Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Spine J ; 24(7): 1282-1292, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38583576

RESUMO

BACKGROUND CONTEXT: Adolescent idiopathic scoliosis (AIS) necessitates accurate spinal curvature assessment for effective clinical management. Traditional two-dimensional (2D) Cobb angle measurements have been the standard, but the emergence of three-dimensional (3D) automatic measurement techniques, such as those using weight-bearing 3D imaging (WR3D), presents an opportunity to enhance the accuracy and comprehensiveness of AIS evaluation. PURPOSE: This study aimed to compare traditional 2D Cobb angle measurements with 3D automatic measurements utilizing the WR3D imaging technique in patients with AIS. STUDY DESIGN/SETTING: A cohort of 53 AIS patients was recruited, encompassing 88 spinal curves, for comparative analysis. PATIENT SAMPLE: The patient sample consisted of 53 individuals diagnosed with AIS. OUTCOME MEASURES: Cobb angles were calculated using the conventional 2D method and three different 3D methods: the Analytical Method (AM), the Plane Intersecting Method (PIM), and the Plane Projection Method (PPM). METHODS: The 2D cobb angle was manually measured by 3 experienced clinicians with 2D frontal whole-spine radiographs. For 3D cobb angle measurements, the spine and femoral heads were segmented from the WR3D images using a 3D-UNet deep-learning model, and the automatic calculations of the angles were performed with the 3D slicer software. RESULTS: AM and PIM estimates were found to be significantly larger than 2D measurements. Conversely, PPM results showed no statistical difference compared to the 2D method. These findings were consistent in a subgroup analysis based on 2D Cobb angles. CONCLUSION: Each 3D measurement method provides a unique assessment of spinal curvature, with PPM offering values closely resembling 2D measurements, while AM and PIM yield larger estimations. The utilization of WR3D technology alongside deep learning segmentation ensures accuracy and efficiency in comparative analyses. However, additional studies, particularly involving patients with severe curves, are required to validate and expand on these results. This study emphasizes the importance of selecting an appropriate measurement method considering the imaging modality and clinical context when assessing AIS, and it also underlines the need for continuous refinement of these techniques for optimal use in clinical decision-making and patient management.


Assuntos
Imageamento Tridimensional , Escoliose , Humanos , Escoliose/diagnóstico por imagem , Adolescente , Imageamento Tridimensional/métodos , Feminino , Masculino , Suporte de Carga , Coluna Vertebral/diagnóstico por imagem , Criança , Radiografia/métodos
3.
Phys Eng Sci Med ; 46(4): 1467-1474, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37644363

RESUMO

The study aimed to introduce a novel imaging method that generates large-coverage, weight-bearing, and 3D images of the whole spine. The proposed system comprises an X-ray tube, a flat panel detector, and a standing platform. The standing platform rotates the imaged subject, allowing for the acquisition of serial fluoroscopic images from different angles which can be used to create 3D images. To increase the longitudinal coverage, we apply a segmental scanning pattern in which the imaged region is scanned in segments and stitched. To address the issue of data inaccuracy between the segments, redundant areas are set at margins of the segmental images, and registration and stitching algorithms are applied. We conducted validation experiments to evaluate radiation dose and image quality. The dose was evaluated using the volume CT dose index (CTDIvol). For image quality evaluation, we measured the low-contrast and spatial resolution. Additionally, we conducted a clinical study consisting of 30 volunteers with adolescent idiopathic scoliosis who were imaged by our method, and the images were subjectively assessed based on image noise, artifacts, anatomical coverage, diagnostic confidence, and overall quality. The CTDIvol was 1.23 mGy, and the low-contrast resolution was 0.6% at 4 mm and the spatial resolution was 8 lp/cm. The clinical images were generally of good quality, with high scores for all factors evaluated. Our method successfully generates large-coverage, weight-bearing, and 3D images of the whole spine with high image quality and low radiation dose. It shows potential for wider clinical applications for various musculoskeletal conditions.


Assuntos
Escoliose , Adolescente , Humanos , Escoliose/diagnóstico por imagem , Imagens de Fantasmas , Tomografia Computadorizada de Feixe Cônico/métodos , Coluna Vertebral/diagnóstico por imagem , Imageamento Tridimensional/métodos
4.
Ultrasonics ; 129: 106904, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36463727

RESUMO

The passive elastic properties of skeletal muscles are related closely to muscle extensibility and flexibility. Recently, a single probe setup has been reported that measures the passive elastic properties of muscles in vivo. This uses a modulus-length framework to investigate sensitive dynamic parameters, termed as passive elastic coefficient k, slack length l0, and slack shear modulus G0 to quantify the passive elastic properties of human muscle. In particular, the parameter k calculated based on this framework reflects the change rate of the local shear modulus with respect to the muscle length, which remains constant during the entire passive stretching process. In this report, the modulus-length framework was validated in four groups of ex-vivo muscle samples (young and old chickens, pork, and beef). All the muscle samples were stretched mechanically whilst muscle length was monitored and recorded with simultaneous measurement of dynamic shear wave elastography (SWE). Agreement analyses using Bland-Altman diagrams and intraclass correlation coefficients (ICC) were then performed on coefficient k values obtained by mechanical stretching (k1) and real-time ultrasound imaging methods (k2). Bland-Altman diagrams show that the majority of the points lie within the 95 % LoA ([-1.87, 2.29]; p = 0.276) and the level of reliability was "good" to "excellent" based on the ICC results (ICC, 0.904; 95 % confidence interval, 0.813-0.953). This indicated that the ultrasound and mechanical methods produced very similar results. Meanwhile, the range of the coefficient k values in four muscle types and groups was significantly different (p < 0.05), a finding which strongly supports the potential use of this coefficient to characterize muscle quality and status.


Assuntos
Galinhas , Técnicas de Imagem por Elasticidade , Bovinos , Humanos , Animais , Reprodutibilidade dos Testes , Módulo de Elasticidade , Músculo Esquelético/diagnóstico por imagem , Técnicas de Imagem por Elasticidade/métodos
5.
Ultrasonics ; 116: 106512, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34274743

RESUMO

Quantitative evaluation of passive elastic properties of an individual skeletal muscle in vivo is among the major challenges of biomechanics, and its clinical application is severely limited. By combining shear-wave elastography (SWE) and B-mode imaging techniques, this study develops a novel non-invasive method to measure the local elastic modulus-fascicle strain curve of human pennation muscle during passive stretching using a single probe. Physiologically meaningful parameters are estimated and compared in subjects with different ages or pathological conditions. The in vivo experimental group comprised 12 healthy subjects (four children, four adults, and four seniors) and eight patients (four suffering from pseudohypertrophy, four from atrophy). Their gastrocnemius muscles were passively stretched using an ankle joint motion instrument. Local elastic moduli of the muscle were measured using SWE imaging frames and a built-in 'F-ROI' tool. The corresponding fascicle strains were simultaneously obtained using B-mode imaging frames and a gradient Radon transform. Three parameters (η, µ, G0) were estimated from a normalized elastic modulus-strain curve using the Gauss-Newton method. The measured elastic modulus-strain curves all agreed with models of the estimated parameters (0.910 < R2 < 0.999) and presented different patterns among normal and diseased subjects. η values were lower for pseudohypertrophies (1.93 ± 0.12), but higher for atrophies (63.40 ± 98.89), compared with normal ones (6.02 ± 2.53). In addition, µ values were higher for pseudohypertrophies (22.65 ± 16.40), but lower for atrophies (0.28 ± 0.41), compared with normal ones (1.07 ± 1.22). The proposed method may provide novel insight into the biomechanics of pennate muscle and has the potential to serve for clinical musculoskeletal medical diagnosis, as the single-probe scanning setup is broadly accepted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...