Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
FASEB J ; 38(15): e23867, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39101950

RESUMO

There is a significant difference in prognosis and response to chemotherapy between basal and classical subtypes of pancreatic ductal adenocarcinoma (PDAC). Further biomarkers are required to identify subtypes of PDAC. We selected candidate biomarkers via review articles. Correlations between these candidate markers and the PDAC molecular subtype gene sets were analyzed using bioinformatics, confirming the biomarkers for identifying classical and basal subtypes. Subsequently, 298 PDAC patients were included, and their tumor tissues were immunohistochemically stratified using these biomarkers. Survival data underwent analysis, including Cox proportional hazards modeling. Our results indicate that the pairwise and triple combinations of KRT5/KRT17/S100A2 exhibit a higher correlation coefficient with the basal-like subtype gene set, whereas the corresponding combinations of GATA6/HNF4A/TFF1 show a higher correlation with the classical subtype gene set. Whether analyzing unmatched or propensity-matched data, the overall survival time was significantly shorter for the basal subtype compared with the classical subtype (p < .001), with basal subtype patients also facing a higher risk of mortality (HR = 4.017, 95% CI 2.675-6.032, p < .001). In conclusion, the combined expression of KRT5, KRT17, and S100A2, in both pairwise and triple combinations, independently predicts shorter overall survival in PDAC patients and likely identifies the basal subtype. Similarly, the combined expression of GATA6, HNF4A, and TFF1, in the same manner, may indicate the classical subtype. In our study, the combined application of established biomarkers offers valuable insights for the prognostic evaluation of PDAC patients.


Assuntos
Biomarcadores Tumorais , Carcinoma Ductal Pancreático , Queratina-17 , Queratina-5 , Neoplasias Pancreáticas , Proteínas S100 , Humanos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/mortalidade , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Masculino , Feminino , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Pessoa de Meia-Idade , Proteínas S100/genética , Proteínas S100/metabolismo , Queratina-5/genética , Queratina-5/metabolismo , Idoso , Queratina-17/genética , Queratina-17/metabolismo , Prognóstico , Fator de Transcrição GATA6/genética , Fator de Transcrição GATA6/metabolismo , Regulação Neoplásica da Expressão Gênica , Adulto , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Fatores Quimiotáticos
2.
Mol Cell Biochem ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39117976

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is characterized by poor prognosis primarily due to metastasis. Accumulating evidence suggests that PLEK2 acts as an oncogene in various tumors. This study aimed to investigate the effects of PLEK2 on PDAC. Expression analysis of PLEK2 was conducted using qRT-PCR, Western blot, and immunohistochemistry in PDAC. Wound healing and transwell assays were performed to evaluate the impact of PLEK2 on cell migration and invasion. A xenograft tumor model was employed to assess the in vivo proliferation of PLEK2. Additionally, the downstream pathway of PLEK2 was analyzed through RNA-seq and confirmed by Western blot analysis. The results demonstrated the upregulation of PLEK2 expression in tumor specimens. High PLEK2 expression was significantly associated with poor overall survival and advanced TNM stages. Correlation analyses revealed positive correlations between PLEK2 and TGF-ß, EGFR, and MMP1. Wound healing and transwell assays demonstrated that PLEK2 promoted PDAC cell migration and invasion, potentially through the activation of the epithelial-to-mesenchymal transition process. The in vivo experiment further confirmed that PLEK2 knockdown suppressed tumor growth. RNA-seq analysis revealed PLEK2's regulation of MMP1 and activation of p-ERK and p-STAT3, which were verified by Western blot analysis. Overall, the present study suggests that PLEK2 may play a tumor-promoting role in PDAC. These findings provide valuable insights into the molecular mechanisms of pancreatic cancer and highlight the potential of PLEK2 as a therapeutic target.

3.
Mol Ecol ; : e17457, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984778

RESUMO

Suaeda salsa L. is a typical halophyte with high value as a vegetable. Here, we report a 447.98 Mb, chromosomal-level genome of S. salsa, assembled into nine pseudomolecules (contig N50 = 1.36 Mb) and annotated with 27,927 annotated protein-coding genes. Most of the assembled S. salsa genome, 58.03%, consists of transposable elements. Some gene families including HKT1, NHX, SOS and CASP related to salt resistance were significantly amplified. We also observed expansion of genes encoding protein that bind the trace elements Zn, Fe, Cu and Mn, and genes related to flavonoid and α-linolenic acid metabolism. Many expanded genes were significantly up-regulated under salinity, which might have contributed to the acquisition of salt tolerance in S. salsa. Transcriptomic data showed that high salinity markedly up-regulated salt-resistance related genes, compared to low salinity. Abundant metabolic pathways of secondary metabolites including flavonoid, unsaturated fatty acids and selenocompound were enriched, which indicates that the species is a nutrient-rich vegetable. Particularly worth mentioning is that there was no significant difference in the numbers of cis-elements in the promoters of salt-related and randomly selected genes in S. salsa when compared with Arabidopsis thaliana, which may affirm that plant salt tolerance is a quantitative rather than a qualitative trait in terms of promoter evolution. Our findings provide deep insight into the adaptation of halophytes to salinity from a genetic evolution perspective.

4.
Int J Surg ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954668

RESUMO

BACKGROUND: Laparoscopic spleen-preserving distal pancreatectomy (LSPDP) is a widely adopted surgical approach for benign and low-grade malignant neoplasms of the distal pancreas. The Kimura and Warshaw techniques represent two principal strategies, yet it still needs to be determined which one is superior. Our investigation aimed to evaluate the clinical outcomes associated with each technique. MATERIALS AND METHODS: This single-center, parallel-group, patient-blinded randomized controlled trial (RCT) was conducted at the XXXXX University. Stratified block randomization was utilized to enroll 114 patients starting in March 2022, with an interim analysis of short-term outcomes scheduled after 45%-50% of participant enrollment. Patients were randomized to receive LSPDP via either the Kimura or Warshaw technique. The primary endpoint was intraoperative blood loss, while secondary endpoints included a range of outcomes from composite outcome to quality of life, as quantified by the EQ-5D-5L. RESULTS: From March 2022 to November 2023, 53 patients were randomly allocated to the Kimura (n=25) or Warshaw (n=28) groups for LSPDP. Baseline characteristics and postoperative outcomes were similar between the groups, such as pancreatic fistula incidence, EQ-5D-5L index scores, and delayed gastric emptying rates. Per-protocol (PP) analysis revealed that the Kimura group experienced significantly less blood loss (52.5±51.6 mL vs. 91.7±113.5 mL, P=0.007) and a reduced rate of composite outcome (23.8% vs. 56.7%, P=0.019), but incurred higher costs in the Warshaw group (¥56,227.4±¥7,027.0 vs. ¥63,513.8±¥12,944.5, P=0.013). Splenic infarction rates were higher in the Warshaw group, though not statistically significant (ITT: 39.3% vs. 12.5%, P=0.058; PP: 36.7% vs. 14.3%, P=0.113), without necessitating intervention. Neither group experienced postpancreatectomy haemorrhage, 90-day mortality, or ICU admissions, and all postoperative complications were mild (Clavien-Dindo Grade

5.
Phytomedicine ; 132: 155827, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38955059

RESUMO

BACKGROUND: Atherosclerosis (AS) is the main pathological basis for the development of cardiovascular diseases. Vascular inflammation is an important factor in the formation of AS, and macrophage pyroptosis plays a key role in AS due to its unique inflammatory response. Guizhitongluo Tablet (GZTLT) has shown clinically effective in treating patients with AS, but its mechanism is elusive. PURPOSE: This study was to determine the effects of GZTLT on atherosclerotic vascular inflammation and pyroptosis and to understand its underlying mechanism. MATERIALS AND METHODS: The active constituents of GZTLT were analysed by means of UPLC-HRMS. In vivo experiments were performed using ApoE-/- mice fed a high fat diet for 8 weeks, followed by treatment with varying concentrations of GZTLT orally by gavage and GsMTx4 (GS) intraperitoneally and followed for another 8 weeks. Oil red O, Haematoxylin-eosin (HE) and Masson staining were employed to examine the lipid content, plaque size, and collagen fibre content of the mouse aorta. Immunofluorescence staining was utilised to identify macrophage infiltration, as well as the expression of Piezo1 and NLRP3 proteins in aortic plaques. The levels of aortic inflammatory factors were determined using RT-PCR and ELISA. In vitro, foam cell formation in bone marrow-derived macrophages (BMDMs) was observed using Oil Red O staining. Intracellular Ca2+ measurements were performed to detect the calcium influx in BMDMs, and the expression of NLRP3 and its related proteins were detected by Western blot. RESULTS: The UPLC-HRMS analysis revealed 31 major components of GZTLT. Our data showed that GZTLT inhibited aortic plaque formation in mice and increased plaque collagen fibre content to stabilise plaques. In addition, GZTLT could restrain the expression of serum lipid levels and suppress macrophage foam cell formation. Further studies found that GZTLT inhibited macrophage infiltration in aortic plaques and suppressed the expression of inflammatory factors. It is noteworthy that GZTLT can restrain Piezo1 expression and reduce Ca2+ influx in BMDMs. Additionally, we found that GZTLT could regulate NLRP3 activation and pyroptosis by inhibiting Piezo1. CONCLUSION: The present study suggests that GZTLT inhibits vascular inflammation and macrophage pyroptosis through the Piezo1/NLRP3 signaling pathway, thereby delaying AS development. Our finding provides a potential target for AS treatment and drug discovery.


Assuntos
Aterosclerose , Medicamentos de Ervas Chinesas , Células Espumosas , Canais Iônicos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose/efeitos dos fármacos , Aterosclerose/tratamento farmacológico , Células Espumosas/efeitos dos fármacos , Células Espumosas/metabolismo , Camundongos , Medicamentos de Ervas Chinesas/farmacologia , Canais Iônicos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Comprimidos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Aorta/efeitos dos fármacos , Camundongos Knockout para ApoE , Dieta Hiperlipídica , Placa Aterosclerótica/tratamento farmacológico
6.
ACS Med Chem Lett ; 15(7): 1032-1040, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39015272

RESUMO

Heparanase (HPSE) is an enzyme that cleaves heparan sulfate (HS) side chains from heparan sulfate proteoglycans (HSPGs). Overexpression of HPSE is associated with various types of cancer, inflammation, and immune disorders, making it a highly promising therapeutic target. Previously developed HPSE inhibitors that have advanced to clinical trials are polysaccharide-derived compounds or their mimetics; however, these molecules tend to suffer from poor bioavailability, side effects via targeting other saccharide binding proteins, and heterogeneity. Few small-molecule inhibitors have progressed to the preclinical or clinical stages, leaving a gap in HPSE drug discovery. In this study, a novel small molecule that can inhibit HPSE activity was discovered through high-throughput screening (HTS) using an ultrasensitive HPSE probe. Computational tools were employed to elucidate the mechanisms of inhibition. The essential structural features of the hit compound were summarized into a structure-activity relationship (SAR) theory, providing insights into the future design of HPSE small-molecule inhibitors.

7.
J Colloid Interface Sci ; 671: 692-701, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38823110

RESUMO

Lithium-sulfur (Li-S) batteries exhibit superior theoretical capacity and energy density but are still hindered by the sluggish redox conversion kinetic of lithium polysulfides arising from the significant desolvation barrier, especially under high current density or low-temperature environments. Herein, a two-dimensional (2D) porous graphitic phase carbon nitride/MXene (CN-MX) heterostructure with intrinsic defects was designed via electrostatic adherence and in-situ thermal polycondensation. In the design, the defect-rich CN with abundant catalytic activity and porous structure could efficiently facilitate the lithium polysulfides capture, the dissociation of solvated lithium-ion (Li+), and fast Li+ diffusion. Concurrently, 2D MXene nanosheets with high electronic conductivity could act as charge transport channels and provide electrochemical active sites for sulfur redox reactions. The Li-S cells with CN-MX heterostructure modified separator demonstrated uncommon rate performance (945 mAh/g at 4.0 C) and satisfactory areal capacity (5.5 mAh cm-2 at 0.2 C). Most remarkably, even at 0 °C, the assembled Li-S batteries performed favorable cycle stability (91.6% capacity retention after 100 cycles at 0.5 C) and outstanding rate performance (695 mAh/g at 2.0 C), and superior high loading performance (5.1 mAh cm-2 at 0.1 C). This work offers exciting new insights to enable Li-S batteries to operate in extreme environments.

8.
Heliyon ; 10(10): e31511, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38826741

RESUMO

Background: Ensuring the rapidity and accuracy of emergency laboratory test results is especially important to save the lives of patients with acute and critical conditions. To better meet the needs of clinicians and patients, detection efficiency can be improved by reducing extra-laboratory sample turnaround times (TATs) through the use of innovative pneumatic tube system (PTS) transport for sample transport. However, concerns remain regarding the potential compromise of sample quality during PTS transit relative to that occurring with manual transportation. This study was performed to evaluate the efficacy of an innovative PTS (Tempus600 PTS) relative to a traditional PTS in terms of sample transit time, sample quality, and the concordance of analytical results with those obtained from manually transported samples. Methods: In total, 30 healthy volunteers aged >18 years were recruited for this study, conducted for five consecutive days. Venous blood samples were collected from six volunteers per day at fixed timepoints. From each volunteer, nine blood samples were collected into tubes with tripotassium ethylene diamine tetraacetic acid anticoagulant, tubes with 3.2 % sodium citrate, and serum tubes with separation gel (n = 3 each) and subjected to all tests conducted in the emergency laboratory in our hospital. 270 blood samples from 30 healthy volunteers were transported and analyzed, yielding 6300 test results. The blood samples were divided randomly into three groups (each containing one tube of each type) and transported to the emergency laboratory manually and with Tempus600 PTS and conventional Swisslog PTS, respectively. The extra-laboratory TATs, sample quality, and test results of the transported blood samples were compared. Results: The sample quality and test results did not differ according to the delivery method. The TAT was much shorter with the Tempus600 than with the other two transport modes (58.40 ± 1.52 s vs. 1711.20 ± 77.56 s for manual delivery and 146.60 ± 1.82 s for the Swisslog PTS; P = 0.002). Conclusion: Blood sample transport with the Tempus600 PTS significantly reduced the extra-laboratory TAT without compromising sample quality or test result accuracy, thereby improving the efficiency of sample analysis and the services provided to clinicians and patients.

9.
Chin Med ; 19(1): 75, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816815

RESUMO

BACKGROUND: Myocardial infarction (MI) poses a global public health challenge, often associated with elevated mortality rates and a grim prognosis. A crucial aspect of the inflammatory injury and healing process post-MI involves the dynamic differentiation of macrophages. A promising strategy to alleviate myocardial damage after MI is by modulating the inflammatory response and orchestrating the shift from pro-inflammatory (M1) to anti-inflammatory (M2) macrophages, aiming to achieve a reduced M1/M2 ratio. Nuanxinkang (NXK), a simplified herbal decoction, has demonstrated noteworthy cardioprotective, inflammation-regulating, and myocardial energy metabolism-regulating properties. METHODS: In this study, we constructed an MI model by ligating coronary arteries to investigate the efficacy of NXK in improving ventricular remodeling and cardiac function. Mice were administered NXK (1.65 g/kg/d) or an equivalent volume of regular saline via gavage for 28 consecutive days, commencing the day after surgery. Then, we conducted echocardiography to assess the cardiac function, Masson staining to illustrate the extent of myocardial fibrosis, TUNEL staining to reveal myocardial apoptosis, and flow cytometry to analyze the polarization of M1 and M2 macrophages in the hearts. Besides, a lipopolysaccharide (LPS)-induced pro-inflammatory macrophage (M1) polarization model was implemented in RAW264.7 cells to elucidate the underlying mechanism of NXK in regulating macrophage polarization. RAW264.7 cells were pre-treated with or without NXK-containing serum. Oxidative stress was detected by MitoSox staining, followed by Seahorse energy metabolism assay to evaluate alterations in mitochondrial metabolic patterns and ATP production. Both In vivo and in vitro, HIF-1α and PDK1 were detected by fluorescent quantitative PCR and Western blotting. RESULTS: In vivo, MI mice exhibited a decline in cardiac function, adverse ventricular remodeling, and an increase in glycolysis, coupled with M1-dominant polarization mediated by the HIF-1α/PDK1 axis. Notably, robust responses were evident with high-dose NXK treatment (1.65 g/kg/day), leading to a significant enhancement in cardiac function, inhibition of cardiac remodeling, and partial suppression of macrophage glycolysis and the inflammatory phenotype in MI mice. This effect was achieved through the modulation of the HIF-1α/PDK1 axis. In vitro, elevated levels of mitochondrial ROS production and glycolysis were observed in LPS-induced macrophages. Conversely, treatment with NXK notably reduced the oxidative stress damage induced by LPS and enhanced oxidative phosphorylation (OXPHOS). Furthermore, NXK demonstrated the ability to modify the energy metabolism and inflammatory characteristics of macrophages by modulating the HIF-1α/PDK1 axis. The influence of NXK on this axis was partially counteracted by the HIF-1α agonist DMOG. And NXK downregulated PDK1 expression, curtailed glycolysis, and reversed LPS-induced M1 polarization in macrophages, similar to the PDK1 inhibitor DCA. CONCLUSION: In conclusion, NXK protects against MI-induced cardiac remodeling by inducing metabolic reprogramming and phenotypic differentiation of macrophages, achieved through the modulation of the HIF-1α/PDK1 axis. This provides a novel and promising strategy for the treatment of MI.

10.
Sci Rep ; 14(1): 8389, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600093

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is not sensitive to most chemotherapy drugs, leading to poor chemotherapy efficacy. Recently, Trametinib and Palbociclib have promising prospects in the treatment of pancreatic cancer. This article aims to explore the effects of Trametinib on pancreatic cancer and address the underlying mechanism of resistance as well as its reversal strategies. The GDSC (Genomics of Drug Sensitivity in Cancer) and CTD2 (Cancer Target Discovery and Development) were utilized to screen the potential drug candidate in PDAC cell lines. The dose-increase method combined with the high-dose shock method was applied to induce the Trametinib-resistant PANC-1 and MIA PaCa-2 cell lines. The CCK8 proliferation assay, colony formation assay, flow cytometry, and western blot were conducted to verify the inhibitory effect of Trametinib and Palbociclib. RNA-seq was performed in resistant PDAC cell lines to find the differential expression genes related to drug resistance and predict pathways leading to the reversal of Trametinib resistance. The GDSC and CTD2 database screening revealed that Trametinib demonstrates a significant inhibitory effect on PDAC. We found that Trametinib has a lower IC50 than Gemcitabine in PDAC cell lines. Both Trametinib and Gemcitabine can decrease the proliferation capacity of pancreatic cells, induce cell cycle arrest, and increase apoptosis. Simultaneously, the phosphorylation of the AKT and ERK pathways were inhibited by the treatment of Trametinib. In addition, the RNA-seq of Trametinib-induced resistance PDAC cell lines reveals that the cyclin-dependent kinase (CDK)-RB-E2F regulatory axis and G2/M DNA damage checkpoint might lead the drug resistance. Besides, the combination of Trametinib with Palbociclib could inhibit the proliferation and cell cycle of both resistant cells lines and also restore the sensitivity of drug-resistant cells to Trametinib. Last but not least, the interferon-α and interferon-γ expression were upregulated in resistance cell lines, which might lead to the reversal of drug resistance. The study shows Trametinib has a critical inhibitory effect on PDAC. Besides, the combination of Trametinib with Palbociclib can inhibit the proliferation of PDAC-resistant cells.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Gencitabina , Proliferação de Células , Linhagem Celular Tumoral , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Ciclo Celular , Quinases de Proteína Quinase Ativadas por Mitógeno , Quinase 4 Dependente de Ciclina
11.
Carbohydr Polym ; 332: 121913, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431394

RESUMO

This study demonstrated the gelation capacity, gelation behavior, and mechanism of Ficus awkeotsang Makino pectin (JFSP) in acidic media (pH 3.4-4.5). JFSP exhibited an extraordinary ability to spontaneously form a gel at a low polymer concentration (0.3 %, w/v) within the pH range of 3.75-4.05 at room temperature, without the need to introduce exogenous metal ions or co-solutes. Analysis of zeta potential and carboxyl dissociation extent revealed the protonation of free carboxyl groups within JFSP under acidic conditions. Atomic force microscopy and small angle X-ray scattering elucidated the aggregation morphology and folding conformation of JFSP. At pH 3.8, the correlation length (ξ) of JFSP chains decreased to around 1.67 nm. Rheological experiments confirmed the formation of a stronger gel network at pH 3.8 and 4.0, with good thermal and freeze-thaw stability. Isothermal Titration Calorimetry (ITC), temperature sweeps, and gelation force analyses emphasized the pivotal role of hydrogen bonds in JFSP gels at pH 3.8 and 4.0. Further reducing the pH to 3.4-3.6 disrupted the dynamic equilibrium of gel-driving forces, leading to the formation of a flocculated gel network. These findings deepen our understanding of JFSP behavior in low-acid conditions, which may be useful for further food formulations at these conditions.

12.
Gene ; 914: 148369, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38485036

RESUMO

INTRODUCTION: The study focuses on the long-term prognosis of myocardial infarction (MI) influenced by neutrophil extracellular traps (NETs). It also aims to analyze and validate relative hub genes in this process, in order to further explore new therapeutic targets that can improve the prognosis of MI. MATERIALS AND METHODS: We established a MI model in mice by ligating the left anterior descending branch (LAD) and conducted an 8-week continuous observation to study the dynamic changes in the structure and function of the heart in these mice. Meanwhile, we administered Apocynin, an inhibitor of NADPH Oxidase, which has also been shown to inhibit the formation of NETs, to mice undergoing MI surgery in order to compare. This study employed hematoxylin-eosin (HE) staining, echocardiography, immunofluorescence, and real-time quantitative PCR (RT-qPCR) to examine the impact of NETs on the long-term prognosis of MI. Next, datasets related to MI and NETs were downloaded from the GEO database, respectively. The Limma package of R software was used to identify differentially expressed genes (DEGs). After analyzing the "Robust Rank Aggregation (RRA)" package, we conducted a screening for robust differentially expressed genes (DEGs) and performed pathway enrichment analysis using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) to determine the functional roles of these robust DEGs. The protein-protein interaction (PPI) network was visualized and hub genes were filtered using Cytoscape. RESULTS: Immunofluorescence and qPCR results showed an increase in the expression of Myeloperoxidase (MPO) at week 1 and week 8 in the hearts of mice after MI. HE staining reveals a series of pathological manifestations in the heart of the MI group during 8 weeks, including enlarged size, disordered arrangement of cardiomyocytes, infiltration of inflammatory cells, and excessive deposition of collagen fibers, among others. The utilization of Apocynin could significantly improve these poor performances. The echocardiography displayed the cardiac function of the heart in mice. The MI group has a reduced range of heart movement and decreased ejection ability. Moreover, the ventricular systolic movement was found to be abnormal, and its wall thickening rate decreased over time, indicating a progressive worsening of myocardial ischemia. The Apocynin group, on the contrary, showed fewer abnormal changes in the aforementioned aspects. A total of 81 DEGs and 4 hub genes (FOS, EGR1, PTGS2, and HIST1H4H) were obtained. The results of RT-qPCR demonstrated abnormal expression of these four genes in the MI group, which could be reversed by treatment of Apocynin. CONCLUSION: The NETs formation could be highly related to MI and the long-term prognosis of MI can be significantly influenced by the NETs formation. Four hub genes, namely FOS, EGR1, PTGS2, and HIST1H4H, have the potential to be key genes related to this process. They could also serve as biomarkers for predicting MI prognosis and as targets for gene therapy.


Assuntos
Armadilhas Extracelulares , Infarto do Miocárdio , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Animais , Armadilhas Extracelulares/metabolismo , Camundongos , Prognóstico , Masculino , Mapas de Interação de Proteínas/genética , Modelos Animais de Doenças , Redes Reguladoras de Genes , Neutrófilos/metabolismo , Perfilação da Expressão Gênica/métodos , Humanos , Acetofenonas/farmacologia , Camundongos Endogâmicos C57BL , Ontologia Genética
13.
J Int Med Res ; 52(3): 3000605241236276, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38506348

RESUMO

OBJECTIVE: To explore the levels of expression and clinical role of peroxiredoxin 6 (PRDX6) in lung adenocarcinoma. METHODS: This retrospective study used a series of bioinformatics methods to detect the levels of expression of and mutations in the PRDX6 gene in a range of cancers and lung adenocarcinoma. Immunohistochemistry was used to verify the levels of expression of PRDX6 protein in samples of lung adenocarcinoma compared with normal adjacent tissue. The effect of PRDX6 gene knockdown on the in vitro proliferation of a lung adenocarcinoma cell line was measured. Bioinformatics methods were used to determine the diagnostic value and impact on survival of the PRDX6 gene in patients with lung adenocarcinoma. RESULTS: The results showed that the PRDX6 gene was highly expressed in lung adenocarcinoma and there were five mutations at different sites on the gene. PRDX6 promoted the proliferation of the lung adenocarcinoma cell line. The survival duration of lung adenocarcinoma patients with high levels of PRDX6 gene expression was significantly shorter than that of patients with low PRDX6 gene expression. CONCLUSION: PRDX6 is highly expressed in lung adenocarcinoma and higher levels of expression of the PRDX6 gene were associated with a poorer prognosis.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Peroxirredoxina VI/genética , Peroxirredoxina VI/metabolismo , Estudos Retrospectivos , Adenocarcinoma de Pulmão/genética , Linhagem Celular , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia
14.
Cell Rep ; 43(3): 113908, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38446667

RESUMO

The multi-domain protein UHRF1 (ubiquitin-like, containing PHD and RING finger domains, 1) recruits DNMT1 for DNA methylation maintenance during DNA replication. Here, we show that MOF (males absent on the first) acetylates UHRF1 at K670 in the pre-RING linker region, whereas HDAC1 deacetylates UHRF1 at the same site. We also identify that K667 and K668 can also be acetylated by MOF when K670 is mutated. The MOF/HDAC1-mediated acetylation in UHRF1 is cell-cycle regulated and peaks at G1/S phase, in line with the function of UHRF1 in recruiting DNMT1 to maintain DNA methylation. In addition, UHRF1 acetylation significantly enhances its E3 ligase activity. Abolishing UHRF1 acetylation at these sites attenuates UHRF1-mediated H3 ubiquitination, which in turn impairs DNMT1 recruitment and DNA methylation. Taken together, these findings identify MOF as an acetyltransferase for UHRF1 and define a mechanism underlying the regulation of DNA methylation maintenance through MOF-mediated UHRF1 acetylation.


Assuntos
Metilação de DNA , Histonas , Masculino , Humanos , Metilação de DNA/genética , Histonas/metabolismo , Acetilação , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Ubiquitinação , DNA (Citosina-5-)-Metiltransferase 1/metabolismo
15.
Mikrochim Acta ; 191(4): 172, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38433173

RESUMO

A novel molecularly imprinted nanomaterial (Eu (BTC)-MPS@MIP) was synthesized on the surface of silanized europium-based metal-organic frameworks (Eu (BTC)-MPS) using 1, 3, 5-benzotrioic acid (H3BTC) as a ligand. The resulting Eu (BTC)-MPS@MIP was applied to constructing a smartphone sensing platform for the sensitive and selective detection of clothianidin (CLT) in vegetables. The synthesized Eu (BTC)-MPS@MIP demonstrated the successful formation of a typical core-shell structure featuring a shell thickness of approximately 70 - 80 nm. The developed sensing platform based on Eu (BTC)-MPS@MIP exhibited sensitivity in CLT detection with a detection limit of 4 µg/L and a linear response in the range 0.01 - 10 mg/L at excitation and emission wavelengths of 365 nm and 617 nm, respectively. The fluorescence sensing platform displayed excellent specificity for CLT detection, as evidenced by a high imprinting factor of 3.1. This specificity is primarily attributed to the recognition sites in the molecularly imprinted polymer (MIP) layer. When applied to spiked vegetable samples, the recovery of CLT ranged from 78.9 to 102.0%, with relative standard deviation (RSD) values falling between 2.2 and 6.2%. The quenching mechanism of Eu (BTC)-MPS@MIP toward CLT can be attributed to the inner filter effect (IFE), resulting from the optimal spectral overlap between the absorption spectrum of CLT and the excitation spectra of Eu (BTC)-MPS@MIP. The proposed method has the potential for extension to the detection of other pesticides by replacing the MIP recognition probes.

16.
Mol Cancer ; 23(1): 62, 2024 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-38519953

RESUMO

While strategies such as chemotherapy and immunotherapy have become the first-line standard therapies for patients with advanced or metastatic cancer, acquired resistance is still inevitable in most cases. The introduction of antibody‒drug conjugates (ADCs) provides a novel alternative. ADCs are a new class of anticancer drugs comprising the coupling of antitumor mAbs with cytotoxic drugs. Compared with chemotherapeutic drugs, ADCs have the advantages of good tolerance, accurate target recognition, and small effects on noncancerous cells. ADCs occupy an increasingly important position in the therapeutic field. Currently, there are 13 Food and Drug Administration (FDA)‒approved ADCs and more than 100 ADC drugs at different stages of clinical trials. This review briefly describes the efficacy and safety of FDA-approved ADCs, and discusses the related problems and challenges to provide a reference for clinical work.


Assuntos
Antineoplásicos , Imunoconjugados , Neoplasias , Estados Unidos , Humanos , Imunoconjugados/uso terapêutico , United States Food and Drug Administration , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Resultado do Tratamento
17.
Eur J Pharmacol ; 966: 176378, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38309679

RESUMO

Heart failure (HF) is a complex chronic condition characterized by structural and functional impairments. The differentiation of endothelial cells into myofibroblasts (EndoMT) in response to cardiac fibrosis is controversial, and the relative contribution of endothelial plasticity remains to be explored. Single-cell RNA sequencing was used to identify endothelial cells undergoing fibrotic differentiation within 2 weeks of transverse aortic constriction (TAC). This subset of endothelial cells transiently expressed fibrotic genes but had low expression of alpha-smooth muscle actin, indicating a non-canonical EndoMT, which we named a transient fibrotic-like phenotype (EndoFP). The role of EndoFP in pathological cardiac remodeling may be correlated with increased levels of osteopontin. Cardiomyocytes and fibroblasts co-cultured with EndoFP exhibited heightened pro-hypertrophic and pro-fibrotic effects. Mechanistically, we found that the upregulated expression of insulin-like growth factor-binding protein 5 may be a key mediator of EndoFP-induced cardiac dysfunction. Furthermore, our findings suggested that Rab5a is a novel regulatory gene involved in the EndoFP process. Our study suggests that the specific endothelial subset identified in TAC-induced pressure overload plays a critical role in the cellular interactions that lead to cardiac fibrosis and hypertrophy. Additionally, our findings provide insight into the mechanisms underlying EndoFP, making it a potential therapeutic target for early heart failure.


Assuntos
Cardiomiopatias , Cardiopatias , Insuficiência Cardíaca , Animais , Camundongos , Miócitos Cardíacos , Células Endoteliais/patologia , Cardiopatias/metabolismo , Insuficiência Cardíaca/patologia , Cardiomiopatias/metabolismo , Fibrose , Fibroblastos/metabolismo , Remodelação Ventricular , Camundongos Endogâmicos C57BL
18.
Biomimetics (Basel) ; 9(1)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38275455

RESUMO

Soft robots, especially soft robotic hands, possess prominent potential for applications in close proximity and direct contact interaction with humans due to their softness and compliant nature. The safety perception of users during interactions with soft robots plays a crucial role in influencing trust, adaptability, and overall interaction outcomes in human-robot interaction (HRI). Although soft robots have been claimed to be safe for over a decade, research addressing the perceived safety of soft robots still needs to be undertaken. The current safety guidelines for rigid robots in HRI are unsuitable for soft robots. In this paper, we highlight the distinctive safety issues associated with soft robots and propose a framework for evaluating the perceived safety in human-soft robot interaction (HSRI). User experiments were conducted, employing a combination of quantitative and qualitative methods, to assess the perceived safety of 15 interactive motions executed by a soft humanoid robotic hand. We analyzed the characteristics of safe interactive motions, the primary factors influencing user safety assessments, and the impact of motion semantic clarity, user technical acceptance, and risk tolerance level on safety perception. Based on the analyzed characteristics, we summarize vital insights to provide valuable guidelines for designing safe, interactive motions in HSRI. The current results may pave the way for developing future soft machines that can safely interact with humans and their surroundings.

19.
Sci Rep ; 14(1): 726, 2024 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184756

RESUMO

Intra-abdominal adhesions have consistently posed a challenge for surgeons during procedures. This study aims to investigate the feasibility of utilizing indocyanine green (ICG) in conjunction with near-infrared imaging for the detection of intra-abdominal adhesions. In vitro, we analyzed factors affecting ICG fluorescence. We divided SD rats into groups to study ICG excretion in different digestive tract regions. Additionally, we reviewed surgical videos from previous cholecystectomy cases, categorizing them by ICG injection timing and assessing fluorescence imaging in various digestive tract regions. Finally, we preoperatively injected ICG into two cholecystectomized patients with abdominal adhesions, guiding intraoperative adhesiolysis with near-infrared fluorescence imaging. In vitro, we observed a significant influence of protein and ICG concentrations on ICG fluorescence intensity. Our rat experiments unveiled a strong and highly significant correlation (Kendall's tau-b = 1, P < 0.001) between the timing of ICG injection and the farthest point of intestinal fluorescence. A retrospective case analysis further validated this finding (Kendall's tau-b = 0.967, P < 0.001). Under the guidance of fluorescence navigation, two cholecystectomized patients with intra-abdominal adhesions successfully underwent adhesiolysis, and no postoperative complications occurred. The intraoperative combination of ICG with near-infrared fluorescence imaging effectively enhances the visibility of the liver, bile ducts, and various segments of the gastrointestinal tract while providing real-time navigation. This real-time fluorescence guidance has the potential to aid surgeons in the dissection of intra-abdominal adhesions.


Assuntos
Verde de Indocianina , Cirurgiões , Humanos , Animais , Ratos , Ratos Sprague-Dawley , Estudos Retrospectivos , Dissecação
20.
Phytother Res ; 38(3): 1345-1357, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38198804

RESUMO

Cardiorenal syndrome type 4 (CRS4), a progressive deterioration of cardiac function secondary to chronic kidney disease (CKD), is a leading cause of death in patients with CKD. In this study, we aimed to investigate the cardioprotective effect of emodin on CRS4. C57BL/6 mice with 5/6 nephrectomy and HL-1 cells stimulated with 5% CKD mouse serum were used for in vivo and in vitro experiments. To assess the cardioprotective potential of emodin, we employed a comprehensive array of methodologies, including echocardiography, tissue staining, immunofluorescence staining, biochemical detection, flow cytometry, real-time quantitative PCR, and western blot analysis. Our results showed that emodin exerted protective effects on the function and structure of the residual kidney. Emodin also reduced pathologic changes in the cardiac morphology and function of these mice. These effects may have been related to emodin-mediated suppression of reactive oxygen species production, reduction of mitochondrial oxidative damage, and increase of oxidative metabolism via restoration of PGC1α expression and that of its target genes. In contrast, inhibition of PGC1α expression significantly reversed emodin-mediated cardioprotection in vivo. In conclusion, emodin protects the heart from 5/6 nephrectomy-induced mitochondrial damage via activation of the PGC1α signaling. The findings obtained in our study can be used to develop effective therapeutic strategies for patients with CRS4.


Assuntos
Síndrome Cardiorrenal , Emodina , Insuficiência Renal Crônica , Humanos , Camundongos , Animais , Emodina/farmacologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Apoptose , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...