicrobia, Planctomycetes, Kiritimatiellota, and Bacteroidetes. A model for the dynamic degradation of algal cell wall polysaccharides, a complex organic carbon, by epiphytic microbiota during kelp decay was proposed. This study deepens our understanding of the role of epiphytic bacteria in marine algal carbon cycling as well as pathogen control in algal culture.


Assuntos
Algas Comestíveis , Flavobacteriaceae , Kelp , Laminaria , Microbiota , Phaeophyceae , Humanos , Metagenoma , Kelp/metabolismo , Polissacarídeos/metabolismo , Alginatos/metabolismo , Flavobacteriaceae/genética , Flavobacteriaceae/metabolismo , Carbono/metabolismo
16.
J Biol Chem ; 300(2): 105654, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38237680

RESUMO

The mammalian SID-1 transmembrane family members, SIDT1 and SIDT2, are multipass transmembrane proteins that mediate the cellular uptake and intracellular trafficking of nucleic acids, playing important roles in the immune response and tumorigenesis. Previous work has suggested that human SIDT1 and SIDT2 are N-glycosylated, but the precise site-specific N-glycosylation information and its functional contribution remain unclear. In this study, we use high-resolution liquid chromatography tandem mass spectrometry to comprehensively map the N-glycosites and quantify the N-glycosylation profiles of SIDT1 and SIDT2. Further molecular mechanistic probing elucidates the essential role of N-linked glycans in regulating cell surface expression, RNA binding, protein stability, and RNA uptake of SIDT1. Our results provide crucial information about the potential functional impact of N-glycosylation in the regulation of SIDT1-mediated RNA uptake and provide insights into the molecular mechanisms of this promising nucleic acid delivery system with potential implications for therapeutic applications.


Assuntos
Proteínas de Transporte de Nucleotídeos , RNA , Humanos , Transporte Biológico , Glicosilação , Mamíferos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Transporte de Nucleotídeos/metabolismo , RNA/metabolismo
17.
mBio ; : e0146723, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37948335

RESUMO

Dimethylsulfoniopropionate (DMSP) is one of Earth's most abundant organosulfur molecules, which can be catabolized by marine bacteria to release climate-active gases through the cleavage and/or demethylation pathways. The marine SAR92 clade is an abundant oligotrophic group of Gammaproteobacteria in coastal seawater, but their ability to catabolize DMSP is untested. Three SAR92 clade strains isolated from coastal seawater in this study and the SAR92 representative strain HTCC2207 were all shown to catabolize DMSP as a carbon source. All the SAR92 clade strains exhibited DMSP lyase activity producing dimethylsulfide (DMS) and their genomes encoded a ratified DddD DMSP lyase. In contrast, only HTCC2207 and two isolated strains contained the DMSP demethylase dmdA gene and potentially simultaneously demethylated and cleaved DMSP to produce methanethiol (MeSH) and DMS. In SAR92 clade strains with dddD and dmdA, transcription of these genes was inducible by DMSP substrate. Bioinformatic analysis indicated that SAR92 clade bacteria containing and transcribing DddD and DmdA were widely distributed in global oceans, especially in polar regions. This study highlights the SAR92 clade of oligotrophic bacteria as potentially important catabolizers of DMSP and sources of the climate-active gases MeSH and DMS in marine environments, particularly in polar regions.IMPORTANCECatabolism of dimethylsulfoniopropionate (DMSP) by marine bacteria has important impacts on the global sulfur cycle and climate. However, whether and how members of most oligotrophic bacterial groups participate in DMSP metabolism in marine environments remains largely unknown. In this study, by characterizing culturable strains, we have revealed that bacteria of the SAR92 clade, an abundant oligotrophic group of Gammaproteobacteria in coastal seawater, can catabolize DMSP through the DMSP lyase DddD-mediated cleavage pathway and/or the DMSP demethylase DmdA-mediated demethylation pathway to produce climate-active gases dimethylsulfide and methanethiol. Additionally, we found that SAR92 clade bacteria capable of catabolizing DMSP are widely distributed in global oceans. These results indicate that SAR92 clade bacteria are potentially important DMSP degraders and sources of climate-active gases in marine environments that have been overlooked, contributing to a better understanding of the roles and mechanisms of the oligotrophic bacteria in oceanic DMSP degradation.

18.
Nat Microbiol ; 8(12): 2326-2337, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38030907

RESUMO

Dimethylsulfoxonium propionate (DMSOP) is a recently identified and abundant marine organosulfur compound with roles in oxidative stress protection, global carbon and sulfur cycling and, as shown here, potentially in osmotolerance. Microbial DMSOP cleavage yields dimethyl sulfoxide, a ubiquitous marine metabolite, and acrylate, but the enzymes responsible, and their environmental importance, were unknown. Here we report DMSOP cleavage mechanisms in diverse heterotrophic bacteria, fungi and phototrophic algae not previously known to have this activity, and highlight the unappreciated importance of this process in marine sediment environments. These diverse organisms, including Roseobacter, SAR11 bacteria and Emiliania huxleyi, utilized their dimethylsulfoniopropionate lyase 'Ddd' or 'Alma' enzymes to cleave DMSOP via similar catalytic mechanisms to those for dimethylsulfoniopropionate. Given the annual teragram predictions for DMSOP production and its prevalence in marine sediments, our results highlight that DMSOP cleavage is likely a globally significant process influencing carbon and sulfur fluxes and ecological interactions.


Assuntos
Propionatos , Roseobacter , Sulfetos/metabolismo , Enxofre/metabolismo , Carbono
19.
Environ Int ; 182: 108325, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37995388

RESUMO

The degradation of high molecular weight organic matter (HMWOM) is a core process of oceanic carbon cycle, which is determined by the activity of microbial communities harboring hundreds of different species. Illustrating the active microbes and their interactions during HMWOM processing can provide key information for revealing the relationship between community composition and its ecological functions. In this study, the genomic and transcriptional responses of microbial communities to the availability of alginate, an abundant HMWOM in coastal ecosystem, were elucidated. The main degraders transcribing alginate lyase (Aly) genes came from genera Alteromonas, Psychrosphaera and Colwellia. Meanwhile, some strains, mainly from the Rhodobacteraceae family, did not transcribe Aly gene but could utilize monosaccharides to grow. The co-culture experiment showed that the activity of Aly-producing strain could promote the growth of Aly-non-producing strain when alginate was the sole carbon source. Interestingly, this interaction did not reduce the alginate degradation rate, possibly due to the easily degradable nature of alginate. This study can improve our understanding of the relationship between microbial community activity and alginate metabolism function as well as further manipulation of microbial community structure for alginate processing.


Assuntos
Alginatos , Microbiota , Alginatos/metabolismo , Bactérias/genética , Água do Mar/microbiologia
20.
Microb Cell Fact ; 22(1): 179, 2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689719

RESUMO

BACKGROUND: Alginate oligosaccharides (AOs) are the degradation products of alginate, a natural polysaccharide abundant in brown algae. AOs generated by enzymatic hydrolysis have diverse bioactivities and show broad application potentials. AOs production via enzymolysis is now generally with sodium alginate as the raw material, which is chemically extracted from brown algae. In contrast, AOs production by direct degradation of brown algae is more advantageous on account of its cost reduction and is more eco-friendly. However, there have been only a few attempts reported in AOs production from direct degradation of brown algae. RESULTS: In this study, an efficient Laminaria japonica-decomposing strain Pseudoalteromonas agarivorans A3 was screened. Based on the secretome and mass spectrum analyses, strain A3 showed the potential as a cell factory for AOs production by secreting alginate lyases to directly degrade L. japonica. By using the L. japonica roots, which are normally discarded in the food industry, as the raw material for both fermentation and enzymatic hydrolysis, AOs were produced by the fermentation broth supernatant of strain A3 after optimization of the alginate lyase production and hydrolysis parameters. The generated AOs mainly ranged from dimers to tetramers, among which trimers and tetramers were predominant. The degradation efficiency of the roots reached 54.58%, the AOs production was 33.11%, and the AOs purity was 85.03%. CONCLUSION: An efficient, cost-effective and green process for AOs production directly from the underutilized L. japonica roots by using strain A3 was set up, which differed from the reported processes in terms of the substrate and strain used for fermentation and the AOs composition. This study provides a promising platform for scalable production of AOs, which may have application potentials in industry and agriculture.


Assuntos
Alginatos , Laminaria , Análise Custo-Benefício , Oligossacarídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...