Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38256191

RESUMO

DNA methylation is widely found in higher plants and can control gene expression by regulation without changing the DNA sequence. In this study, the whole-genome methylation map of sugar beet was constructed by WGBS (whole-genome bisulfite sequencing) technology, and the results of WGBS were verified by bisulfite transformation, indicating that the results of WGBS technology were reliable. In addition, 12 differential methylation genes (DMGs) were identified, which were related to carbohydrate and energy metabolism, pollen wall development, and endogenous hormone regulation. Quantitative real-time PCR (qRT-PCR) showed that 75% of DMG expression levels showed negative feedback with methylation level, indicating that DNA methylation can affect gene expression to a certain extent. In addition, we found hypermethylation inhibited gene expression, which laid a foundation for further study on the molecular mechanism of DNA methylation at the epigenetic level in sugar beet male sterility.


Assuntos
Beta vulgaris , Metilação de DNA , Sulfitos , Beta vulgaris/genética , Infertilidade das Plantas/genética , Verduras , Açúcares
2.
Genes (Basel) ; 13(12)2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36553484

RESUMO

Vernalization is the process of exposure to low temperatures, which is crucial for the transition from vegetative to reproductive growth of plants. In this study, the global landscape vernalization-related mRNAs and long noncoding RNAs (lncRNAs) were identified in Beta vulgaris. A total of 22,159 differentially expressed mRNAs and 4418 differentially expressed lncRNAs were uncovered between the vernalized and nonvernalized samples. Various regulatory proteins, such as zinc finger CCCH domain-containing proteins, F-box proteins, flowering-time-related proteins FY and FPA, PHD finger protein EHD3 and B3 domain proteins were identified. Intriguingly, a novel vernalization-related lncRNA-mRNA target-gene co-expression regulatory network and the candidate vernalization genes, VRN1, VRN1-like, VAL1 and VAL2, encoding B3 domain-containing proteins were also unveiled. The results of this study pave the way for further illumination of the molecular mechanisms underlying the vernalization of B. vulgaris.


Assuntos
Beta vulgaris , RNA Longo não Codificante , Beta vulgaris/genética , Flores , RNA Longo não Codificante/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genes de Plantas
3.
Front Plant Sci ; 13: 900143, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35800606

RESUMO

Spaceflight is a special abiotic stress, the biological effect mechanism of which on contemporary rice has been clarified, However, its effect on offspring rice was still unclear. In order to understand the response mechanism of F2 generation plants to space flight, this study used SJ-10 recoverable satellite to carry DN423 rice seeds for 12.5 days in orbit flight. After returning to the ground, the plants were then planted to F2 generation to explore the biological effect mechanism. Our research showed that in the F2 generation of TLS, the rice plant height of the space flight group increased by 33.8%, the ear length and thousand-grain weight decreased by 9.7 and 4.6%, respectively, and the grain number per panicle increased by 6.5%. Moreover, related proteins that control changes in agronomic traits have been identified. The changes of MDA, H2O2, soluble sugar, electron leakage and antioxidant enzyme activity confirmed the stress response in F2 generation plants. ITRAQ and LC-MS technology were used to reveal the change pattern of protein levels and metabolite levels in F2 generation plants, 389 and 405 proteins were identified as differentially abundant proteins in TLS and TS, respectively. In addition, there were 124 and 125 metabolites that changed during these two periods. The proteome and metabolome result further confirmed that the F2 generation plants still retained the memory of space flight stress, and retained the memory of space flight stress through genome instability. Oxidative stress signals activated sugar signals to rebuild metabolic networks to adapt to space flight stress. The reconstruction of energy metabolism, amino acid metabolism, phenylalanine metabolism, and flavonoid metabolism played an important role in the process of adapting to space flight stress. The results of this study broaden the perspective of space biological effects and provide a basis for studying the effects of abiotic stress on plant progeny.

4.
Int J Mol Sci ; 23(6)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35328810

RESUMO

The stress response of plants to spaceflight has been confirmed in contemporary plants, and plants retained the memory of spaceflight through methylation reaction. However, how the progeny plants adapt to this cross-generational stress memory was rarely reported. Here, we used the ShiJian-10 retractable satellite carrying Dongnong416 rice seeds for a 12.5-day on-orbit flight and planted the F2 generation after returning to the ground. We evaluated the agronomic traits of the F2 generation plants and found that the F2 generation plants had no significant differences in plant height and number of tillers. Next, the redox state in F2 plants was evaluated, and it was found that the spaceflight broke the redox state of the F2 generation rice. In order to further illustrate the stress response caused by this redox state imbalance, we conducted proteomics and metabolomics analysis. Proteomics results showed that the redox process in F2 rice interacts with signal transduction, stress response, and other pathways, causing genome instability in the plant, leading to transcription, post-transcriptional modification, protein synthesis, protein modification, and degradation processes were suppressed. The metabolomics results showed that the metabolism of the F2 generation plants was reshaped. These metabolic pathways mainly included amino acid metabolism, sugar metabolism, cofactor and vitamin metabolism, purine metabolism, phenylpropane biosynthesis, and flavonoid metabolism. These metabolic pathways constituted a new metabolic network. This study confirmed that spaceflight affected the metabolic changes in offspring rice, which would help better understand the adaptation mechanism of plants to the space environment.


Assuntos
Oryza , Voo Espacial , Metabolômica , Oryza/genética , Oryza/metabolismo , Proteômica , Sementes
5.
PeerJ ; 10: e12719, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35036097

RESUMO

In eukaryotes, N6 -methyladenosine (m6A) is the most abundant and highly conserved RNA modification. In vivo, m6A demethylase dynamically regulates the m6A level by removing the m6A marker where it plays an important role in plant growth, development and response to abiotic stress. The confirmed m6A demethylases in Arabidopsis thaliana include ALKBH9B and ALKBH10B, both belonging to the ALKB family. In this study, BvALKB family members were identified in sugar beet genome-wide database, and their conserved domains, gene structures, chromosomal locations, phylogeny, conserved motifs and expression of BvALKB genes were analyzed. Almost all BvALKB proteins contained the conserved domain of 2OG-Fe II-Oxy. Phylogenetic analysis suggested that the ten proteins were clustered into five groups, each of which had similar motifs and gene structures. Three Arabidopsis m6A demethylase-homologous proteins (BvALKBH6B, BvALKBH8B and BvALKBH10B) were of particular interest in our study. Expression profile analysis showed that almost all genes were up-regulated or down-regulated to varying degrees under salt stress. More specifically, BvALKBH10B homologous to AtALKBH10B was significantly up-regulated, suggesting that the transcriptional activity of this gene is responsive to salt stress. This study provides a theoretical basis for further screening of m6A demethylase in sugar beet, and also lays a foundation for studying the role of ALKB family proteins in growth, development and response to salinity stress.


Assuntos
Arabidopsis , Beta vulgaris , Arabidopsis/genética , Beta vulgaris/genética , Filogenia , Estresse Salino/genética , Estresse Fisiológico/genética , Açúcares/metabolismo , Genoma de Planta , Adenosina/metabolismo
6.
Front Microbiol ; 12: 626144, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34484131

RESUMO

BACKGROUND: The infant's intestine contains diverse microbiota, which play an important role in an infant's health. OBJECTIVE: This study aimed to analyze the different intestinal microbiota and their function in two delivery modes [vaginal delivery and cesarean section (C-section)] and to investigate the proprieties of bacteria associated with vaginal delivery on the development of intestinal epithelial cells in rat pups. MATERIALS AND METHODS: We evaluated the intestinal microbial diversity of the stool samples of 51 infants of subjects who underwent vaginal delivery and C-section by sequencing the V4 regions of the 16S rRNA gene and predicted the function of the microbiotas. The infant stool microbiota in the vaginal delivery group was associated with the digestive system and cell growth and death, whereas that of the C-section group was associated with membrane transport. Then, we isolated the strains based on function prediction. RESULTS: A total of 95 strains were isolated in the vaginal delivery group. Bifidobacterium bifidum FL-228.1 (FL-228.1) was screened and selected owing to its good surface hydrophobicity, bacterial survivability in the simulated gastrointestinal condition and adhesion ability to the IEC-6 cell line as well as owing to the development of intestinal epithelial cells. Furthermore, in vivo experiments revealed that FL-228.1 exhibited favorable effects on the development of intestinal epithelial cells in rat pups. CONCLUSION: The results of this study indicate an apparent difference in the bacterial composition of the stool samples collected from infants of the two delivery modes. By analyzing and screening the bacteria in infant stool samples, we found that one strain, i.e., B bifidum FL-228.1, exhibited favorable effects on the development of intestinal epithelial cells.

7.
Front Plant Sci ; 12: 700267, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276752

RESUMO

Spaceflight is a special abiotic stress condition. In recent years, it has been confirmed that the spaceflight caused the stress response of rice seeds, and the protein level, transcription level, and methylation level will change during the planting process after returning to the ground. However, the changes at the metabolome level are not very clear. In this study, two kinds of rice seeds, Dongnong423 (DN3) and Dongnong416 (DN6), were carried on the ShiJian-10 retractable satellite (SJ-10) for 12.5 days in orbit, returned to the ground and planted in the field until the three-leaf (TLP) and tillering stage (TS). The results of antioxidant enzyme activity, soluble sugar, and electron leakage rate revealed that the spaceflight caused the stress response of rice. The TLP and TS of DN3 identified 110 and 57 different metabolites, respectively, while the TLP and TS of DN6 identified 104 and 74 different metabolites, respectively. These metabolites included amino acids, sugars, fatty acids, organic acids and secondary metabolites. We used qRT-PCR technology to explore the changes of enzyme genes in the tricarboxylic acid cycle (TCA) and amino acid metabolism pathway. Combined with the results of metabolomics, we determined that during the TLP, the TCA cycle rate of DN3 was inhibited and amino acid metabolism was activated, while the TCA cycle rate of DN6 was activated and amino acid metabolism was inhibited. In TS, the TCA cycle rate of DN3 was inhibited, and amino acid metabolism was not significantly changed, while the TCA cycle rate of DN6 was activated and amino acid metabolism was inhibited. These results suggested that the response mechanisms of the two different rice strains to spaceflight stress are different, and these differences may be reflected in energy consumption and compound biosynthesis of rice in different growth and development stages. This study provided new insights for further exploring the effects of spaceflight.

8.
BMC Plant Biol ; 20(1): 347, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32698773

RESUMO

BACKGROUND: Salinity is one of the most serious threats to world agriculture. An important sugar-yielding crop sugar beet, which shows some tolerance to salt via a mechanism that is poorly understood. Proteomics data can provide important clues that can contribute to finally understand this mechanism. RESULTS: Differentially abundant proteins (DAPs) in sugar beet under salt stress treatment were identified in leaves (70 DAPs) and roots (76 DAPs). Functions of these DAPs were predicted, and included metabolism and cellular, environmental information and genetic information processing. We hypothesize that these processes work in concert to maintain cellular homeostasis. Some DAPs are closely related to salt resistance, such as choline monooxygenase, betaine aldehyde dehydrogenase, glutathione S-transferase (GST) and F-type H+-transporting ATPase. The expression pattern of ten DAPs encoding genes was consistent with the iTRAQ data. CONCLUSIONS: During sugar beet adaptation to salt stress, leaves and roots cope using distinct mechanisms of molecular metabolism regulation. This study provides significant insights into the molecular mechanism underlying the response of higher plants to salt stress, and identified some candidate proteins involved in salt stress countermeasures.


Assuntos
Beta vulgaris/fisiologia , Folhas de Planta/metabolismo , Proteínas de Plantas/análise , Raízes de Plantas/metabolismo , Estresse Salino/fisiologia , Adaptação Fisiológica , Biologia Computacional , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteômica/métodos , Salinidade
9.
Life Sci Space Res (Amst) ; 26: 34-45, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32718685

RESUMO

The space biological effects of plants will drive the development of aerospace science and breeding science. The aim of this study is to reveal changes in the proteome of contemporary plants at different growth and development stages after space flight of rice seeds. We carried the rice seeds (DN416) through the SJ-10 returning satellite and returned to the ground for planting to the three-leaf stage (TLP) and tillering stage (TS) after a 12.5-day orbital flight. We found that the space flight caused the rice germination rate, the TLP plant height, and the number of tillers in the TS decreased by 11.64%, 9.75%, and 9.80%, respectively. In addition, the treatment group ROS and MDA level increased in the TLP and TS. The abundance patterns of proteins in these leaves identified 214 proteins in the TLP and 286 in the TS leaves that were markedly changed. Moreover, our study identified D14 proteins that control plant height and tiller. Our results show that the space environment may affect the downstream signaling mechanism by regulating the level of ROS in the body to achieve a response to the space environment. Meanwhile, the space environment may affect the plant height and tiller of rice by altering the expression of D14 protein and hormone-regulated proteins. Our results reveal changes in the proteome of different growth stages of rice plants, and also reveal the molecular mechanism of space environment regulation of rice plant height and tiller, which provides a new direction for further understanding of space biological effects and space mutation breeding.


Assuntos
Germinação , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Sementes/crescimento & desenvolvimento , Voo Espacial , Proteômica
10.
J Genet ; 992020.
Artigo em Inglês | MEDLINE | ID: mdl-32482920

RESUMO

miRNAs are important regulators of plant gene expression. There are few studies on the regulation of miRNAs in Lonicera edulis. We used high-throughput sequencing technology to analyse miRNAs in L. edulis, aiming to identify miRNAs and elucidate their function in L. edulis. In the present study, we employed the high-throughput sequencing technology to profile miRNAs in L. edulis. A total of 51,819,072 small RNA tags with sizes ranging from 18 to 30 nt were obtained, indicating that L. edulis have a large and diverse small RNA population. Bioinformatic analysis identified 507 mature miRNAs, and 16 predicted novel miRNAs that are likely to be unique to L. edulis. Three miRNAs related to anthocyanin biosynthesis were locked by gene ontology (GO) analysis and target gene analysis. The selected three miRNAs are relatively high in the expression of L. edulis. Some of the previous studies have studied these types of miRNAs involved in the anthocyanin metabolism pathway in fruits. Among them, expression profiles of three conserved miRNAs were validated by stem loop qRT-PCR. Further, the potential target genes of conserved and novel miRNAs were predicted and subjected to GO annotation. Enrichment analysis of the GO-represented biological processes and molecular functions revealed that these target genes were potentiallyinvolved in a wide range of metabolic pathways and developmental processes. In particular, different families of miRNAs can directly or indirectly regulate anthocyanin biosynthesis. In recent years, the research on miRNAs has become more and more clear, but the research on miRNAs involved in the regulation of anthocyanin synthesis of L. edulis is still lagging. This study provides a useful resource for further elucidation of the functional roles of miRNAs during fruit development and ripening.


Assuntos
Antocianinas/biossíntese , Frutas/genética , Lonicera/genética , MicroRNAs/genética , Antocianinas/análise , Biologia Computacional , Frutas/enzimologia , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Ontologia Genética , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Lonicera/enzimologia , Lonicera/metabolismo , MicroRNAs/metabolismo
11.
PeerJ ; 8: e9131, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32547857

RESUMO

Auxin response factor (ARF) proteins respond to biological and abiotic stresses and play important roles in regulating plant growth and development. In this study, based on the genome-wide database of sugar beet, 16 BvARF proteins were identified. A detailed investigation into the BvARF family is performed, including analysis of the conserved domains, chromosomal locations, phylogeny, exon-intron structure, conserved motifs, subcellular localization, gene ontology (GO) annotations and expression profiles of BvARF under salt-tolerant condition. The majority of BvARF proteins contain B3 domain, AUX_RESP domain and AUX/IAA domain and a few lacked of AUX/IAA domain. Phylogenetic analysis suggests that the 16 BvARF proteins are clustered into six groups. Expression profile analysis shows that most of these BvARF genes in sugar beet under salinity stress were up-regulated or down-regulated to varying degrees and nine of the BvARF genes changed significantly. They were thought to have a significant response to salinity stress. The current study provides basic information for the BvARF genes and will pave the way for further studies on the roles of BvARF genes in regulating sugar beet's growth, development and responses to salinity stress.

12.
Int J Mol Sci ; 22(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396637

RESUMO

Sugar beet is an important sugar-yielding crop with some tolerance to salt, but the mechanistic basis of this tolerance is not known. In the present study, we have used whole-transcriptome RNA-seq and degradome sequencing in response to salt stress to uncover differentially expressed (DE) mRNAs, microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) in both leaves and roots. A competitive endogenous RNA (ceRNA) network was constructed with the predicted DE pairs, which revealed regulatory roles under salt stress. A functional analysis suggests that ceRNAs are implicated in copper redistribution, plasma membrane permeability, glycometabolism and energy metabolism, NAC transcription factor and the phosphoinositol signaling system. Overall, we conducted for the first time a full transcriptomic analysis of sugar beet under salt stress that involves a potential ceRNA network, thus providing a basis to study the potential functions of lncRNAs/circRNAs.


Assuntos
Beta vulgaris/genética , Sequenciamento do Exoma/métodos , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , RNA de Plantas/genética , Estresse Salino/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , MicroRNAs/genética , Folhas de Planta/genética , Raízes de Plantas/genética , RNA Circular/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Salinidade , Cloreto de Sódio/farmacologia
13.
Food Chem ; 254: 340-347, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29548462

RESUMO

Yak milk casein was selected as a potential precursor of bioactive peptides based on in silico analysis. Most notable among these are the angiotensin I-converting enzyme (ACE) inhibitory peptides. First, yak milk casein has high homology with cow milk casein by homologous analysis. The potential of yak milk casein for the releasing bioactive peptides was evaluated by determining the frequency of occurrence of fragments with a given activity. Through the BIOPEP database analysis, there are many bioactive peptides in yak milk casein sequences. Then, an in silico proteolysis using single or combined enzymes to obtained ACE inhibitory peptides was investigated. Cytotoxicity analysis using the online toxic prediction tool ToxinPred revealed that all in silico proteolysis derived ACE inhibitory peptides are non-cytotoxic. Overall, the present study highlights a in silico proteolysis approach to assist the yak milk casein releasing ACE inhibitory peptides and provides a guidance for the actual hydrolysis of proteins for the production of bioactive peptides.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/farmacologia , Caseínas/química , Leite/química , Peptídeos/farmacologia , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/toxicidade , Animais , Bovinos , Simulação por Computador , Feminino , Peptídeos/química , Peptídeos/toxicidade , Proteólise
14.
J Agric Food Chem ; 66(12): 3221-3228, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29521090

RESUMO

In this study, Qula casein derived from yak milk casein was hydrolyzed using a two-enzyme combination approach, and high angiotensin I-converting enzyme (ACE) inhibitory activity peptides were screened by quantitative structure-activity relationship (QSAR) modeling integrated with molecular docking analysis. Hydrolysates (<3 kDa) derived from combinations of thermolysin + alcalase and thermolysin + proteinase K demonstrated high ACE inhibitory activities. Peptide sequences in hydrolysates derived from these two combinations were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). On the basis of the QSAR modeling prediction, a total of 16 peptides were selected for molecular docking analysis. The docking study revealed that four of the peptides (KFPQY, MPFPKYP, MFPPQ, and QWQVL) bound the active site of ACE. These four novel peptides were chemically synthesized, and their IC50 was determined. Among these peptides, KFPQY showed the highest ACE inhibitory activity (IC50 = 12.37 ± 0.43 µM). Our study indicated that Qula casein presents an excellent source to produce ACE inhibitory peptides.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/química , Caseínas/química , Animais , Biocatálise , Bovinos , Hidrólise , Cinética , Leite/química , Simulação de Acoplamento Molecular , Peptidil Dipeptidase A/química , Relação Quantitativa Estrutura-Atividade , Subtilisinas/química , Termolisina/química
15.
Plant Physiol Biochem ; 123: 222-232, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29253800

RESUMO

Sugar beet (Beta vulgaris) is a biennial crop that accounts for 30% sugar production of the world. Vernalization is an essential factor for sugar beet reproductative growth under long days. Although genes association with bolting and flowering were well explored, the difference of proteomics in the two growth stages were still poorly understood. To address the molecular mechanism at the level of proteins, an isobaric tags for relative and absolute quantification (iTRAQ)-based quantitative proteomics approach was employed to the three different growth stages (germination, bolting, flowering) of vernalized samples and the corresponding stage germination (17W weeks), 19W and 20W of nonvernalized samples. A total of 1110 peptides, 842 unique peptides and 570 proteins were identified. Most of them were assigned to phenylpropanoid biosynthesis, hormone metabolism and protein processing pathway. IAA and Gibberellins (GA3) promoted growth and development in a threshold manner at growth stage germination after vernalization. A novel discovery was that IAA biosynthetic pathway of sugar beet was the Trp-dependent. In addition, two predominant pathways of protein processing association with vernalization were also identified in sugar beet at growth stage flowering. This study provided an in-depth understanding of the molecular mechanism of vernalization at the level of proteomics.


Assuntos
Beta vulgaris/metabolismo , Flores/metabolismo , Proteínas de Plantas/metabolismo , Proteômica
16.
Funct Plant Biol ; 44(7): 720-726, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32480601

RESUMO

Sugar beet (Beta vulgaris L.) cannot form reproductive shoots during the first year of their life cycle. Flowering only occurs if plants are vernalised and are subsequently exposed to long days. However, the vernalisation mechanism remains poorly understood in sugar beet. Three putative lncRNAs associated with vernalisation (AGL15X1, AGL15X2 and CAULIFLOWER A) were investigated and the hypothesis that their expression occurred in response to vernalisation was experimentally tested. The regulation mechanisms of BvRAV1-like, lncRNA-like genes, BvFT1 and BvFT2 were also examined. The BvRAV1-like gene associated with vernalisation in sugar beet was validated for the first time. Our data confirmed the hypothesis that AGLX2 was the first candidate lncRNA of sugar beet and the BvRAV1-like gene was expressed in response to vernalisation. BvRAV1-like and AGLX2 genes might be coordinated with BvFT2 to promote reproductive growth by repressing BvFT1 during cold exposure followed by long day conditions. A new complementary flowering model of sugar beet was proposed. Our findings opened up new possibility for future studies and further illuminated the molecular mechanism of vernalisation in sugar beet.

17.
IEEE Trans Nanobioscience ; 15(2): 113-8, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-27019498

RESUMO

Chemotherapy is the main strategy in the treatment of cancer; however, the development of drug-resistance is the obstacle in long-term treatment of cervical cancer. Cisplatin is one of the most common drugs used in cancer therapy. Recently, accumulating evidence suggests that miRNAs are involved in various bioactivities in oncogenesis. It is not unexpected that miRNAs play a key role in acquiring of drug-resistance in the progression of tumor. In this study, we induced and maintained four levels of cisplatin-resistant HeLa cell lines (HeLa/CR1, HeLa/CR2, HeLa/CR3, and HeLa/CR4). According to the previous studies and existing evidence, we selected five miRNAs (miR-183, miR-182, miR-30a, miR-15b, and miR-16) and their potential target mRNAs as our research targets. The real-time RT-PCR was adopted to detect the relative expression of miRNAs and their mRNAs. The results show that miR-182 and miR-15b were up-regulated in resistant cell lines, while miR-30a was significantly down-regulated. At the same time, their targets are related to drug resistance. Compared to their parent HeLa cell line, the expression of selected miRNAs in resistant cell lines altered. The alteration suggests that HeLa cell drug resistance is associated with distinct miRNAs, which indicates that miRNAs may be one of the therapy targets in the treatment of cervical cancer by sensitizing cell to chemotherapy. We suggested a possible network diagram based on the existing theory and the preliminary results of candidate miRNAs and their targets in HeLa cells during development of drug resistance.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Biologia Computacional , Perfilação da Expressão Gênica , Células HeLa , Humanos , MicroRNAs/análise , MicroRNAs/genética , MicroRNAs/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
IEEE Trans Nanobioscience ; 14(2): 248-53, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25700454

RESUMO

It is challenging yet desirable to quantitatively control the expression of a target gene in practice. We design a device-Proportional Biological Operational Mu-circuit (P-BOM) incorporating AND/OR gate and operational amplifier into one circuit and explore its behaviors through simulation. The results imply that will be possible to regulate input-output proportionally by manipulating the RBS of hrpR, hrpS, tetR and output gene and used in the sensing of environmental weak signals such as dioxins.


Assuntos
Retroalimentação Fisiológica/fisiologia , Redes Reguladoras de Genes/genética , Modelos Genéticos , Regiões Promotoras Genéticas/genética , Transdução de Sinais/genética , Transcrição Gênica/genética , Algoritmos , Animais , Simulação por Computador , Humanos , Modelos Logísticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...