Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Int Immunopharmacol ; 137: 112431, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38897125

RESUMO

Osteoarthritis (OA), a degenerative joint disorder, has an unclear immune infiltration mechanism in subchondral bone (SCB). Thus, this study aims to discern immune infiltration variations in SCB between early- and late-stages of OA and identify pertinent biomarkers. Utilizing the GSE515188 bulk-seq profile from the Gene Expression Omnibus database, we performed single-sample gene-set enrichment analysis alongside weighted gene co-expression network analysis to identify key cells and immune-related genes (IRGs) involved in SCB at both stages. At the meanwhile, differentially expressed genes (DEGs) were identified in the same dataset and intersected with IRGs to find IR-DEGs. Protein-protein interaction network and enrichment analyses and further gene filtering using LASSO regression led to the discovery of potential biomarkers, which were then validated by ROC curve analysis, single-cell RNA sequencing, qRT-PCR, western blot and immunofluorescence. ScRNA-seq analysis using GSE196678, qRT-PCR, western blot and immunofluorescence results confirmed the upregulation of their expression levels in early-stage OA SCB samples. Our comprehensive analysis revealed lymphocytes infiltration as a major feature in early OA SCB. A total of 13 IR-DEGs were identified, showing significant enrichment in T- or B-cell activation pathways. Three of them (CD247, POU2AF1, and TNFRSF13B) were selected via the LASSO regression analysis, and results from the ROC curve analyses indicated the diagnostic efficacy of these 3 genes as biomarkers. These findings may aid in investigating the mechanisms of SCB immune infiltration in OA, stratifying OA progression, and identifying relevant therapeutic targets.

2.
Nat Commun ; 15(1): 4607, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816407

RESUMO

Type II topoisomerases are ubiquitous enzymes that play a pivotal role in modulating the topological configuration of double-stranded DNA. These topoisomerases are required for DNA metabolism and have been extensively studied in both prokaryotic and eukaryotic organisms. However, our understanding of virus-encoded type II topoisomerases remains limited. One intriguing example is the African swine fever virus, which stands as the sole mammalian-infecting virus encoding a type II topoisomerase. In this work, we use several approaches including cryo-EM, X-ray crystallography, and biochemical assays to investigate the structure and function of the African swine fever virus type II topoisomerase, pP1192R. We determine the structures of pP1192R in different conformational states and confirm its enzymatic activity in vitro. Collectively, our results illustrate the basic mechanisms of viral type II topoisomerases, increasing our understanding of these enzymes and presenting a potential avenue for intervention strategies to mitigate the impact of the African swine fever virus.


Assuntos
Vírus da Febre Suína Africana , Microscopia Crioeletrônica , DNA Topoisomerases Tipo II , Vírus da Febre Suína Africana/enzimologia , Vírus da Febre Suína Africana/genética , DNA Topoisomerases Tipo II/metabolismo , DNA Topoisomerases Tipo II/química , Animais , Cristalografia por Raios X , Suínos , Proteínas Virais/metabolismo , Proteínas Virais/química , Proteínas Virais/genética , Modelos Moleculares , Conformação Proteica , Febre Suína Africana/virologia
3.
Chemosphere ; 355: 141719, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513956

RESUMO

PER: and polyfluoroalkyl substances (PFAS) have been measured in aqueous components within landfills. To date, the majority of these studies have been conducted in Florida. This current study aimed to evaluate PFAS concentrations in aqueous components (leachate, gas condensate, stormwater, and groundwater) from four landfills located outside of Florida, in Pennsylvania, Colorado, and Wisconsin (2 landfills). The Pennsylvania landfill also provided the opportunity to assess a leachate treatment system. Sample analyses were consistent across studies including the measurements of 26 PFAS and physical-chemical parameters. For the four target landfills, average PFAS concentrations were 6,900, 22,000, 280, and 260 ng L-1 in the leachate, gas condensate, stormwater, and groundwater, respectively. These results were not significantly different than those observed for landfills in Florida except for the significantly higher PFAS concentrations in gas condensate compared to leachate. For on-site treatment at the Pennsylvania landfill, results suggest that the membrane biological bioreactor (MBBR) system performed similarly as aeration-based leachate treatment systems at Florida landfills resulting in no significant decreases in ∑26PFAS. Overall, results suggest a general consistency across US regions in PFAS concentrations within different landfill liquid types, with the few differences observed likely influenced by landfill design and local climate. Results confirm that leachate exposed to open air (e.g., in trenches or in treatment systems) have lower proportions of perfluoroalkyl acid precursors relative to leachate collected in enclosed pipe systems. Results also confirm that landfills without bottom liner systems may have relatively higher PFAS levels in adjacent groundwater and that landfills in wetter climates tend to have higher PFAS concentrations in leachate.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Colorado , Wisconsin , Pennsylvania , Biofilmes , Reatores Biológicos , Instalações de Eliminação de Resíduos , Fluorocarbonos/análise
4.
Water Res ; 254: 121341, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38422693

RESUMO

Highly urban coastal communities in low lying areas and with high water tables are vulnerable to sea-level rise and to corresponding increases in coastal groundwater levels. Stormwater conveyance systems are under increased risk. Rising groundwater levels affect the hydraulics of the stormwater system thereby increasing contaminant transport, for example the fecal indicator bacteria enterococci, to coastal waters. This study offers a unique opportunity to evaluate the impacts of increased contaminant transport on marine coastal environments. Here we assessed historic and recent coastal water quality, stormwater sampling data, groundwater monitoring and tidal elevations near the coastline, in the context of altered hydraulics within the system. Two pathways of enterococci to marine waters were identified. Direct discharge of contaminated stormwater runoff via the stormwater outfalls and tidally driven contaminated groundwater discharge. As sea level continues to rise, we hypothesize that a diminished unsaturated zone coupled with altered hydraulic conditions at the coastal groundwater zone will facilitate the transport of enterococci from urban sediments to the study site (Park View Waterway in Miami Beach, FL USA). We recommend improvements to the stormwater conveyance system, and maintenance of the sanitary sewer system to mitigate these impacts and minimize transport of enterococci, and other stormwater pollutants to coastal waters. The results of this study can be useful to interpret high enterococci levels in low lying coastal areas where groundwater is influenced by rising sea water levels.


Assuntos
Poluentes Ambientais , Água Subterrânea , Enterococcus , Elevação do Nível do Mar , Monitoramento Ambiental
5.
Waste Manag ; 175: 348-359, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38252979

RESUMO

Per- and polyfluoroalkyl substances (PFAS) have been found at high levels within landfill environments. To assess PFAS distributions, this study aimed to evaluate PFAS mass flux leached from disposed solid waste and within landfill reservoirs by mass balance analyses for two full-scale operational Florida landfills. PFAS mass flux in different aqueous components within landfills were estimated based on PFAS concentrations and water flow rates. For PFAS concentration, 26 PFAS, including 18 perfluoroalkyl acids (PFAAs) and 8 PFAA-precursors, were measured in samples collected from the landfills or estimated based on previous studies. Flow rates of aqueous components (rainfall, evapotranspiration, runoff, stormwater, groundwater, leakage, gas condensate, and leachate) were evaluated through the Hydrologic Evaluation of Landfill Performance model, water balance, and Darcy's Law. Results showed that the average PFAS mass flux leached from the solid waste standardized by area was estimated as 36.8 g/ha-yr, which was approximately 1 % to 3 % of the total amount of PFAS within the solid waste. The majority of PFAS leached from the solid waste (95 % to 97 %) is captured by the leachate collection system, with other aqueous components representing much smaller fractions (stormwater system at 3 % to 5 %, and gas condensate and groundwater at < 1 %). Also, based on the results, we estimate that PFAS releases will likely occur at least over 40 years. Overall, these results can help prioritize components for waste management and PFAS treatment during the anticipated landfill release periods.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Resíduos Sólidos/análise , Poluentes Químicos da Água/análise , Florida , Instalações de Eliminação de Resíduos , Água , Fluorocarbonos/análise
6.
Gut Microbes ; 16(1): 2297852, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38289284

RESUMO

Age-related changes in the microbiome have been reported in previous studies; however, direct evidence for their association with frailty is lacking. Here, we introduce biological age based on gut microbiota (gAge), an integrated prediction model that integrates gut microbiota data from different perspectives with potential background factors for aging assessment. Simulation results show that, compared with a single model, the ensemble model can not only significantly improve the prediction accuracy, but also make full use of the data in unpaired samples. From this, we identified markers associated with age development and grouped markers into accelerated aging and mitigated aging according to their effect on the prediction. Importantly, the application of gAge to an elderly cohort with different frailty levels confirmed that gAge and its predictive residuals are closely related to the individual's health status and frailty stage, and age-related markers overlap significantly with disease and frailty characteristics. Furthermore, we applied the gAge prediction model to another independent cohort of the elderly population for aging assessment and found that gAge could effectively represent the aging population. Overall, our study explains the association between the gut microbiota and frailty, providing potential targets for the development of gut microbiota-based targeted intervention strategies for aging.


Assuntos
Fragilidade , Microbioma Gastrointestinal , Microbiota , Idoso , Humanos , Idoso Fragilizado , Envelhecimento
7.
Environ Toxicol ; 39(2): 723-735, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37676967

RESUMO

BACKGROUND: Lung adenocarcinoma (LUAD) is the prevalent malignancy worldwide. The aim is to explore differentially expressed genes (DEGs) associated with immune infiltration and survival time of LUAD patients, and predict transcriptional factors for shedding new light on molecular mechanisms and individual therapy of LUAD. METHOD: ScRNA-seq data of LUAD patients was downloaded from GSE148071 and analyzed by R packages. The clustering and protein-protein interaction network were constructed for screening DEGs. Gene Set Enrichment Analysis (GSEA) and GO enrichment analysis were performed in epithelial cell subgroups with high differentiation potential. Potential regulatory transcription factors were predicted. RESULTS: Sixteen epithelial cell types were required and top 20 genes were identified on cell subgroup Epi4 with the highest differentiation potential associated with poor prognosis of LUAD in PPI network. GSEA and GO annotation results showed that cell subgroup Epi4 was enriched in the biological processes of cell proliferation and energy metabolism, and positively regulated the function of cell proliferation. TPI1 was significantly highly expressed in LUAD samples (p < .0001). TPI1 demonstrated a negative correlation with the infiltration levels of CD8+ T cells, CD4+ T cells, B cells, and activated mast cells, whilst manifesting a positive correlation with the infiltration levels of resident mast cells, Th2 cells, and MDSC. Epi4 was regulated by transcription factors MXD3 and GATA4. CONCLUSION: Overexpression of TPI1 was identified as a novel biomarker for LUAD, and potential regulatory transcription factors MXD3 and GATA4 regulated the proliferation of LUAD with the poor prognosis, which may serve as potential targets to suppress the proliferation of LUAD.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Transcriptoma , Neoplasias Pulmonares/genética , Células Epiteliais , Fatores de Transcrição , Análise de Sequência de RNA
8.
CNS Neurosci Ther ; 30(2): e14403, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37577804

RESUMO

AIM: Cinchonine (CN) and its isomer cinchonidine (CD), two of the common cinchona alkaloids, are wildly used as antimalarial drugs. However, the effects of CN and CD on the auditory system are unknown. METHODS: Molecular docking and molecular dynamics (MD) simulation were used for predicting effective drugs. The CCK-8 assay was conducted for assessing cell viability in House Ear Institute-Organ of Corti 1 (HEI-OC1) cells. MitoSox Red staining revealed reactive oxygen species (ROS) amounts. TMRM staining was used to assess the mitochondrial membrane potential (ΔΨm). Immunofluorescence staining of myosin 7a was used to examine hair cells (HCs) in cisplatin-treated neonatal mouse cochlear explants, while TUJ-1 immunostaining was used for the detection of spiral ganglion neurons (SGNs). Cleaved caspase-3 and TUNEL immunostaining were utilized for apoptosis assessment. Immunoblot was carried out to detect PI3K-AKT signaling effectors. RESULTS: Pretreatment with CN or CD significantly increased cell viability and reduced mitochondrial dysfunction and ROS accumulation in cisplatin-treated HEI-OC1 cells. Immunofluorescent staining of cochlear explants showed that CN and CD attenuated cisplatin-induced damage to SGNs and HCs. Immunoblot revealed that CN and CD downregulated the expression of cleaved caspase-3 and activated PI3K-AKT signaling in cisplatin-injured HEI-OC1 cells. CONCLUSION: CD and CN can reduce ototoxicity caused by cisplatin and might help treat cisplatin-associated hearing loss.


Assuntos
Antineoplásicos , Alcaloides de Cinchona , Ototoxicidade , Camundongos , Animais , Cisplatino/toxicidade , Antineoplásicos/toxicidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Caspase 3/metabolismo , Fosfatidilinositol 3-Quinases , Espécies Reativas de Oxigênio/metabolismo , Ototoxicidade/tratamento farmacológico , Simulação de Acoplamento Molecular , Alcaloides de Cinchona/farmacologia , Apoptose
9.
Waste Manag ; 174: 558-567, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38141373

RESUMO

Studies of per- and polyfluoroalkyl substances (PFAS) fluctuations at landfills have focused on municipal solid waste (MSW) leachate. Few studies exist that evaluate fluctuations (defined by the coefficient of variation, CV) in MSW incinerator ash (MSWA) landfill leachate and that evaluate PFAS fluctuations in stormwater, groundwater, and treated liquids on-site. In this study, aqueous landfill samples (leachate, treated leachate, stormwater, gas condensate, ambient groundwater, and effluent from a groundwater remediation system) were collected from a MSW and an MSWA landfill geographically located within close proximity (less than 40 km). The objective of this study was to compare the leachate compositions between these two landfill types and to evaluate temporal variations. Results indicated that the CV of total detected PFAS concentrations in leachate was higher for the MSW landfill (CV = 43 %) compared to the MSWA landfill (CV = 16 %). The total detected PFAS concentration in MSW leachate samples (mean: 9641 ng/L) was higher than in MSWA leachate samples (mean: 2621 ng/L) (p < 0.05). Within a landfill, PFAS concentrations were correlated (rs > 0.6, p < 0.05) with alkalinity, total organic carbon (TOC), and ammonia. Results from the on-site leachate treatment system at the MSW landfill indicated reductions in COD, TOC, and ammonia; however, the ∑26PFAS concentration increased 3 % after the treatment. Overall, results demonstrated that differences between landfill types and fluctuations in PFAS within landfills should be considered when designing landfill leachate collection and treatment systems to remove PFAS. The comparative analysis in this study can provide insights into optimizing leachate management for MSW and MSWA landfills.


Assuntos
Fluorocarbonos , Eliminação de Resíduos , Poluentes Químicos da Água , Resíduos Sólidos/análise , Amônia/análise , Poluentes Químicos da Água/análise , Instalações de Eliminação de Resíduos , Fluorocarbonos/análise
10.
NPJ Biofilms Microbiomes ; 9(1): 98, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38086914

RESUMO

Bifidobacteria are key gut commensals that confer various health benefits and are commonly used as probiotics. However, little is known about the population-level variation in gut bifidobacterial composition and its affecting factors. Therefore, we analyzed Bifidobacterium species with amplicon sequencing of the groEL gene on fecal samples of 1674 healthy individuals, who belonged to eight ethnic groups and resided in 60 counties/cities of 28 provinces across China. We found that the composition of the bifidobacterial community was associated with geographical factors, demographic characteristics, staple food type, and urbanization. First, geography, which reflects a mixed effect of other variables, explained the largest variation in the bifidobacterial profile. Second, middle adolescence (age 14-17) and age 30 were two key change points in the bifidobacterial community development, and a bifidobacterial community resembling that of adults occurred in middle adolescence, which is much later than the maturation of the whole gut microbial community at approximately age 3. Third, each ethnicity showed a distinct bifidobacterial profile, and the remarkable amount of unknown Bifidobacterium species in the Tibetan gut suggested undiscovered biodiversity. Fourth, wheat as the main staple food promoted the flourish of B. adolescentis and B. longum. Fifth, alpha diversity of the bifidobacterial community decreased with urbanization. Collectively, our findings provide insight into the environmental and host factors that shape the human gut bifidobacterial community, which is fundamental for precision probiotics.


Assuntos
Bifidobacterium , Probióticos , Adulto , Humanos , Adolescente , Pré-Escolar , Bifidobacterium/genética , Etnicidade , Fezes/microbiologia , Geografia
11.
Appl Environ Microbiol ; 89(9): e0097923, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37681950

RESUMO

Bifidobacterium is the dominant genus, particularly in the intestinal tract niche of healthy breast-fed infants, and many of these strains have been proven to elicit positive effects on infant development. In addition to its effective antimicrobial activity against detrimental microorganisms, it helps to improve the intestinal microbiota balance. The isolation and identification of bacteriocins from Bifidobacterium have been limited since the mid-1980s, leading to an underestimation of its ability for bacteriocin production. Here, we employed a silicon-based search strategy to mine 354 putative bacteriocin gene clusters (BGCs), most of which have never been reported, from the genomes of 759 Bifidobacterium strains distributed across 9 species. Consistent with previous reports, most Bifidobacterium strains did not carry or carry only a single BGC; however, Bifidobacterium longum subsp. infantis, in contrast to other Bifidobacterium species, carried numerous BGCs, including lanthipeptides, lasso peptides, thiopeptides, and class IId bacteriocins. The antimicrobial activity of the crude bacteriocins and transcription analysis confirmed its potential for bacteriocin biosynthesis. Additionally, we investigated the association of bacteriocins with the phylogenetic positions of their homologs from other genera and niches. In conclusion, this study re-examines a few Bifidobacterium species traditionally regarded as a poor source of bacteriocins. These bacteriocin genes impart a competitive advantage to Bifidobacterium in colonizing the infant intestinal tract. IMPORTANCE Development of the human gut microbiota commences from birth, with bifidobacteria being among the first colonizers of the newborn intestinal tract and dominating it for a considerable period. To date, the genetic basis for the successful adaptation of bifidobacteria to this particular niche remains unclear since studies have mainly focused on glycoside hydrolase and adhesion-related genes. Bacteriocins are competitive factors that help producers maintain colonization advantages without destroying the niche balance; however, they have rarely been reported in Bifidobacterium. The advancement in sequencing methods and bacteriocin databases enables the use of a silicon-based search strategy for the comprehensive and rapid re-evaluation of the bacteriocin distribution of Bifidobacterium. Our study revealed that B. infantis carries abundant bacteriocin biosynthetic gene clusters for the first time, presenting new evidence regarding the competitive interactions of Bifidobacterium in the infant intestinal tract.


Assuntos
Anti-Infecciosos , Bacteriocinas , Lactente , Recém-Nascido , Criança , Feminino , Humanos , Bifidobacterium/genética , Bacteriocinas/genética , Filogenia , Silício , Bifidobacterium longum subspecies infantis , Família Multigênica
12.
J Cancer Res Clin Oncol ; 149(15): 13889-13904, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37540256

RESUMO

BACKGROUND: It is unknown how the cell cycle plays a role in breast cancer (BC). This study aimed to establish a clinically applicable predictive model to predict the therapeutic responses and overall survival in BC patients. MATERIALS AND METHODS: Cell cycle-related genes (CCGs) were identified within the Cancer Genome Atlas cohort (n is equal to 1001) and the Gene Expression Omnibus cohort (n is equal to 3265). An analysis of univariate and multivariate Cox was then conducted to develop a nomogram based on CCGs. After validating the nomogram, risk cohort stratification was established and the predictive value was examined. Finally, immune cell infiltration and therapeutic responses were analysed. RESULTS: Based on 15 CCGs, 4 prognostic predictors were identified and entered into the nomogram. According to the curves of calibration, the estimated and observed value of the nomogram is in optimal agreement. Subsequently, stratification into two risk cohorts showed that the predictive value, immune cell infiltration and overall survival were better among patients with low risk. Immune checkpoint expression in patients with BC at higher risk was downregulated. Furthermore, the results of the study revealed that doxorubicin, paclitaxel, docetaxel, cisplatin and vinorelbine all had higher IC50 values in patients with high-risk BC. CONCLUSION: The nomogram based on CCG could assess tumour immune micro-environment regulation and therapeutic responses of immunotherapy in BC. Moreover, it may provide novel information on the control of immune micro-environment infiltration in BC and aid in the development of targeted immunotherapy.

13.
Angew Chem Int Ed Engl ; 62(36): e202305123, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37462518

RESUMO

Tantalum nitride (Ta3 N5 ) has emerged as a promising photoanode material for photoelectrochemical (PEC) water splitting. However, the inefficient electron-hole separation remains a bottleneck that impedes its solar-to-hydrogen conversion efficiency. Herein, we demonstrate that a core-shell nanoarray photoanode of NbNx -nanorod@Ta3 N5 ultrathin layer enhances light harvesting and forms a spatial charge-transfer channel, which leads to the efficient generation and extraction of charge carriers. Consequently, an impressive photocurrent density of 7 mA cm-2 at 1.23 VRHE is obtained with an ultrathin Ta3 N5 shell thickness of less than 30 nm, accompanied by excellent stability and a low onset potential (0.46 VRHE ). Mechanistic studies reveal the enhanced performance is attributed to the high-conductivity NbNx core, high-crystalline Ta3 N5 mono-grain shell, and the intimate Ta-N-Nb interface bonds, which accelerate the charge-separation capability of the core-shell photoanode. This study demonstrates the key roles of nanostructure design in improving the efficiency of PEC devices.

14.
Microbiol Spectr ; 11(3): e0007623, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37199635

RESUMO

Fetuses diagnosed with fetal growth restriction (FGR) are at an elevated risk of stillbirth and adulthood morbidity. Gut dysbiosis has emerged as one of the impacts of placental insufficiency, which is the main cause of FGR. This study aimed to characterize the relationships among the intestinal microbiome, metabolites, and FGR. Characterization was conducted on the gut microbiome, fecal metabolome, and human phenotypes in a cohort of 35 patients with FGR and 35 normal pregnancies (NP). The serum metabolome was analyzed in 19 patients with FGR and 31 normal pregnant women. Multidimensional data was integrated to reveal the links between data sets. A fecal microbiota transplantation mouse model was used to determine the effects of the intestinal microbiome on fetal growth and placental phenotypes. The diversity and composition of the gut microbiota were altered in patients with FGR. A group of microbial species altered in FGR closely correlated with fetal measurements and maternal clinical variables. Fecal and serum metabolism profiles were distinct in FGR patients compared to those in the NP group. Altered metabolites were identified and associated with clinical phenotypes. Integrated multi-omics analysis revealed the interactions among gut microbiota, metabolites, and clinical measurements. Microbiota from FGR gravida transplanted to mice progestationally induced FGR and placental dysfunction, including impaired spiral artery remodeling and insufficient trophoblast cell invasion. Taken together, the integration of microbiome and metabolite profiles from the human cohort indicates that patients with FGR endure gut dysbiosis and metabolic disorders, which contribute to disease pathogenesis. IMPORTANCE Downstream of the primary cause of fetal growth restriction are placental insufficiency and fetal malnutrition. Gut microbiota and metabolites appear to play an important role in the progression of gestation, while dysbiosis induces maternal and fetal complications. Our study elaborates the significant differences in microbiota profiles and metabolome characteristics between women with FGR and normal pregnancies. This is the first attempt so far that reveals the mechanistic links in multi-omics in FGR, providing a novel insight into host-microbe interaction in placenta-derived diseases.


Assuntos
Retardo do Crescimento Fetal , Microbioma Gastrointestinal , Animais , Feminino , Humanos , Camundongos , Gravidez , Disbiose , Retardo do Crescimento Fetal/metabolismo , Retardo do Crescimento Fetal/microbiologia , Placenta/patologia , Estudos de Coortes , Fezes/microbiologia , RNA Ribossômico 16S/genética , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Adulto , Biodiversidade , Soro/metabolismo
15.
J Colloid Interface Sci ; 642: 120-128, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37001451

RESUMO

The exploration of high-performance electrocatalysts for the oxygen evolution reaction (OER) is crucial and urgent for the fast development of green and renewable hydrogen energy. Herein, an ultra-fast and energy-efficient preparation strategy (microwave-assisted rapid in-situ pyrolysis of organometallic compounds induced by carbon nanotube (CNT)) is developed to obtain iron/carbon (Fe/C) heterogeneous materials (Fe/Fe3C particles wrapped by carbon coating layer). The thickness of the carbon coating layer can be adjusted by changing the content and form of carbon in the metal sources during the fast preparation process. Fe/Fe3C-A@CNT using iron acetylacetonate as metal sources possesses unique Fe/C heterogeneous, small Fe/Fe3C particles encapsulated by the thin carbon coating layer (1.77 nm), and obtains the optimal electron penetration effect. The electron penetration effect derives from the redistribution of charge between the surface carbon coating layer and inner Fe/Fe3C nanoparticles efficiently improving both catalytic activity and stability. Therefore, Fe/Fe3C-A@CNT shows efficient OER catalytic activity, just needing a low overpotential of 292 mV to reach a current density of 10 mA cm-2, and long-lasting stability. More importantly, the unique control strategy for carbon thickness in this work provides more opportunity and perspective to prepare robust metal/carbon-based catalytic materials at the nanoscale.

16.
Chemosphere ; 329: 138541, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36996915

RESUMO

Variable chemistries of liquids from landfills can potentially impact levels of per- and polyfluoroalkyl substances (PFAS). The objective of the current study was to evaluate relationships between physical-chemical properties (bulk measurements, oxygen demand components, and metals) and PFAS concentrations in different types of aqueous landfill samples. Aqueous landfill samples were collected from 39 landfill facilities in Florida, United States. These samples included leachates from landfills that receive different waste types, such as municipal solid waste incineration ash (MSWA), construction and demolition debris (C&D), and municipal solid waste (MSW). Additional aqueous landfill samples were sourced from treated landfill leachate, gas condensate, stormwater, and groundwater from within and near the landfill boundaries. Results showed significant correlations (p < 0.05) between ∑26PFAS and alkalinity (rs = 0.83), total organic carbon (TOC) (rs = 0.84), and ammonia (rs = 0.79) for all leachate types. Other physical-chemical parameters that were significantly correlated (rs > 0.60, p < 0.05) with PFAS included specific conductivity, chemical oxygen demand (COD), and to a lesser extent, total dissolved solids (TDS) and total solids (TS). For gas condensates, PFAS was significantly correlated with TOC. Stormwater and groundwater, within and near the landfill boundaries, had considerably lower levels of PFAS and had a minimal correlation between PFAS and physical-chemical parameters. Although PFAS concentrations and physical-chemical parameters and their correlations varied between different types of aqueous landfill samples, results suggest that physical-chemical properties can be useful indicators of relative PFAS concentrations within a leachate type. More research is needed to validate the mechanisms that relate physical-chemical parameters to PFAS concentrations in landfill leachates.


Assuntos
Fluorocarbonos , Eliminação de Resíduos , Poluentes Químicos da Água , Resíduos Sólidos/análise , Incineração , Poluentes Químicos da Água/análise , Instalações de Eliminação de Resíduos
17.
Nat Commun ; 14(1): 1324, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36898997

RESUMO

Newcastle disease virus (NDV) belongs to Paramyxoviridae, which contains lethal human and animal pathogens. NDV RNA genome is replicated and transcribed by a multifunctional 250 kDa RNA-dependent RNA polymerase (L protein). To date, high-resolution structure of NDV L protein complexed with P protein remains to be elucidated, limiting our understanding of the molecular mechanisms of Paramyxoviridae replication/transcription. Here, we used cryo-EM and enzymatic assays to investigate the structure-function relationship of L-P complex. We found that C-terminal of CD-MTase-CTD module of the atomic-resolution L-P complex conformationally rearranges, and the priming/intrusion loops are likely in RNA elongation conformations different from previous structures. The P protein adopts a unique tetrameric organization and interacts with L protein. Our findings indicate that NDV L-P complex represents elongation state distinct from previous structures. Our work greatly advances the understanding of Paramyxoviridae RNA synthesis, revealing how initiation/elongation alternates, providing clues for identifying therapeutic targets against Paramyxoviridae.


Assuntos
Vírus da Doença de Newcastle , Fosfoproteínas , Animais , Humanos , Vírus da Doença de Newcastle/genética , Paramyxoviridae , Fosfoproteínas/metabolismo , RNA , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/metabolismo
18.
Ecotoxicol Environ Saf ; 252: 114596, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36738609

RESUMO

The benthic gastropods Bellamya aeruginosa (B. aeruginosa) is ubiquitous in freshwater in China and neighboring countries with great edible value. It has been recognized as a potential manipulator to control harmful algal blooms due to its filtration on algal cells. In this study, the control effect of B. aeruginosa on toxic and non-toxic Microcystis aeruginosa (M. aeruginosa), and the accumulation and depuration of microcystins (MCs) in the snail were systematically explored. Results indicated that although toxic M. aeruginosa could protect itself via producing MCs, the introduction of B. aeruginosa could still effectively inhibit the algae with cell density below 1 × 106 cells/mL. Hepatopancreas was the primary target of MCs in all tissues of B. aeruginosa, presenting a maximum of 3089.60 ng/g DW when exposed to toxic M. aeruginosa of 1.0 × 107 cells/mL. The enrichment of MCs in other tissues following the order of digestive tract > gonad > mantle > muscle. Interestingly, snail could again excrete previously enriched MCs when transferred to non-toxic M. aeruginosa, giving rise to over 80% reduction of MCs in the body. After depuration, the estimated daily intake (EDI) of free MCs in intact individuals and the edible parts of B. aeruginosa were both lower than the tolerable daily intake (TDI). These results implicated that B. aeruginosa could control low density of M. aeruginosa in spring. Particularly, the snail could be perfectly safe to consume by purifying for a while after using as manipulator.


Assuntos
Microcystis , Animais , Humanos , Pseudomonas aeruginosa , Microcistinas/toxicidade , Caramujos , Proliferação Nociva de Algas , China
19.
Ying Yong Sheng Tai Xue Bao ; 34(1): 277-288, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36799404

RESUMO

Cyanotoxins produced by the toxic cyanobacteria is a great threat to global freshwater ecosystems, with hepatotoxic microcystins (MCs) as the most widely distributed and harmful ones. MCs have negative impacts on the structure, function and stability of aquatic ecosystems, posing threats to human health. In this study, we reviewed the distribution of MCs in waterbody, sediments, and different groups of aquatic animals. The toxicity mechanisms of MCs were also reviewed. The ecotoxicological effects of MCs on aquatic animals, aquatic and terrestrial plants, human health risk were summarized. Several biological methods about the prevention and control of MCs were mentioned. Many aspects about MCs that need to be further studied were proposed, aiming to provide a scientific basis for risk assessment and management of MCs.


Assuntos
Cianobactérias , Microcistinas , Animais , Humanos , Microcistinas/toxicidade , Ecossistema , Toxinas de Cianobactérias , Água Doce
20.
Biochim Biophys Acta Mol Cell Res ; 1870(4): 119437, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36754151

RESUMO

5,7-Dihydroxy-4-methylcoumarin (D4M) is attributed to free radical scavenging effects, with wide application for anti-oxidation. This work aimed to assess D4M's impact on cisplatin-induced ototoxicity. The cell viability was estimated with CCK-8 assay. Apoptosis was detected by the Annexin V-FITC and PI assay. The reactive oxygen species (ROS) level was determined by MitoSOX-Red and CellROX-Green probes. Mitochondrial membrane potential was analyzed with TMRM staining. Immunofluorescence was utilized for hair cells and spiral ganglion neuron detection. Apoptosis-associated proteins were assessed by cleaved caspase-3 and TUNEL staining. These results showed that D4M pretreatment protected hair cells from cisplatin-induced damage, increased cell viability, and decreased apoptosis in House Ear Institute-Organ of Corti1 (HEI-OC1) cells and neonatal mouse cochlear explants. D4M significantly inhibited cisplatin-induced mitochondrial apoptosis and reduced ROS accumulation. In addition, the protective effect of D4M on cisplatin-induced ototoxicity was also confirmed in cochlear hair cells and spiral ganglion neurons in neonatal mice. Mechanistic studies showed that D4M markedly downregulated p-JNK and elevated the expression ratio of p-FoxO1/FoxO1, thereby reducing cisplatin-induced caspase-dependent apoptosis. Meanwhile, D4M-related protection of HEI-OC1 cells was significantly blunted by JNK signaling induction with anisomycin. This study supports the possibility that D4M may be used as a new compound to prevent cisplatin-related hearing loss.


Assuntos
Antineoplásicos , Ototoxicidade , Animais , Camundongos , Antineoplásicos/toxicidade , Apoptose , Cisplatino/toxicidade , Proteína Forkhead Box O1/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Sistema de Sinalização das MAP Quinases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...