Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 328
Filtrar
1.
Front Neurol ; 15: 1442145, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39161868

RESUMO

Background: Exploration of the benefits and timing of surgical decompression in spinal cord injury (SCI) has been a research hotspot. However, despite the higher volume and increasing emphasis on quality there remains no bibliometric view on SCI and surgical decompression. In this study, we aimed to perform bibliometric analysis to reveal the core countries, affiliations, journals, authors, and developmental trends in SCI and surgical decompression across the past 50 years. Methods: Articles and reviews were retrieved from web of science core collection between 1975 and 2024. The bibliometrix package in R was used for data analysis and visualizing. Results: A total of 8,688 documents were investigated, indicating an ascending trend in annual publications. The USA and China played as the leaders in scientific productivity. The University of Toronto led in institutional productions. Core authors, such as Michael G. Fehlings, showed high productivity, and occasional authors showed widespread interests. Core journals like Spine and Spinal Cord served as beacons in this field. The interaction of core authors and international collaboration accentuated the cross-disciplinary feature of the field. Prominent documents emphasized the clinical significance of early decompression in 24 h post SCI. Conclusion: Based on comprehensive bibliometric analysis and literature review, we identified the hotspots and future directions of this field: (1) further investigation into the molecular and cellular mechanisms to provide pre-clinical evidence for biological effects of early surgical decompression in SCI animal models; (2) further evaluation and validation of the optimal time window of surgical decompression based on large cohort, considering the inherent heterogeneity of subpopulations in complicated immune responses post SCI; (3) further exploration on the benefits of early decompression on the neurological, functional, and clinical outcomes in acute SCI; (4) evaluation of the optimal surgical methods and related outcomes; (5) applications of artificial intelligence-based technologies in spinal surgical decompression.

2.
Front Comput Neurosci ; 18: 1379368, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39055384

RESUMO

Introduction: Epilepsy is a common neurological condition that affects a large number of individuals worldwide. One of the primary challenges in epilepsy is the accurate and timely detection of seizure. Recently, the graph regularized broad learning system (GBLS) has achieved superior performance improvement with its flat structure and less time-consuming training process compared to deep neural networks. Nevertheless, the number of feature and enhancement nodes in GBLS is predetermined. These node settings are also randomly selected and remain unchanged throughout the training process. The characteristic of randomness is thus more easier to make non-optimal nodes generate, which cannot contribute significantly to solving the optimization problem. Methods: To obtain more optimal nodes for optimization and achieve superior automatic detection performance, we propose a novel broad neural network named self-adaptive evolutionary graph regularized broad learning system (SaE-GBLS). Self-adaptive evolutionary algorithm, which can construct mutation strategies in the strategy pool based on the experience of producing solutions for selecting network parameters, is incorporated into SaE-GBLS model for optimizing the node parameters. The epilepsy seizure is automatic detected by our proposed SaE-GBLS model based on three publicly available EEG datasets and one private clinical EEG dataset. Results and discussion: The experimental results indicate that our suggested strategy has the potential to perform as well as current machine learning approaches.

3.
Acta Biochim Biophys Sin (Shanghai) ; 56(8): 1156-1171, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38910518

RESUMO

N-glycans play important roles in a variety of biological processes. In recent years, analytical technologies with high resolution and sensitivity have advanced exponentially, enabling analysts to investigate N-glycomic changes in different states. Specific glycan and glycosylation signatures have been identified in multiple diseases, including cancer, autoimmune diseases, nervous system disorders, and metabolic and cardiovascular diseases. These glycans demonstrate comparable or superior indicating capability in disease diagnosis and prognosis over routine biomarkers. Moreover, synchronous glycan alterations concurrent with disease initiation and progression provide novel insights into pathogenetic mechanisms and potential treatment targets. This review elucidates the biological significance of N-glycans, compares the existing glycomic technologies, and delineates the clinical performance of N-glycans across a range of diseases.


Assuntos
Biomarcadores , Glicômica , Polissacarídeos , Humanos , Polissacarídeos/metabolismo , Polissacarídeos/análise , Biomarcadores/metabolismo , Glicômica/métodos , Glicosilação , Neoplasias/metabolismo , Neoplasias/diagnóstico , Doenças Autoimunes/metabolismo , Doenças Autoimunes/diagnóstico , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/diagnóstico , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/diagnóstico , Doenças Metabólicas/metabolismo , Doenças Metabólicas/diagnóstico
4.
Opt Express ; 32(11): 19684-19696, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38859098

RESUMO

We propose, to the best of our knowledge, a novel deep learning-enabled four-dimensional spectral imaging system composed of a reflective coded aperture snapshot spectral imaging system and a panchromatic camera. The system simultaneously captures a compressively coded hyperspectral measurement and a panchromatic measurement. The hyperspectral data cube is recovered by the U-net-3D network. The depth information of the scene is then acquired by estimating a disparity map between the hyperspectral data cube and the panchromatic measurement through stereo matching. This disparity map is used to align the hyperspectral data cube and the panchromatic measurement. A designed fusion network is used to improve the spatial reconstruction of the hyperspectral data cube by fusing aligned panchromatic measurements. The hardware prototype of the proposed system demonstrates high-speed four-dimensional spectral imaging that allows for simultaneously acquiring depth and spectral images with an 8 nm spectral resolution between 450 and 700 nm, 2.5 mm depth accuracy, and a 1.83 s reconstruction time.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38640793

RESUMO

24-hour urinary free cortisol (UFC) is considered as the first-line test for screening and diagnosis of Cushing's syndrome. Although 24-hour UFC assay has been extensively studied by liquid chromatography-tandem mass spectrometry (LC-MS/MS), an accurate assay coupled with a reliable sample preparation procedure and a method-specific reference interval would be very important for reasonable diagnosis. In this study, a simple dilute and shoot method has been proposed for UFC determination by LC-MS/MS. Namely, 50 µL of urine sample was mixed with 200 µL of a 50 % methanol/water solution containing the internal standard cortisol-13C3. The mixture was centrifuged and the supernatant was used for direct analysis by LC-MS/MS. This method was validated with wide linear range from 0.625 to 500 ng/ml with coefficients of variation (CVs) ≤ 3.64 %, excellent precision (intra-day CVs ≤ 5.70 % and inter-day CVs ≤ 5.33 %) and good recovery in the range of 93.3-109 %. The preservatives were further evaluated for urine storage. It was recommended that no preservatives could be used in collection of 24-hour urine for good detecting peaks. The investigation of reference interval and diagnostic performance finally confirmed the potential usage of this LC-MS/MS assay in routing clinical testing.


Assuntos
Hidrocortisona , Espectrometria de Massa com Cromatografia Líquida , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Síndrome de Cushing/urina , Síndrome de Cushing/diagnóstico , Hidrocortisona/urina , Hidrocortisona/análise , Limite de Detecção , Modelos Lineares , Espectrometria de Massa com Cromatografia Líquida/métodos , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
7.
MedComm (2020) ; 5(4): e530, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38576458

RESUMO

Currently, there is a lack of effective treatments for spinal cord injury (SCI), a debilitating medical condition associated with enduring paralysis and irreversible neuronal damage. Extradural decompression of osseous as well as soft tissue components has historically been the principal objective of surgical procedures. Nevertheless, this particular surgical procedure fails to tackle the intradural compressive alterations that contribute to secondary SCI. Here, we propose an early intrathecal decompression strategy and evaluate its role on function outcome, tissue sparing, inflammation, and tissue stiffness after SCI. Durotomy surgery significantly promoted recovery of hindlimb locomotor function in an open-field test. Radiological analysis suggested that lesion size and tissue edema were significantly reduced in animals that received durotomy. Relative to the group with laminectomy alone, the animals treated with a durotomy had decreased cavitation, scar formation, and inflammatory responses at 4 weeks after SCI. An examination of the mechanical properties revealed that durotomy facilitated an expeditious restoration of the injured tissue's elastic rigidity. In general, early decompressive durotomy could serve as a significant strategy to mitigate the impairments caused by secondary injury and establish a more conducive microenvironment for prospective cellular or biomaterial transplantation.

8.
Nanomaterials (Basel) ; 14(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38470720

RESUMO

Disordered reactive oxygen/nitrogen species are a common occurrence in various diseases, which usually cause cellular oxidative damage and inflammation. Despite the wide range of applications for biomimetic nanoparticles with antioxidant or anti-inflammatory properties, designs that seamlessly integrate these two abilities with a synergistic effect in a simple manner are seldom reported. In this study, we developed a novel PEI-Mn composite nanoparticle (PM NP) using a chelation method, and the curcumin was loaded onto PM NPs via metal-phenol coordination to form PEI-Mn@curcumin nanoparticles (PMC NPs). PMC NPs possessed excellent dispersibility and cytocompatibility, was engineered to serve as an effective nanozyme, and exhibited specific SOD-like and CAT-like activities. In addition, the incorporation of curcumin granted PMC NPs the ability to effectively suppress the expression of inflammatory cytokines in microglia induced by LPS. As curcumin also has antioxidant properties, it further amplified the synergistic efficiency of ROS scavenging. Significantly, PMC NPs effectively scavenged ROS triggered by H2O2 in SIM-A9 microglia cells and Neuro-2a cells. PMC NPs also considerably mitigated DNA and lipid oxidation in Neuro-2a cells and demonstrated an increase in cell viability under various H2O2 concentrations. These properties suggest that PMC NPs have significant potential in addressing excessive ROS and inflammation related to neural diseases.

9.
J Biomed Opt ; 29(Suppl 1): S11526, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38505736

RESUMO

Significance: Photoacoustic (PA) technology shows great potential for bone assessment. However, the PA signals in cancellous bone are complex due to its complex composition and porous structure, making such signals challenging to apply directly in bone analysis. Aim: We introduce a photoacoustic differential attenuation spectrum (PA-DAS) method to separate the contribution of the acoustic propagation path to the PA signal from that of the source, and theoretically and experimentally investigate the propagation attenuation characteristics of cancellous bone. Approach: We modified Biot's theory by accounting for the high frequency and viscosity. In parallel with the rabbit osteoporosis model, we build an experimental PA-DAS system featuring an eccentric excitation differential detection mechanism. Moreover, we extract a PA-DAS quantization parameter-slope-to quantify the attenuation of high- and low-frequency components. Results: The results show that the porosity of cancellous bone can be evaluated by fast longitude wave attenuation at different frequencies and the PA-DAS slope of the osteoporotic group is significantly lower compared with the normal group (**p<0.01). Conclusions: Findings demonstrate that PA-DAS effectively differentiates osteoporotic bone from healthy bone, facilitating quantitative assessment of bone mineral density, and osteoporosis diagnosis.


Assuntos
Osso Esponjoso , Osteoporose , Animais , Coelhos , Osso Esponjoso/diagnóstico por imagem , Ultrassonografia/métodos , Osso e Ossos/diagnóstico por imagem , Densidade Óssea , Osteoporose/diagnóstico por imagem
10.
J Neurotrauma ; 41(9-10): 1077-1088, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38185845

RESUMO

Abstract With the recovery of motor function, some spinal cord injury (SCI) patients still suffer from severe pain-like behaviors symptoms. Whether motor function correlates with neuropathic pain-like behaviors remain unclear. In this study, a longitudinal cohort study of mice with moderate thoracic 10 contusion was performed to explore the characteristics of neuropathic pain-like behaviors and its correlation with motor function in different sexes. Pain-like behaviors data up to 42 days post-injury (dpi) were collected and compared. Mice of both sexes were divided into three groups based on their Basso Mouse Scale at 42 dpi. There was no significant difference in motor function recovery between the sexes. Female mice showed more significant mechanical allodynia than males at 14 dpi, which was sustained until 42 dpi without significant dynamic changes. However, males showed a gradually worsening state and more severe mechanical allodynia than females at 28 dpi, and then the differences disappeared. Interestingly, male mice obtained more severe cold hyperalgesia symptoms than females. Additionally, we found that there was a correlation between the occurrence of mechanical allodynia and cold and thermal hyperalgesia. Importantly, motor function recovery was positively associated with the outcomes of neuropathic pain-like behaviors after SCI, which was more obvious in female mice. Our data not only revealed the characteristics of neuropathic pain-like behaviors but also clarified the correlations between motor function recovery and neuropathic pain-like behaviors after SCI. These findings may provide new opinions and suggestions for promoting the clinical diagnosis and treatment of neuropathic pain-like behaviors after SCI.


Assuntos
Hiperalgesia , Neuralgia , Traumatismos da Medula Espinal , Animais , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/complicações , Neuralgia/fisiopatologia , Neuralgia/etiologia , Camundongos , Feminino , Masculino , Estudos Longitudinais , Hiperalgesia/fisiopatologia , Hiperalgesia/etiologia , Atividade Motora/fisiologia , Recuperação de Função Fisiológica/fisiologia , Comportamento Animal/fisiologia , Camundongos Endogâmicos C57BL
11.
Sci Rep ; 14(1): 1778, 2024 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245572

RESUMO

Protein kinase C substrate 80K-H (PRKCSH) plays a crucial role in the protein N-terminal glycosylation process, with emerging evidence implicating its involvement in tumorigenesis. To comprehensively assess PRKCSH's significance across cancers, we conducted a pan-cancer analysis using data from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Cancer Cell Line Encyclopedia (CCLE). We assessed aberrant PRKCSH mRNA and protein expression, examined its prognostic implications, and identified correlations with clinical features, tumor mutational burden (TMB), microsatellite instability (MSI), and tumor immunity across cancer types. We explored PRKCSH gene alterations, DNA methylation, and their impact on patient prognosis. Gene Set Enrichment Analysis (GSEA) and single-cell analysis revealed potential biological roles. Additionally, we investigated drug susceptibility and conducted Connectivity Map (Cmap) analysis. Key findings revealed that PRKCSH exhibited overexpression in most tumors, with a significant association with poor overall survival (OS) in six cancer types. Notably, PRKCSH expression demonstrated variations across disease stages, primarily increasing in advanced stages among eleven tumor types. Moreover, PRKCSH exhibited significant correlations with TMB in five cancer categories, MSI in eight, and displayed associations with immune cell populations in pan-cancer analysis. Genetic variations in PRKCSH were identified across 26 tumor types, suggesting favorable disease-free survival. Furthermore, PRKCSH methylation displayed a significant negative correlation with its expression in 27 tumor types, with a marked decrease compared to normal tissues in ten tumors. Cmap predicted 24 potential therapeutic small molecules in over four cancer types. This study highlights that PRKCSH, as a potential oncogene, may be a promising prognostic marker and therapeutic target of immunotherapy for a range of malignancies.


Assuntos
Neoplasias , Humanos , Prognóstico , Neoplasias/genética , Oncogenes , Carcinogênese , Instabilidade de Microssatélites , Biomarcadores , Proteínas de Ligação ao Cálcio , Glucosidases
12.
J Ovarian Res ; 17(1): 26, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38281033

RESUMO

BACKGROUND: Ovarian cancer (OC) is one of the most common gynecological tumors with high morbidity and mortality. Altered serum N-glycome has been observed in many diseases, while the association between serum protein N-glycosylation and OC progression remains unclear, particularly for the onset of carcinogenesis from benign neoplasms to cancer. METHODS: Herein, a mass spectrometry based high-throughput technique was applied to characterize serum N-glycome profile in individuals with healthy controls, benign neoplasms and different stages of OC. To elucidate the alterations of glycan features in OC progression, an orthogonal strategy with lectin-based ELISA was performed. RESULTS: It was observed that the initiation and development of OC was associated with increased high-mannosylationand agalactosylation, concurrently with decreased total sialylation of serum, each of which gained at least moderately accurate merits. The most important individual N-glycans in each glycan group was H7N2, H3N5 and H5N4S2F1, respectively. Notably, serum N-glycome could be used to accurately discriminate OC patients from benign cohorts, with a comparable or even higher diagnostic score compared to CA125 and HE4. Furthermore, bioinformatics analysis based discriminative model verified the diagnostic performance of serum N-glycome for OC in two independent sets. CONCLUSIONS: These findings demonstrated the great potential of serum N-glycome for OC diagnosis and precancerous lesion prediction, paving a new way for OC screening and monitoring.


Assuntos
Neoplasias Ovarianas , Lesões Pré-Cancerosas , Humanos , Feminino , Vírus da Influenza A Subtipo H7N2 , Biomarcadores Tumorais , Neoplasias Ovarianas/diagnóstico , Polissacarídeos/análise , Lesões Pré-Cancerosas/diagnóstico
13.
iScience ; 27(1): 108715, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38226168

RESUMO

Protein glycosylation is associated with the pathogenesis of various cancers. The utilization of certain glycans in cancer diagnosis models holds promise, yet their accuracy is not always guaranteed. Here, we investigated the utility of deep learning techniques, specifically random forests combined with transfer learning, in enhancing serum glycome's discriminative power for cancer diagnosis (including ovarian cancer, non-small cell lung cancer, gastric cancer, and esophageal cancer). We started with ovarian cancer and demonstrated that transfer learning can achieve superior performance in data-disadvantaged cohorts (AUROC >0.9), outperforming the approach of PLS-DA. We identified a serum glycan-biomarker panel including 18 serum N-glycans and 4 glycan derived traits, most of which were featured with sialylation. Furthermore, we validated advantage of the transfer learning scheme across other cancer groups. These findings highlighted the superiority of transfer learning in improving the performance of glycans-based cancer diagnosis model and identifying cancer biomarkers, providing a new high-fidelity cancer diagnosis venue.

14.
Life Sci ; 336: 122282, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38008209

RESUMO

As one of the most prevalent neurotrophic factors in the central nervous system (CNS), brain-derived neurotrophic factor (BDNF) plays a significant role in CNS injury by binding to its specific receptor Tropomyosin-related kinase receptor B (TrkB). The BDNF/TrkB signaling pathway is crucial for neuronal survival, structural changes, and plasticity. BDNF acts as an axonal growth and extension factor, a pro-survival factor, and a synaptic modulator in the CNS. BDNF also plays an important role in the maintenance and plasticity of neuronal circuits. Several studies have demonstrated the importance of BDNF in the treatment and recovery of neurodegenerative and neurotraumatic disorders. By undertaking in-depth study on the mechanism of BDNF/TrkB function, important novel therapeutic strategies for treating neuropsychiatric disorders have been discovered. In this review, we discuss the expression patterns and mechanisms of the TrkB/BDNF signaling pathway in CNS damage and introduce several intriguing small molecule TrkB receptor agonists produced over the previous several decades.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Receptor trkB , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Receptor trkB/metabolismo , Transdução de Sinais , Sistema Nervoso Central/metabolismo , Neurônios/metabolismo
15.
Transl Neurodegener ; 12(1): 53, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38012808

RESUMO

BACKGROUND: Synaptic degeneration occurs in the early stage of Alzheimer's disease (AD) before devastating symptoms, strongly correlated with cognitive decline. Circular RNAs (circRNAs) are abundantly enriched in neural tissues, and aberrant expression of circRNAs precedes AD symptoms, significantly correlated with clinical dementia severity. However, the direct relationship between circRNA dysregulation and synaptic impairment in the early stage of AD remains poorly understood. METHODS: Hippocampal whole-transcriptome sequencing was performed to identify dysregulated circRNAs and miRNAs in 4-month-old wild-type and APP/PS1 mice. RNA antisense purification and mass spectrometry were utilized to unveil interactions between circRIMS2 and methyltransferase 3, N6-adenosine-methyltransferase complex catalytic subunit (METTL3). The roles of circRIMS2/miR-3968 in synaptic targeting of UBE2K-mediated ubiquitination of GluN2B subunit of NMDA receptor were evaluated via numerous lentiviruses followed by morphological staining, co-immunoprecipitation and behavioral testing. Further, a membrane-permeable peptide was used to block the ubiquitination of K1082 on GluN2B in AD mice. RESULTS: circRIMS2 was significantly upregulated in 4-month-old APP/PS1 mice, which was mediated by METTL3-dependent N6-methyladenosine (m6A) modification. Overexpression of circRIMS2 led to synaptic and memory impairments in 4-month-old C57BL/6 mice. MiR-3968/UBE2K was validated as the downstream of circRIMS2. Elevated UBE2K induced synaptic dysfunction of AD through ubiquitinating K1082 on GluN2B. Silencing METTL3 or blocking the ubiquitination of K1082 on GluN2B with a short membrane-permeable peptide remarkably rescued synaptic dysfunction in AD mice. CONCLUSIONS: In conclusion, our study demonstrated that m6A-modified circRIMS2 mediates the synaptic and memory impairments in AD by activating the UBE2K-dependent ubiquitination and degradation of GluN2B via sponging miR-3968, providing novel therapeutic strategies for AD.


Assuntos
Doença de Alzheimer , MicroRNAs , RNA Circular , Receptores de N-Metil-D-Aspartato , Animais , Camundongos , Adenosina , Doença de Alzheimer/metabolismo , Transtornos da Memória/genética , Metiltransferases , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/genética , Peptídeos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , RNA Circular/genética
16.
J Cancer Res Clin Oncol ; 149(19): 17285-17296, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37815661

RESUMO

BACKGROUND: Bile acids (BA) are important metabolites and serve as signaling molecules, which are involve in multiple cancer-related signaling pathways. METHODS: A validated LC-MS/MS approach was applied in a case-control study with 220 non-small cell lung cancer (NSCLC) patients and 244 matched healthy controls. The concentrations of seven common types of BAs in serum were determined and compared. Subgroup analyses based on demographic factor, lifestyle, pathologic types and tumor stage were conducted. Machine learning analysis was performed for NSCLC classification. RESULTS: Serum levels of primary BAs, including cholic acid (CA), taurocholic acid (TCA) and glycocholic acid (GCA), were upregulated, while lithocholic acid (LCA), a type of secondary BA, was downregulated in NSCLC patients compared with healthy controls in overall analysis. Higher level of chenodeoxycholic acid (CDCA) and lower level of ursodeoxycholic acid (UDCA) were observed in female, elder, overweight patients, as well as patients without alcohol use in comparison with controls. CDCA and CA levels were higher only in lung adenocarcinoma (LUAD), and UDCA and DCA levels were lower only in squamous cell carcinoma (LUSC), while the concentrations of TCA, GCA, and LCA were altered prevalently in LUAD and LUSC patients. For discrimination of NSCLC from healthy people, the area under the receiver operating characteristics (ROC) curve of the models through support vector machine (SVM) approach was 0.91 (95% CI 0.88-0.94) in the training set and 0.84 (95% CI 0.78-0.91) in the validation set, respectively. CONCLUSIONS: Serum BAs were altered in NSCLC patients compared with controls, among which primary BAs were elevated and secondary BAs were decreased. Moreover, distinct patterns of BA alterations were revealed between LUAD patients and LUSC patients.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Feminino , Idoso , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Estudos de Casos e Controles , Cromatografia Líquida , Neoplasias Pulmonares/tratamento farmacológico , Espectrometria de Massas em Tandem , Ácidos e Sais Biliares
17.
Cell Rep ; 42(10): 113308, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37858462

RESUMO

The RNA-binding protein Musashi-1 (MSI1) regulates the proliferation and differentiation of adult stem cells. However, its role in embryonic stem cells (ESCs) and early embryonic development remains poorly understood. Here, we report the presence of short C-terminal MSI1 (MSI1-C) proteins in early mouse embryos and mouse ESCs, but not in human ESCs, under conventional culture conditions. In mouse embryos and mESCs, deletion of MSI1-C together with full-length MSI1 causes early embryonic developmental arrest and pluripotency dissolution. MSI1-C is induced upon naive induction and facilitates hESC naive pluripotency acquisition, elevating the pluripotency of primed hESCs toward a formative-like state. MSI1-C proteins are nuclear localized and bind to RNAs involved in DNA-damage repair (including MLH1, BRCA1, and MSH2), conferring on hESCs better survival in human-mouse interspecies cell competition and prolonged ability to form blastoids. This study identifies MSI1-C as an essential regulator in ESC pluripotency states and early embryonic development.


Assuntos
Células-Tronco Embrionárias , Células-Tronco Embrionárias Humanas , Animais , Humanos , Camundongos , Diferenciação Celular , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
18.
Adv Sci (Weinh) ; 10(35): e2304722, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37870186

RESUMO

Chronic low back pain (LBP) caused by intervertebral disc (IVD) degradation is a serious socioeconomic burden that can cause severe disabilities. Addressing the underlying pathogenic mechanisms of IVD degeneration may inspire novel therapeutic strategy for LBP. Herein, hypoxic preconditioning improves both the biological function of MSCs in hostile microenvironments and enhances the production of small extracellular vesicles (sEVs) with desirable therapeutic functions. In vitro results reveal that hypoxic preconditional engineering sEVs (HP-sEVs) alleviate the inflammatory microenvironments of IVD degradation, enhance the proliferation of nucleus pulposus (NP) cells, and promote proteoglycan synthesis and collagen formation. Transcriptomic sequencing reveales the excellent therapeutic effects of HP-sEVs in promoting extracellular matrix regeneration through the delivery of microRNA(miR)-7-5p, which further suppresses p65 production and thus the inhibition of Cxcl2 production. Moreover, in vivo results further confirm the robust therapeutic role of HP-sEVs in promoting IVD regeneration through the same mechanism mediated by miR-7-5p delivery. In conclusion, this study provides a novel therapeutic strategy for treating IVD degradation and is thus valuable for understanding the mechanism-of-action of HP-sEVs in IVD regeneration associated with chronic lower back pain.


Assuntos
Vesículas Extracelulares , Degeneração do Disco Intervertebral , Disco Intervertebral , MicroRNAs , Humanos , Vesículas Extracelulares/metabolismo , Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/terapia , Degeneração do Disco Intervertebral/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , NF-kappa B/metabolismo , NF-kappa B/farmacologia , NF-kappa B/uso terapêutico , Regeneração , Quimiocina CXCL2/metabolismo
19.
J Biol Inorg Chem ; 28(8): 699-709, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37741885

RESUMO

Trace elements within the brain are important for proper neurological function, but their imbalance has been rarely investigated in glioblastoma. This study enrolled a total of 14 patients with glioblastoma, and the tumor and peritumoral brain tissues were collected while undergoing surgery. The concentrations of Mg, Ca, Cr, Mn, Fe, Co, Cu, Zn, Se, As, Cd, Tl and Pb were determined using a well-evaluated ICP-MS method. The Cu- and Cd-binding proteomes were further analyzed using the anatomic transcriptional atlas from Ivy GAP. Histological evaluation was based on rubeanic acid staining and immunohistochemistry, respectively. The 13 trace element concentrations were obtained, and the highest were Ca, Mn, Fe, Zn and Cu, ranging from a few to dozens of ug/g. Correlation analysis suggested the existence of two intra-correlated clusters: essential metals (Cu-Ca-Zn-Mg) and heavy metals (Pb-As-Cd-Tl-Co-Cr-Mn). Compared to the tumor samples, significantly higher levels of Cu and Cd were observed in the peritumoral region. Further analysis of the Cu- and Cd-binding proteins from the anatomic view suggested that DBH and NOS1 were obviously increased in the leading edge than the central tumor region. Consistent with the above findings, histological evaluation of Cu and DBH further confirmed more copper and DBH expressions in the peritumoral area compared to the tumor core. Trace elements differ in tumor and peritumoral brain zone in glioblastoma, which may associate with tumor angiogenesis.


Assuntos
Glioblastoma , Metais Pesados , Oligoelementos , Humanos , Oligoelementos/análise , Cobre , Cádmio , Chumbo , Encéfalo
20.
RSC Adv ; 13(39): 27283-27291, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37711382

RESUMO

In addition to size, shape and morphology, enzyme-mimetic property could be efficiently regulated by controlling composition, forming complexes or hybrids, and surface modification. Herein, Pd nanoparticles with an average diameter of 2.52 nm were decorated on ultrathin 2D copper(ii)-porphyrin derived metal-organic framework (MOF) nanosheets by a simple reduction method for catalytic activity regulation. In comparison with other nanozymes, the as-synthesized Pd modified 2D MOF hybrid nanosheets (Pd@Cu-TCPP(Fe)) presented excellent peroxidase-mimic activity, exhibiting an even superior catalytic ability towards H2O2 with a Michaelis-Menten constant as low as 2.33 mM. Based on a cascade reaction between glucose oxidase and Pd@Cu-TCPP(Fe), a colorimetric method for the detection of glucose was established and validated with a wide linear range (0.2-8.0 mM), good recovery (89.5-94.2%) and nice reproducibility (3.65%). All these features guaranteed its excellent ability for glucose determination in human cerebrospinal fluids. This study could offer a valuable reference for constructing novel optical biosensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...