Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(23): 6183-6189, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38836642

RESUMO

Electrocatalytic oxidation of formaldehyde (FOR) is an effective way to prevent the damage caused by formaldehyde and produce high-value products. A screening strategy of a single-layer MnO2-supported transition metal catalyst for the selective oxidation of formaldehyde to formic acid was designed by high-throughput density functional calculation. N-MnO2@Cu and MnO2@Cu are predicted to be potential FOR electrocatalysts with potential-limiting steps (PDS) of 0.008 and -0.009 eV, respectively. Electronic structure analysis of single-atom catalysts (SACs) shows that single-layer MnO2 can regulate the spin density of loaded transition metal and thus regulate the adsorption of HCHO (Ead), and Ead is volcanically distributed with the magnetic moment descriptor -|mM - mH|. In addition, the formula quantifies Ead and |mM - mH| to construct a volcano-type descriptor α describing the PDS [ΔG(*CHO)]. Other electronic and structural properties of SACs and α are used as input features for the GBR method to construct machine learning models predicting the PDS (R2 = 0.97). This study hopes to provide some insights into FOR electrocatalysts.

2.
Nanoscale ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940742

RESUMO

Micro/nanomotors (MNMs) are intelligent, efficient and promising micro/nanorobots (MNR) that can respond to external stimuli (e.g., chemical energy, temperature, light, pH, ultrasound, magnetic, biosignals, ions) and perform specific tasks. The MNR can adapt to different external stimuli and transform into various functional forms to match different application scenarios. So far, MNR have found extensive application in targeted therapy, drug delivery, tissue engineering, environmental remediation, and other fields. Despite the promise of MNR, there are few reviews that focus on them. To shed new light on the further development of the field, it is necessary to provide an overview of the current state of development of these MNR. Therefore, this paper reviews the research progress of MNR in terms of propulsion mechanisms, and points out the pros and cons of different stimulus types. Finally, this paper highlights the current challenges faced by MNR and proposes possible solutions to facilitate the practical application of MNR.

3.
Nat Chem ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937591

RESUMO

The 1,2-arylheteroaryl ethane motif stands as a privileged scaffold with promising implications in drug discovery. Conventional de novo syntheses of these molecules have relied heavily on pre-functionalized synthons, entailing harsh conditions and multi-step processes. Here, to address these limitations, we present a modular approach for the direct synthesis of 1,2-arylheteroaryl ethanes using feedstock chemicals, including ethylene, arenes and heteroarenes. We disclosed a photo triplet-energy-transfer-initiated radical cascade process, leveraging homolytic cleavage of C-S bonds in aryl sulfonium salts as the key step to access aryl radicals with excellent regioselectivity. This method allows for rapid structural diversification of bioactive molecules, showcasing excellent functional group tolerance and streamlining the synthesis of bioactive compounds and their derivatives. Furthermore, our approach can be extended to propylene, non-gaseous terminal alkenes and various other electrophilic radical precursors, including heteroaryl radicals, hydroxyl radicals, trifluoromethyl radicals and α-carbonyl alkyl radicals. This study highlights the significance of radical polarity matching in designing selective multi-component couplings.

5.
JACS Au ; 4(2): 419-431, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38425917

RESUMO

The synthesis of 1-aminonorbornane (1-aminoNB), a potential aniline bioisostere, through photochemistry or photoredox catalysis signifies a remarkable breakthrough with implications in organic chemistry, pharmaceutical chemistry, and sustainable chemistry. However, an understanding of the underlying mechanisms involved in these reactions remains limited and ambiguous. Herein, we employ high-precision CASPT2//CASSCF calculations to elucidate the intricate mechanisms regulating the intramolecular photo-(3 + 2)-cycloaddition reactions for the synthesis of 1-aminoNB in the presence or absence of the Ir-complex-based photocatalyst. Our investigations delve into radical cascades, stereoselectivity, particularly single-electron-transfer (SET) events, etc. Furthermore, we innovatively introduce and compare two SET models integrating Marcus electron-transfer theory and transition-state theory. These models combined with kinetic data contribute to recognizing the critical control factors in diverse photocatalysis, thereby guiding the design and manipulation of photoredox catalysis as well as the improvement and modification of photocatalysts.

6.
JACS Au ; 4(2): 402-410, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38425918

RESUMO

We presented the construction of the ring-in-ring and Russian doll complexes on the basis of triptycene-derived carbon nanoring (TP-[12]CPP), which not only acts as a host for pillar[5]arene (P5A) but also serves as an energy donor for building Förster resonance energy transfer (FRET) systems. We also demonstrated that their hierarchical assembly processes could be efficiently monitored in real time using FRET. NMR, UV-vis and fluorescence, and mass spectroscopy analyses confirmed the successful encapsulation of the guests P5A/P5A-An by TP-[12]CPP, facilitated by C-H···π and ···π interactions, resulting in the formation of a distinct ring-in-ring complex with a binding constant of Ka = 2.23 × 104 M-1. The encapsulated P5A/P5A-An can further reverse its role to be a host for binding energy acceptors to form Russian doll complexes, as evidenced by the occurrence of FRET and mass spectroscopy analyses. The apparent binding constant of the Russian doll complexes was up to 3.6 × 104 M-1, thereby suggesting an enhanced synergistic effect. Importantly, the Russian doll complexes exhibited both intriguing one-step and sequential FRET dependent on the subcomponent P5A/P5A-An during hierarchical assembly, reminiscent of the structure and energy transfer of the light-harvesting system presented in purple bacteria.

7.
Cell Oncol (Dordr) ; 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520648

RESUMO

BACKGROUND: Cancer immunotherapy is receiving worldwide attention for its induction of an anti-tumor response. However, it has had limited efficacy in some patients who acquired resistance. The dynamic and sophisticated complexity of the tumor microenvironment (TME) is the leading contributor to this clinical dilemma. Through recapitulating the physiological features of the TME, 3D bioprinting is a promising research tool for cancer immunotherapy, which preserves in vivo malignant aggressiveness, heterogeneity, and the cell-cell/matrix interactions. It has been reported that application of 3D bioprinting holds potential to address the challenges of immunotherapy resistance and facilitate personalized medication. CONCLUSIONS AND PERSPECTIVES: In this review, we briefly summarize the contributions of cellular and noncellular components of the TME in the development of immunotherapy resistance, and introduce recent advances in 3D bioprinted tumor models that served as platforms to study the interactions between tumor cells and the TME. By constructing multicellular 3D bioprinted tumor models, cellular and noncellular crosstalk is reproduced between tumor cells, immune cells, fibroblasts, adipocytes, and the extracellular matrix (ECM) within the TME. In the future, by quickly preparing 3D bioprinted tumor models with patient-derived components, information on tumor immunotherapy resistance can be obtained timely for clinical reference. The combined application with tumoroid or other 3D culture technologies will also help to better simulate the complexity and dynamics of tumor microenvironment in vitro. We aim to provide new perspectives for overcoming cancer immunotherapy resistance and inspire multidisciplinary research to improve the clinical application of 3D bioprinting technology.

8.
J Phys Chem Lett ; 15(12): 3412-3418, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38502941

RESUMO

Electron donor-acceptor (EDA) complex photochemistry has emerged as a vibrant area in visible-light-mediated synthetic radical chemistry. However, theoretical insights into the reaction mechanisms remain limited. Our study investigates the influence of solvent polarity and halogen atom types on radical reaction pathways in EDA complexes. We demonstrate that solvent polarity modulates the charge transfer and spatial arrangement within EDA complexes, thereby influencing their stability and reaction kinetics. Iodide ions play a crucial role in facilitating free radical generation and stabilizing reaction intermediates. Different halogen atom types exhibit distinct effects on radical reactions. Variations in radical concentration and solvent environment further affect the pathway selectivity. Additionally, light conditions influence the free radical generation and pathway selectivity. Our findings enhance the understanding of EDA complex photochemistry and radical reactions, offering insights for organic synthesis and photochemistry applications.

9.
Phys Chem Chem Phys ; 26(8): 6826-6833, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38324383

RESUMO

Fe-N-C materials have emerged as highly promising non-noble metal catalysts for oxygen reduction reactions (ORRs) in polymer electrolyte membrane fuel cells. However, they still encounter several challenges that need to be addressed. One of these challenges is establishing an atomic environment near the Fe-N4 site, which can significantly affect catalyst activity. To investigate this, herein, we employed density functional theory (DFT). According to our computational analysis of the Gibbs free energy of the reaction based on the computational hydrogen electrode (CHE) model, we successfully determined two C-O-C structures near the Fe-N4 site (referred to as str-11) with the highest limiting potential (0.813 V). Specifically, in the case of O-doped structures, the neighboring eight carbon (C) atoms around nitrogen (N) can be categorized into two distinct types: four C atoms (type A) exhibiting high sensitivity to the limiting potential and the remaining four C atoms (type B) displaying inert behavior. Electronic structure analysis further elucidated that a structure will have strong activity if the valence band maximum (VBM) around its gamma point is mainly contributed by dxz, dyz or dz2 orbitals of Fe atoms. Constant-potential calculations showed that str-11 is suitable for the ORR under both acidic and alkaline conditions with a limiting potential of 0.695 V at pH = 1 and 0.926 V at pH = 14, respectively. Additionally, microkinetic simulations indicated the possibility of str-11 as the active site for the ORR under working potential at pH = 14.

10.
Angew Chem Int Ed Engl ; 63(16): e202401214, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38393606

RESUMO

It is essential to probe the coordination number (CN) because it is a crucial factor to ensure the catalytic capability of single-atom catalysts (SACs). Currently, synchrotron X-ray absorption spectroscopy (XAS) is widely used to measure the CN. However, the scarcity of synchrotron X-ray source and complicated data analysis restrict its wide applications in determining the CN of SACs. In this contribution, we have developed a d-band center-regulated acetone cataluminescence (CTL) probe for a rapid screening of the CN of Pt-SACs. It is disclosed that the CN-triggered CTL is attributed to the fact that the increased CN could induce the downward shift of d-band center position, which assists the acetone adsorption and promotes the subsequent catalytic reaction. In addition, the universality of the proposed acetone-CTL probe is verified by determining the CN of Fe-SACs. This work has opened a new avenue for exploring an alternative to synchrotron XAS for the determination of CN of SACs and even conventional metal catalysts through d-band center-regulated CTL.

11.
Small ; 20(14): e2308429, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37988709

RESUMO

Chiral carbon nanohoops with both high fluorescence quantum yield and large luminescence dissymmetry factor are essential to the development of circularly polarized luminescence (CPL) materials. Herein, the rational design and synthesis of a series of highly fluorescent chiral carbon nanohoops TP-[8-13]CPPs via symmetry breaking with a chiral triptycene motif is reported. Theoretical calculations revealed that breaking the symmetry of nanohoops causes a unique size-dependent localization in the highest occupied molecular orbitals (HOMOs) and the lowest unoccupied molecular obtitals (LUMOs) as the increasing of sizes, which is sharply different from those of [n]cycloparaphenylenes. Photophysical investigations demonstrated that TP-[n]CPPs display size-dependent emissions with high fluorescence quantum yields up to 92.9% for TP-[13]CPP, which is the highest value among the reported chiral conjugated carbon nanohoops. The high fluorescence quantum yields are presumably attributed to both the unique acyclic, and radial conjugations and high radiative transition rates, which are further supported by theoretical investigations. Chiroptical studies revealed that chiral TP-[n]CPPs exhibit bright CPL with CPL brightness up to 100.5 M-1 cm-1 for TP-[11]CPP due to the high fluorescence quantum yield. Importantly, the investigations revealed the intrigued size-dependent properties of TP-[n]CPPs with regards to (chir)optical properties, which follow a nice linear relationship versus 1/n. Such a nice linear relationship is not observed in other reported conjugated nanohoops including CPPs.

12.
Chemistry ; 30(12): e202303819, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-37997515

RESUMO

We reported the synthesis of a series of structurally diverse CPL-active molecules, in which pyrene units were installed to chiral pm/po-[2,2]PCP scaffolds either with or without a triple bond spacer for pm/po-PCP-P1 and pm/po-PCP-P2, respectively. The X-ray crystallographic analyses revealed that these pyrene-based [2,2]PCP derivatives exhibited diverse structures and crystal packings in the solid phases. The pyrene-based [2,2]PCP derivatives exhibit various (chir)optical properties in organic solutions, depending on their respective structures. In a mixture of dioxane and water, pm/po-PCP-P1 emit green excimer fluorescence, whereas pm/po-PCP-P2 emit blue one. The chiroptical investigation demonstrated that Rp-pm-PCP-P1 and Rp-pm-PCP-P2 exhibited completely opposite CD and CPL signals even they possess the same chiral Rp-[2,2]PCP core. The same argument also holds for other chiral pyrene-based [2,2]PCP derivatives. The theoretical calculation revealed that these unusual phenomena were attributed to different orientation between transition electric dipole moments and the magnetic dipole moments originating from the presence or absence of a triple bond spacer. These pyrene-based [2,2]PCP derivatives display various colours and fluorescence emissions in the solid state and PMMA films, possibly due to the different packings as observed in the crystal structure. Moreover, these compounds also can interact with perylene diimide through π-π interactions, leading to near-white fluorescence.

13.
Micromachines (Basel) ; 14(12)2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38138422

RESUMO

Micro- and nanorobots are highly intelligent and efficient. They can perform various complex tasks as per the external stimuli. These robots can adapt to the required functional form, depending on the different stimuli, thus being able to meet the requirements of various application scenarios. So far, microrobots have been widely used in the fields of targeted therapy, drug delivery, tissue engineering, environmental remediation and so on. Although microbots are promising in some fields, few reviews have yet focused on them. It is therefore necessary to outline the current status of these microbots' development to provide some new insights into the further evolution of this field. This paper critically assesses the research progress of microbots with respect to their preparation methods, stimulus-response mechanisms and applications. It highlights the suitability of different preparation methods and stimulus types, while outlining the challenges experienced by microbots. Viable solutions are also proposed for the promotion of their practical use.

14.
Chem Sci ; 14(40): 11121-11130, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37860654

RESUMO

In this study, we synthesized and reported the heterotopic bisnanohoops P5-[8,10]CPPs containing cycloparaphenylenes (CPPs) and a pillar[5]arene unit, which act not only as energy donors but also as a host for binding energy acceptors. We demonstrated that a series of elegant FRET systems could be constructed successfully through self-assembly between donors P5-[8,10]CPPs and acceptors with different emissions via host-guest interaction. These FRET systems further allow us to finely adjust the donors P5-[8,10]CPPs and acceptors (BODIPY-Br and Rh-Br) for achieving multiple color-tunable emissions, particularly white-light emission. More importantly, these host-guest complexes were successfully utilized in the fabrication of white-light fluorescent films and further integrated with a 365 nm LED lamp to create white LED devices. The findings highlight a new application of carbon nanorings in white-light emission materials, beyond the common recognition of π-conjugated molecules.

15.
Protein Cell ; 14(9): 653-667, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37707322

RESUMO

Lipophagy, the selective engulfment of lipid droplets (LDs) by autophagosomes for lysosomal degradation, is critical to lipid and energy homeostasis. Here we show that the lipid transfer protein ORP8 is located on LDs and mediates the encapsulation of LDs by autophagosomal membranes. This function of ORP8 is independent of its lipid transporter activity and is achieved through direct interaction with phagophore-anchored LC3/GABARAPs. Upon lipophagy induction, ORP8 has increased localization on LDs and is phosphorylated by AMPK, thereby enhancing its affinity for LC3/GABARAPs. Deletion of ORP8 or interruption of ORP8-LC3/GABARAP interaction results in accumulation of LDs and increased intracellular triglyceride. Overexpression of ORP8 alleviates LD and triglyceride deposition in the liver of ob/ob mice, and Osbpl8-/- mice exhibit liver lipid clearance defects. Our results suggest that ORP8 is a lipophagy receptor that plays a key role in cellular lipid metabolism.


Assuntos
Autofagia , Gotículas Lipídicas , Animais , Camundongos , Autofagossomos , Homeostase , Triglicerídeos
16.
J Org Chem ; 88(14): 10171-10179, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37437175

RESUMO

Construction of macrocyclic hosts with a novel structure and excellent property has emerged as an intriguing undertaking for the past few years. Here, we reported the synthesis of shape-persistent triptycene-derived pillar[6]arene (TP[6]). The single crystal structure analysis revealed that the macrocyclic molecule adopts a hexagonal structure, featuring a helical and electron-rich cavity capable of encapsulating electron-deficient guests. In order to obtain chiral TP[6] from an enantiomerically pure triptycene building block, an efficient resolution of chiral triptycene was successfully developed through introducing chiral auxiliaries into triptycene skeletons. The 1H NMR and isothermal titration calorimetry investigations demonstrated that chiral TP[6] exhibited enantioselectivity toward four pairs of chiral guests containing a trimethylamino group, implying a significant promising application in area of enantioselective recognition.

17.
J Phys Chem Lett ; 14(26): 6187-6192, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37379529

RESUMO

Identification of radical intermediates for the catalytic functionalization of alkanes offers a number of unique challenges and has recently raised a controversial issue concerning the subtle role of chlorine versus alkoxy radicals in cerium photocatalysis. This study is an attempt to settle the controversy within the theoretical frameworks of Marcus electron transfer and transition state theory. Co-function mechanisms were proposed together with a scheme of kinetic evaluations to account for ternary dynamic competition among photolysis, back electron transfer, and hydrogen atom transfer (HAT). Cl•-based HAT has been proven to initially control the early dynamics of the photocatalytic transformation on the picosecond to nanosecond time scale, which is subsequently taken over by a postnanosecond event of alkoxy radical-mediated HAT. The theoretical models developed herein provide a uniform understanding of the continuous time dynamics of photogenerated radicals to address some paradoxical arguments in lanthanide photocatalysis.

18.
J Phys Chem A ; 127(18): 4115-4124, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37133205

RESUMO

The photolysis of tetrazoles has undergone extensive research. However, there are still some problems to be solved in terms of mechanistic understanding and reactivity analyses, which leaves room for theoretical calculations. Herein, multiconfiguration perturbation theory at the CASPT2//CASSCF level was employed to account for electron correction effects involved in the photolysis of four disubstituted tetrazoles. Based on calculations of vertical excitation properties and evaluations of intersystem crossing (ISC) efficiencies in the Frank-Condon region, the combination of space and electronic effects is found in maximum-absorption excitation. Two types of ISC (1ππ* → 3nπ*, 1ππ* → 3ππ*) are determined in disubstituted tetrazoles, and the obtained rates follow the El-Sayed rule. Through mapping three representative types of minimum energy profiles for the photolysis of 1,5-, and 2,5-disubstituted tetrazoles, a conclusion can be drawn that the photolysis of tetrazoles exhibits reactivity characteristic of bond-breaking selectivity. Kinetic evaluations show that the photogeneration of singlet imidoylnitrene operates predominately over that in the triplet state, which can be confirmed by a double-well model in the triplet potential energy surface of 1,5-disubstituted tetrazole. Similar mechanistic explorations and reactivity analyses were also applied to the photolysis of 2,5-disubstituted tetrazole to unveil fragmentation patterns of nitrile imine generation. All computational efforts allow us to better understand the photoreactions of disubstituted tetrazoles and to provide useful strategies for regulating their unique reactivity.

19.
Phys Chem Chem Phys ; 25(18): 12783-12790, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37128988

RESUMO

Ag(I) is able to mediate single-crystal-to-single-crystal transformation through [2+2] photocycloaddition to prepare high-conductivity materials. However, the intrinsic mechanism of Ag(I) mediation, the detailed photophysical and photochemical processes as well as the origin of the enhanced conductivity of nanocrystals are still unclear. In this work, the comprehensive kinetic scheme and regulation mechanism are established by the accurate QM/MM calculations at the CASPT2//CASSCF/AMBER level of theory with consideration of the crystal environment. We find that the argentophilic interaction and through space electronic interaction are the key factors that promote Ag(I)-mediated [2+2] PCA reactions and may account for the enhancement of conductivity. These mechanistic insights into the Ag(I)-regulated photo-dimerization in the crystal surrounding are beneficial for the design of the structurally and electrically favorable skeletons of a metal-organic coordination polymer.

20.
JACS Au ; 3(5): 1452-1463, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37234115

RESUMO

Organic photocatalysis has been developed flourishingly to rely on bimolecular energy transfer (EnT) or oxidative/reductive electron transfer (ET), promoting a variety of synthetic transformations. However, there are rare examples to merge EnT and ET processes rationally within one chemical system, of which the mechanistic investigation still remains in its infancy. Herein, the first mechanistic illustration and kinetic assessments of the dynamically associated EnT and ET paths were conducted for realizing the C-H functionalization in a cascade photochemical transformation of isomerization and cyclization by using the dual-functional organic photocatalyst of riboflavin. An extended single-electron transfer model of transition-state-coupled dual-nonadiabatic crossings was explored to analyze the dynamic behaviors in the proton transfer-coupled cyclization. This can also be used to clarify the dynamic correlation with the EnT-driven E → Z photoisomerization that has been kinetically evaluated by using Fermi's golden rule with the Dexter model. The present computational results of electron structures and kinetic data contribute to a fundamental basis for understanding the photocatalytic mechanism of the combined operation of EnT and ET strategies, which will guide the design and manipulation for the implementation of multiple activation modes based on a single photosensitizer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...