Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38935752

RESUMO

Na2Ti3O7 has attracted significant attention due to its ecofriendliness and cost-effectiveness for sodium-ion batteries. However, their limited cycling stability hampers their practical applications. Herein, we elucidate a mechanism of structural degradation caused by the heterogeneous phase transition in the Na2Ti3O7 anode using aberration-corrected (scanning) transmission electron microscopy (S)TEM and in situ TEM. It is found that the unevenly distributed phase transition results in the accumulation of strain, which promotes the growth of microcracks and eventually leads to structural decomposition and electrochemical failure. Motivated by this degradation mechanism, nanowires were proposed, and the structural stability is thus improved with the lattice strain effectively released. These findings deepen our understanding of ion transport and degradation mechanisms in intercalated layered electrode materials while emphasizing the significance of the material structure engineered for improving electrode performance.

2.
Small ; 20(6): e2305655, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37771195

RESUMO

Na2 Ti3 O7 is considered one of the most promising anode materials for sodium ion batteries due to its superior safety, environmental friendliness, and low manufacturing cost. However, its structural stability and reaction mechanism still have not been fully explored. As the electron beam irradiation introduces a similar impact on the Na2 Ti3 O7 anode as the extraction of Na+ ions during the battery discharge process, the microstructure evolution of the materials is investigated by advanced electron microscopy techniques at the atomic scale. Anisotropic amorphization is successfully observed. Through the integrated differential phase contrast-scanning transmission electron microscopy technique and density functional theory calculation, a phase transition pathway involving a new phase, Na2 Ti24 O49 , is proposed with the reduction of Na atoms. Additionally, it is found that the amorphization is dominated by the surface energy and electron dose rate. These findings will deepen the understanding of structural stability and deintercalation mechanism of the Na2 Ti3 O7 anode, providing new insight into exploring the failure mechanism of electrode materials.

3.
Nano Lett ; 23(24): 11818-11826, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38078871

RESUMO

An atomic-scale understanding of the role of nonperiodic features is essential to the rational design of highly Li-ion-conductive solid electrolytes. Unfortunately, most solid electrolytes are easily damaged by the intense electron beam needed for atomic-resolution electron microscopy observation, so the reported in-depth atomic-scale studies are limited to Li0.33La0.56TiO3- and Li7La3Zr2O12-based materials. Here, we observe on an atomic scale a third type of solid electrolyte, Li1.3Al0.3Ti1.7(PO4)3 (LATP), through minimization of damage induced by specimen preparation. With this capability, LATP is found to contain large amounts of twin boundaries with an unusual asymmetric atomic configuration. On the basis of the experimentally determined structure, the theoretical calculations suggest that such asymmetric twin boundaries may considerably promote Li-ion transport. This discovery identifies a new entry point for optimizing ionic conductivity, and the method presented here will also greatly benefit the mechanistic study of solid electrolytes.

4.
Rev Sci Instrum ; 94(4)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38081290

RESUMO

Vortex dynamics has attracted tremendous attention for both fundamental physics and applications of type-II superconductors. However, methods to detect local vortex motion or vortex jump with high sensitivity are still scarce. Here, we fabricated soft point contacts on the clean layered superconductor 2H-NbSe2, which are demonstrated to contain multiple parallel micro-constrictions by scanning electronic microscopy. Andreev reflection spectroscopy was then studied in detail for the contacts. Differential conductance taken at fixed bias voltages was discovered to vary spontaneously over time in various magnetic fields perpendicular to the sample surface. The conductance variations become invisible when the field is zero or large enough, or parallel to the sample surface, which can be identified as the immediate consequence of vortex motion across a finite number of micro-constrictions. These results demonstrate point contact Andreev reflection spectroscopy to be a new potential way with a high time resolution to study the vortex dynamics in type-II superconductors.

5.
Inorg Chem ; 62(51): 21257-21264, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38069815

RESUMO

Phase engineering synthesis strategy is extremely challenging to achieve stable metallic phase molybdenum diselenide for a better physicochemical property than the thermodynamically stable semiconducting phase. Herein, we introduce tungsten atom clusters into the MoSe2 layered structure, realizing the phase transition from the 2H semiconductor to 1T metallic phase at a high temperature. The combination of synchrotron radiation X-ray absorption spectroscopy, Cs-corrected transmission electron microscopy, and theoretical calculation demonstrates that the aggregation doping of W atoms is the factor of MoSe2 structure transformation. When utilizing this distinct structure as an anode component, it demonstrates outstanding rate capability and durability. After 500 cycles, this results in a specific capacity of 1007.4 mAh g-1 at 500 mA g-1. These discoveries could open the door for the future development of high-performance anodes for ion battery applications.

6.
Nanotechnology ; 35(5)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37890477

RESUMO

Multi-shell transition metal oxide hollow spheres show great potential for applications in energy storage because of their unique multilayered hollow structure with large specific surface area, short electron and charge transport paths, and structural stability. In this paper, the controlled synthesis of NiCo2O4, MnCo2O4, NiMn2O4multi-shell layer structures was achieved by using the solvothermal method. As the anode materials for Li-ion batteries, the three multi-shell structures maintained good stability after 650 long cycles in the cyclic charge/discharge test. Thein situtransmisssion electron microscope characterization combined with cyclic voltammetry tests demonstrated that the three anode materials NiCo2O4, MnCo2O4and NiMn2O4have similar charge/discharge transition mechanisms, and the multi-shell structure can effectively buffer the volume expansion and structural collapse during lithium embedding/delithiation to ensure the stability of the electrode structure and cycling performance. The research results can provide effective guidance for the synathesis and charging/discharging mechanism of multi-shell metal oxide lithium-ion battery anode materials.

7.
Nanoscale ; 15(33): 13718-13727, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37577754

RESUMO

In situ liquid phase transmission electron microscopy (TEM) and three-dimensional electron tomography are powerful tools for investigating the growth mechanism of MOFs and understanding the factors that influence their particle morphology. However, their combined application to the study of MOF etching dynamics is limited due to the challenges of the technique such as sample preparation, limited field of view, low electron density, and data analysis complexity. In this research, we present a study employing in situ liquid phase TEM to investigate the etching mechanism of colloidal zeolitic imidazolate framework (ZIF) nanoparticles. The etching process involves two distinct stages, resulting in the development of porous structures as well as partially and fully hollow morphologies. The etching process is induced by exposure to an acid solution, and both in situ and ex situ experiments demonstrate that the outer layer etches faster leading to overall volume shrinking (stage I) while the inner layer etches faster giving a hollow morphology (stage II), although both the outer layer and inner layer have been etched in the whole process. 3D electron tomography was used to quantify the properties of the hollow structures which show that the ZIF-67 crystal etching rate is larger than that of the ZIF-8 crystal at the same pH value. This study provides valuable insights into MOF particle morphology control and can lead to the development of novel MOF-based materials with tailored properties for various applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...