Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 10(1)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35052822

RESUMO

The abnormal Wnt signaling pathway leads to a high expression of ß-catenin, which causes several types of cancer, particularly colorectal cancer (CRC). The inhibition of tankyrase (TNKS) activity can reduce cancer cell growth, invasion, and resistance to treatment by blocking the Wnt signaling pathway. A pharmacophore search and pharmacophore docking were performed to identify potential TNKS inhibitors in the training databases. The weighted MM/PBSA binding free energy of the docking model was calculated to rank the databases. The reranked results indicated that 26.98% of TNKS inhibitors that were present in the top 5% of compounds in the database and near an ideal value ranked 28.57%. The National Cancer Institute database was selected for formal virtual screening, and 11 potential TNKS inhibitors were identified. An enzyme-based experiment was performed to demonstrate that of the 11 potential TNKS inhibitors, NSC295092 and NSC319963 had the most potential. Finally, Wnt pathway analysis was performed through a cell-based assay, which indicated that NSC319963 is the most likely TNKS inhibitor (pIC50 = 5.59). The antiproliferation assay demonstrated that NSC319963 can decrease colorectal cancer cell growth; therefore, the proposed method successfully identified a novel TNKS inhibitor that can alleviate CRC.

2.
Comput Methods Programs Biomed ; 200: 105928, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33485074

RESUMO

Orthognathic surgery (OGS) is frequently used to correct facial deformities associated with skeletal malocclusion and facial asymmetry. An accurate evaluation of facial symmetry is a critical for precise surgical planning and the execution of OGS. However, no facial symmetry scoring standard is available. Typically, orthodontists or physicians simply judge facial symmetry. Therefore, maintaining accuracy is difficult. We propose a convolutional neural network with a transfer learning approach for facial symmetry assessment based on 3-dimensional (3D) features to assist physicians in enhancing medical treatments. We trained a new model to score facial symmetry using transfer learning. Cone-beam computed tomography scans in 3D were transformed into contour maps that preserved 3D characteristics. We used various data preprocessing and amplification methods to determine the optimal results. The original data were enlarged by 100 times. We compared the quality of the four models in our experiment, and the neural network architecture was used in the analysis to import the pretraining model. We also increased the number of layers, and the classification layer was fully connected. We input random deformation data during training and dropout to prevent the model from overfitting. In our experimental results, the Xception model and the constant data amplification approach achieved an accuracy rate of 90%.


Assuntos
Cirurgia Ortognática , Procedimentos Cirúrgicos Ortognáticos , Tomografia Computadorizada de Feixe Cônico , Assimetria Facial/diagnóstico por imagem , Assimetria Facial/cirurgia , Humanos , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...