Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Front Cardiovasc Med ; 11: 1377765, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590697

RESUMO

Background: Patients with single-ventricle physiologies continue to experience insufficient circulatory power after undergoing palliative surgeries. This paper proposed a right heart assist device equipped with flexible blades to provide circulatory assistance for these patients. The optimal elastic modulus of the flexible blades was investigated through numerical simulation. Methods: A one-way fluid-structure interaction (FSI) simulation was employed to study the deformation of flexible blades during rotation and its impact on device performance. The process began with a computational fluid dynamics (CFD) simulation to calculate the blood pressure rise and the pressure on the blades' surface. Subsequently, these pressure data were exported for finite element analysis (FEA) to compute the deformation of the blades. The fluid domain was then recreated based on the deformed blades' shape. Iterative CFD and FEA simulations were performed until both the blood pressure rise and the blades' shape stabilized. The blood pressure rise, hemolysis risk, and thrombosis risk corresponding to blades with different elastic moduli were exhaustively evaluated to determine the optimal elastic modulus. Results: Except for the case at 8,000 rpm with a blade elastic modulus of 40 MPa, the pressure rise associated with flexible blades within the studied range (rotational speeds of 4,000 rpm and 8,000 rpm, elastic modulus between 10 MPa and 200 MPa) was lower than that of rigid blades. It was observed that the pressure rise corresponding to flexible blades increased as the elastic modulus increased. Additionally, no significant difference was found in the hemolysis risk and thrombus risk between flexible blades of various elastic moduli and rigid blades. Conclusion: Except for one specific case, deformation of the flexible blades within the studied range led to a decrease in the impeller's functionality. Notably, rotational speed had a more significant impact on hemolysis risk and thrombus risk compared to blade deformation. After a comprehensive analysis of blade compressibility, blood pressure rise, hemolysis risk, and thrombus risk, the optimal elastic modulus for the flexible blades was determined to be between 40 MPa and 50 MPa.

2.
Front Endocrinol (Lausanne) ; 15: 1362725, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549762

RESUMO

Background: Early studies have revealed antagonistic effects associated with stacking chemotherapy (CT) and endocrine therapy (ET), thereby conventional wisdom does not advocate the simultaneous combination of these two treatment modalities. Limited clinical studies exist on the combined use of neoadjuvant CT (NACT) and neoadjuvant ET (NET), and there are no reported instances of concurrent neoadjuvant treatment for locally advanced breast cancer (LABC) using capecitabine and fulvestrant (FUL). Case presentation: We reported a 54-year-old woman who was diagnosed with hormone receptor-positive (HR+) LABC at our hospital. After neoadjuvant treatment involving two distinct CT regimens did not lead to tumor regression. Consequently, the patient was transitioned to concurrent capecitabine and FUL therapy. This change resulted in favorable pathological remission without any significant adverse events during treatment. Conclusions: A novel approach involving concurrent neoadjuvant therapy with CT and endocrine therapy may offer a potentially effective treatment avenue for some cases with HR+ LABC.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Pessoa de Meia-Idade , Neoplasias da Mama/patologia , Terapia Neoadjuvante/métodos , Capecitabina/uso terapêutico , Fulvestranto/uso terapêutico , Resultado do Tratamento
3.
Transl Cancer Res ; 13(2): 1043-1051, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38482434

RESUMO

Background: Accurate assessment of lateral cervical lymph node metastasis (LLNM) involvement is important for treating papillary thyroid carcinoma (PTC). Thyroglobulin is associated with LLNM, but there may be differences in the diagnostic value of serum thyroglobulin (sTg) and fine needle aspiration washout fluid thyroglobulin (FNA-Tg). Herein, we investigated the optimal cutoff value (OCV) of sTg and FNA-Tg and their diagnostic performance. Methods: We enrolled 116 PTC patients who underwent radical resection of thyroid carcinoma with lateral cervical lymph node dissection at the Affiliated Hospital of Zunyi Medical University from June 2018 to July 2022. We used the receiver operating characteristic (ROC) curve analysis to determine the OCV for sTg and FNA-Tg to diagnose LLNM in PTC patients. We also evaluated the performance of FNA-Tg, sTg, fine needle aspiration cytology (FNAC), and their combinations for diagnosis. Pathological results were the gold standard. Results: We performed 125 lymph node dissections, 106 had metastasis, and 19 did not. The OCV for sTg was 17.31 ng/mL [area under the curve (AUC) =0.760, sensitivity =78.30%, specificity =73.68%, and accuracy =77.60%]. Meanwhile, the OCV for FNA-Tg was 4.565 ng/mL (AUC =0.948, sensitivity =89.62%, specificity =100%, and accuracy =91.20%). The combination of FNAC and FNA-Tg presented the greatest diagnostic performance for LLNM detection in PTC patients. Moreover, serum antithyroglobulin antibody (TgAb) was not correlated with sTg or FNA-Tg levels. Conclusions: The cutoff value for the diagnosis of LLNM in PTC are sTg >17.31 ng/mL or FNA-Tg >4.565 ng/mL. The combination method of FNA-Tg and FNAC is the most optimal choice for the diagnosis of LLNM and is highly recommended for further clinical application.

4.
Cancer Cell Int ; 24(1): 87, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419028

RESUMO

BACKGROUND: As a key enzyme in ceramide synthesis, longevity assurance homologue 2 (LASS2) has been indicated to act as a tumour suppressor in a variety of cancers. Ferroptosis is involved in a variety of tumour processes; however, the role of LASS2 in regulating ferroptosis has yet to be explored. This article explores the potential underlying mechanisms involved. METHODS: Bioinformatics tools and immunohistochemical staining were used to evaluate LASS2 expression, and the results were analysed in relation to overall survival and clinical association in multiple cancers. Coimmunoprecipitation-coupled liquid chromatography-mass spectrometry (co-IP LC-MS) was performed to identify potential LASS2-interacting proteins in thyroid, breast, and liver cancer cell lines. Transcriptomics, proteomics and metabolomics analyses of multiple cancer cell types were performed using MS or LC-MS to further explore the underlying mechanisms involved. Among these tumour cells, the common LASS2 interaction partner transferrin receptor (TFRC) was analysed by protein-protein docking and validated by coimmunoprecipitation western blot, immunofluorescence, and proximity ligation assays. Then, we performed experiments in which tumour cells were treated with Fer-1 or erastin or left untreated, with or without inducing LASS2 overexpression, and assessed the molecular biological and cellular functions by corresponding analyses. RESULTS: Low LASS2 expression is correlated with adverse clinical characteristic and poor prognosis in patients with thyroid cancer, breast cancer or HCC. Multiomics analyses revealed significant changes in the ferroptosis signalling pathway, iron ion transport and iron homeostasis. Our in vitro experiments revealed that LASS2 overexpression regulated ferroptosis status in these tumour cells by affecting iron homeostasis, which in turn inhibited tumour migration, invasion and EMT. In addition, LASS2 overexpression reversed the changes in tumour cell metastasis induced by either Fer-1 or erastin. Mechanistically, LASS2 interacts directly with TFRC to regulate iron homeostasis in these tumour cells. CONCLUSIONS: In summary, our study reveals for the first time that LASS2 can inhibit tumour cell metastasis by interacting with TFRC to regulate iron metabolism and influence ferroptosis status in thyroid, breast, and liver cancer cells, these results suggest potential universal therapeutic targets for the treatment of these cancers.

5.
PLoS Pathog ; 20(2): e1011999, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38306394

RESUMO

Hepatitis B virus (HBV) chronically infects 296 million people worldwide, posing a major global health threat. Export of HBV RNAs from the nucleus to the cytoplasm is indispensable for viral protein translation and genome replication, however the mechanisms regulating this critical process remain largely elusive. Here, we identify a key host factor embryonic lethal, abnormal vision, Drosophila-like 1 (ELAVL1) that binds HBV RNAs and controls their nuclear export. Using an unbiased quantitative proteomics screen, we demonstrate direct binding of ELAVL1 to the HBV pregenomic RNA (pgRNA). ELAVL1 knockdown inhibits HBV RNAs posttranscriptional regulation and suppresses viral replication. Further mechanistic studies reveal ELAVL1 recruits the nuclear export receptor CRM1 through ANP32A and ANP32B to transport HBV RNAs to the cytoplasm via specific AU-rich elements, which can be targeted by a compound CMLD-2. Moreover, ELAVL1 protects HBV RNAs from DIS3+RRP6+ RNA exosome mediated nuclear RNA degradation. Notably, we find HBV core protein is dispensable for HBV RNA-CRM1 interaction and nuclear export. Our results unveil ELAVL1 as a crucial host factor that regulates HBV RNAs stability and trafficking. By orchestrating viral RNA nuclear export, ELAVL1 is indispensable for the HBV life cycle. Our study highlights a virus-host interaction that may be exploited as a new therapeutic target against chronic hepatitis B.


Assuntos
Vírus da Hepatite B , RNA Viral , Animais , Humanos , Vírus da Hepatite B/metabolismo , Transporte Ativo do Núcleo Celular , RNA Viral/genética , RNA Viral/metabolismo , Drosophila/genética , Replicação Viral/genética , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteína Semelhante a ELAV 1/genética , Proteína Semelhante a ELAV 1/metabolismo
6.
Biomed Pharmacother ; 171: 116091, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171248

RESUMO

Lipocalin 2 (LCN2) is a secreted glycoprotein that is produced by immune cells, including neutrophils and macrophages. It serves various functions such as transporting hydrophobic ligands across the cellular membrane, regulating immune responses, keeping iron balance, and fostering epithelial cell differentiation. LCN2 plays a crucial role in several physiological processes. LCN2 expression is upregulated in a variety of human diseases and cancers. High levels of LCN2 are specifically linked to breast cancer (BC) cell proliferation, apoptosis, invasion, migration, angiogenesis, immune regulation, chemotherapy resistance, and prognosis. As a result, LCN2 has gained attention as a potential therapeutic target for BC. This article offered an in-depth review of the advancement of LCN2 in the context of BC occurrence and development.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Lipocalina-2/metabolismo , Neoplasias da Mama/metabolismo , Proteínas de Fase Aguda/metabolismo , Lipocalinas/metabolismo , Macrófagos/metabolismo
7.
Mol Breed ; 43(11): 82, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37974900

RESUMO

Spike length (SL) plays an important role in the yield improvement of wheat and is significantly associated with other traits. Here, we used a recombinant inbred line (RIL) population derived from a cross between Yangmai 12 (YM12) and Yanzhan 1 (YZ1) to construct a genetic linkage map and identify quantitative trait loci (QTL) for SL. A total of 5 QTL were identified for SL, among which QSl.yaas-3A and QSl.yaas-5B are two novel QTL for SL. The YZ1 alleles at QSl.yaas-2D and QSl.yaas-5A, and the YM12 alleles at QSl.yaas-2A, QSl.yaas-3A, and QSl.yaas-5B conferred increasing SL effects. Two major QTL QSl.yaas-5A and QSl.yaas-5B explained 9.11-15.85% and 9.01-12.85% of the phenotypic variations, respectively. Moreover, the positive alleles of QSl.yaas-5A and QSl.yaas-5B could significantly increase Fusarium head blight (FHB) resistance (soil surface inoculation and spray inoculation were used) and thousand-grain weight (TGW) in the RIL population. Kompetitive allele-specific PCR (KASP) markers for QSl.yaas-5A and QSl.yaas-5B were developed and validated in an additional panel of 180 wheat cultivars/lines. The cultivars/lines harboring both the positive alleles of QSl.yaas-5A and QSl.yaas-5B accounted for only 28.33% of the validation populations and had the longest SL, best FHB resistance (using spray inoculation), and highest TGW. A total of 358 and 200 high-confidence annotated genes in QSl.yaas-5A and QSl.yaas-5B were identified, respectively. Some of the genes in these two regions were involved in cell development, disease resistance, and so on. The results of this study will provide a basis for directional breeding of longer SL, higher TGW, and better FHB resistance varieties and a solid foundation for fine-mapping QSl.yaas-5A and QSl.yaas-5B in future. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01427-8.

8.
Proc Natl Acad Sci U S A ; 120(49): e2306390120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38015841

RESUMO

Hepatitis B virus (HBV) remains a major public health threat with nearly 300 million people chronically infected worldwide who are at a high risk of developing hepatocellular carcinoma. Current therapies are effective in suppressing HBV replication but rarely lead to cure. Current therapies do not affect the HBV covalently closed circular DNA (cccDNA), which serves as the template for viral transcription and replication and is highly stable in infected cells to ensure viral persistence. In this study, we aim to identify and elucidate the functional role of cccDNA-associated host factors using affinity purification and protein mass spectrometry in HBV-infected cells. Nucleolin was identified as a key cccDNA-binding protein and shown to play an important role in HBV cccDNA transcription, likely via epigenetic regulation. Targeting nucleolin to silence cccDNA transcription in infected hepatocytes may be a promising therapeutic strategy for a functional cure of HBV.


Assuntos
Hepatite B , Neoplasias Hepáticas , Humanos , Vírus da Hepatite B/fisiologia , Epigênese Genética , Replicação Viral/genética , DNA Viral/metabolismo , DNA Circular/genética , DNA Circular/metabolismo , Neoplasias Hepáticas/genética , Hepatite B/genética , Hepatite B/metabolismo , Nucleolina
9.
Front Med (Lausanne) ; 10: 1205446, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38034532

RESUMO

Soft tissue tuberculosis is a rare extrapulmonary form of tuberculosis with limited experience in diagnosis and treatment. Soft tissue tuberculosis is an extrapulmonary infection with atypical clinical symptoms that can be easily misdiagnosed. In this article, we report a case of a female patient with isolated soft tissue tuberculosis who presented with a progressively enlarging subcutaneous mass as the primary symptom, and was suspected of having a subcutaneous lipoma after ultrasonography. A review of the literature revealed that soft tissue tuberculosis is insidious and mainly occurs in muscles and subcutaneous tissues. It was indicated by histopathology and qPCR testing for Mycobacterium tuberculosis complex. There is no standard treatment protocol for soft tissue tuberculosis, and a comprehensive regimen of surgical debridement of the lesion combined with chemotherapy can be used following the guidelines for treating extrapulmonary tuberculosis. Early diagnosis and standardized anti-tuberculosis treatment can significantly improve the prognosis of patients.

10.
J Biol Chem ; 299(9): 105151, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37567479

RESUMO

Hepatitis B virus (HBV) is a hepatotropic DNA virus that has a very compact genome. Due to this genomic density, several distinct mechanisms are used to facilitate the viral life cycle. Recently, accumulating evidence show that G-quadruplex (G4) in different viruses play essential regulatory roles in key steps of the viral life cycle. Although G4 structures in the HBV genome have been reported, their function in HBV replication remains elusive. In this study, we treated an HBV replication-competent cell line and HBV-infected cells with the G4 structure stabilizer pyridostatin (PDS) and evaluated different HBV replication markers to better understand the role played by the G4. In both models, we found PDS had no effect on viral precore RNA (pcRNA) or pre-genomic RNA (pgRNA), but treatment did increase HBeAg/HBc ELISA reads and intracellular levels of viral core/capsid protein (HBc) in a dose-dependent manner, suggesting post-transcriptional regulation. To further dissect the mechanism of G4 involvement, we used in vitro-synthesized HBV pcRNA and pgRNA. Interestingly, we found PDS treatment only enhanced HBc expression from pgRNA but not HBeAg expression from pcRNA. Our bioinformatic analysis and CD spectroscopy revealed that pgRNA harbors a conserved G4 structure. Finally, we introduced point mutations in pgRNA to disrupt its G4 structure and observed the resulting mutant failed to respond to PDS treatment and decreased HBc level in in vitro translation assay. Taken together, our data demonstrate that HBV pgRNA contains a G4 structure that plays a vital role in the regulation of viral mRNA translation.


Assuntos
Quadruplex G , Vírus da Hepatite B , Hepatite B , Humanos , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Hepatite B/virologia , Antígenos E da Hepatite B/metabolismo , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Proteínas do Core Viral/química , Proteínas do Core Viral/metabolismo , Replicação Viral/genética , Linhagem Celular , Quadruplex G/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/genética , Mutação , Aminoquinolinas/farmacologia
11.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 41(4): 450-462, 2023 Aug 01.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-37474478

RESUMO

OBJECTIVES: This study aimed to evaluate the efficacy and long-term stability of tunnel technique (TUN) and coronally advanced flap (CAF) combined with connective tissue graft (CTG) in treating gingival recession. METHODS: Databases including PubMed, Web of Science, Embase, and CNKI were electronically searched to collect randomized controlled trial (RCT) of CAF+CTG compared to TUN+CTG in the treatment of Miller class Ⅰ or Ⅱ gingival recession on September 1, 2022. RESULTS: There were 8 RCTs with 305 patients (454 recession sites) participating. The results of the Meta-analysis revealed that, in terms of mean root coverage (MRC) of main indicators, no significant difference was found between the CAF group and the TUN group in both short- and long-term results, which were [MD: 1.45%, 95%CI (-2.93%, 5.82%), P=0.52] and [MD: -0.70%, 95%CI (-6.41%, 5.00%), P=0.81]. However, the CAF group outperformed the TUN group in the long term [MD: 5.69%, 95%CI (0.87%, 10.50%), P=0.02], and the results of complete root coverage (CRC) analysis were similar to those of MRC. In the short term, the TUN group grew keratinized gingiva significantly faster than the CAF group [MD: -0.38 mm, 95%CI (-0.67 mm, -0.10 mm), P=0.008]. Long-term findings revealed no significant difference between the two groups [MD: -0.26 mm, 95%CI (-0.94 mm, 0.43 mm), P=0.46]. The TUN group's secondary index root coverage esthetic score (RES) was statistically significantly higher than the CAF group's [MD: 0.62, 95%CI (0.28, 0.96), P=0.000 3]. Given that there were few results included in the literature and the heterogeneity was too great, no significant difference was observed in the postoperative VAS pain index score [MD: 0.53, 95%CI (-1.96, 3.03), P=0.68]. CONCLUSIONS: This study discovered that both CAF+CTG and TUN+CTG can achieve good root coverage in treating gingival recession, with CAF outperforming TUN and both groups achie-ving good long-term stability. After the operation, the TUN group had a higher RES than the CAF group. Given the limitations of this study, more high-quality studies are needed in the future to demonstrate the efficacy of TUN in gingival retraction surgery.


Assuntos
Retração Gengival , Humanos , Retração Gengival/cirurgia , Resultado do Tratamento , Raiz Dentária , Estética Dentária , Gengiva/cirurgia
13.
J Virol ; 97(7): e0051223, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37347173

RESUMO

Nonstructural protein 13 (nsp13), the helicase of SARS-CoV-2, has been shown to possess multiple functions that are essential for viral replication, and is considered an attractive target for the development of novel antivirals. We were initially interested in the interplay between nsp13 and interferon (IFN) signaling, and found that nsp13 inhibited reporter signal in an IFN-ß promoter assay. Surprisingly, the ectopic expression of different components of the RIG-I/MDA5 pathway, which were used to stimulate IFN-ß promoter, was also mitigated by nsp13. However, endogenous expression of these genes was not affected by nsp13. Interestingly, nsp13 restricted the expression of foreign genes originating from plasmid transfection, but failed to inhibit them after chromosome integration. These data, together with results from a runoff transcription assay and RNA sequencing, suggested a specific inhibition of episomal but not chromosomal gene transcription by nsp13. By using different truncated and mutant forms of nsp13, we demonstrated that its NTPase and helicase activities contributed to the inhibition of episomal DNA transcription, and that this restriction required direct interaction with episomal DNA. Based on these findings, we developed an economical and convenient high-throughput drug screening method targeting nsp13. We evaluated the inhibitory effects of various compounds on nsp13 by the expression of reporter gene plasmid after co-transfection with nsp13. In conclusion, we found that nsp13 can specifically inhibit episomal DNA transcription and developed a high-throughput drug screening method targeting nsp13 to facilitate the development of new antiviral drugs. IMPORTANCE To combat COVID-19, we need to understand SARS-CoV-2 and develop effective antiviral drugs. In our study, we serendipitously found that SARS-CoV-2 nsp13 could suppress episomal DNA transcription without affecting chromosomal DNA. Detailed characterization revealed that nsp13 suppresses episomal gene expression through its NTPase and helicase functions following DNA binding. Furthermore, we developed a high-throughput drug screening system targeting SARS-CoV-2 nsp13. Compared to traditional SARS-CoV-2 drug screening methods, our system is more economical and convenient, facilitating the development of more potent and selective nsp13 inhibitors and enabling the discovery of new antiviral therapies.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Nucleosídeo-Trifosfatase/genética , RNA Helicases/metabolismo , Proteínas não Estruturais Virais/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Antivirais/farmacologia , DNA , Plasmídeos/genética
14.
PLoS Pathog ; 19(5): e1011382, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37224147

RESUMO

Hepatitis B virus (HBV) chronically infects 296 million individuals and there is no cure. As an important step of viral life cycle, the mechanisms of HBV egress remain poorly elucidated. With proteomic approach to identify capsid protein (HBc) associated host factors and siRNA screen, we uncovered tumor susceptibility gene 101 (TSG101). Knockdown of TSG101 in HBV-producing cells, HBV-infected cells and HBV transgenic mice suppressed HBV release. Co-immunoprecipitation and site mutagenesis revealed that VFND motif in TSG101 and Lys-96 ubiquitination in HBc were essential for TSG101-HBc interaction. In vitro ubiquitination experiment demonstrated that UbcH6 and NEDD4 were potential E2 ubiquitin-conjugating enzyme and E3 ligase that catalyzed HBc ubiquitination, respectively. PPAY motif in HBc and Cys-867 in NEDD4 were required for HBc ubiquitination, TSG101-HBc interaction and HBV egress. Transmission electron microscopy confirmed that TSG101 or NEDD4 knockdown reduces HBV particles count in multivesicular bodies (MVBs). Our work indicates that TSG101 recognition for NEDD4 ubiquitylated HBc is critical for MVBs mediated HBV egress.


Assuntos
Vírus da Hepatite B , Proteômica , Animais , Camundongos , Vírus da Hepatite B/genética , Fatores de Transcrição/genética , Proteínas de Ligação a DNA/genética , Camundongos Transgênicos
15.
Antiviral Res ; 215: 105618, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37142191

RESUMO

With 296 million chronically infected individuals worldwide, hepatitis B virus (HBV) causes a major health burden. The major challenge to cure HBV infection lies in the fact that the source of persistence infection, viral episomal covalently closed circular DNA (cccDNA), could not be targeted. In addition, HBV DNA integration, although normally results in replication-incompetent transcripts, considered as oncogenic. Though several studies evaluated the potential of gene-editing approaches to target HBV, previous in vivo studies have been of limited relevance to authentic HBV infection, as the models do not contain HBV cccDNA or feature a complete HBV replication cycle under competent host immune system. In this study, we evaluated the effect of in vivo codelivery of Cas9 mRNA and guide RNAs (gRNAs) by SM-102-based lipid nanoparticles (LNPs) on HBV cccDNA and integrated DNA in mouse and a higher species. CRISPR nanoparticle treatment decreased the levels of HBcAg, HBsAg and cccDNA in AAV-HBV1.04 transduced mouse liver by 53%, 73% and 64% respectively. In HBV infected tree shrews, the treatment achieved 70% reduction of viral RNA and 35% reduction of cccDNA. In HBV transgenic mouse, 90% inhibition of HBV RNA and 95% inhibition of DNA were observed. CRISPR nanoparticle treatment was well tolerated in both mouse and tree shrew, as no elevation of liver enzymes and minimal off-target was observed. Our study demonstrated that SM-102-based CRISPR is safe and effective in targeting HBV episomal and integration DNA in vivo. The system delivered by SM-102-based LNPs may be used as a potential therapeutic strategy against HBV infection.


Assuntos
Hepatite B Crônica , Hepatite B , Camundongos , Animais , Vírus da Hepatite B , Tupaia/genética , Sistemas CRISPR-Cas , Tupaiidae/genética , RNA Mensageiro , Replicação Viral , DNA Circular/genética , DNA Viral/genética
16.
Virol Sin ; 38(3): 335-343, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37141990

RESUMO

Commensal microbiota is closely related to Hepatitis B virus (HBV) infection. Gut bacteria maturation accelerates HBV immune clearance in hydrodynamic injection (HDI) HBV mouse model. However, the effect of gut bacteria on HBV replication in recombinant adeno-associated virus (AAV)-HBV mouse model with immune tolerance remains obscure. We aim to investigate its role on HBV replication in AAV-HBV mouse model. C57BL/6 mice were administrated with broad-spectrum antibiotic mixtures (ABX) to deplete gut bacteria and intravenously injected with AAV-HBV to establish persistent HBV replication. Gut microbiota community was analyzed by fecal qPCR assay and 16S ribosomal RNA (rRNA) gene sequencing. HBV replication markers in blood and liver were determined by ELISA, qPCR assay and Western blot at indicated time points. Immune response in AAV-HBV mouse model was activated through HDI of HBV plasmid or poly(I:C) and then detected by quantifying the percentage of IFN-γ+/CD8+ T cells in the spleen via flow cytometry as well as the splenic IFN-γ mRNA level via qPCR assay. We found that antibiotic exposure remarkably decreased gut bacteria abundance and diversity. Antibiotic treatment failed to alter the levels of serological HBV antigens, intrahepatic HBV RNA transcripts and HBc protein in AAV-HBV mouse model, but contributed to HBsAg increase after breaking of immune tolerance. Overall, our data uncovered that antibiotic-induced gut bacteria depletion has no effect on HBV replication in immune tolerant AAV-HBV mouse model, providing new thoughts for elucidating the correlation between gut bacteria dysbiosis by antibiotic abuse and clinical chronic HBV infection.


Assuntos
Vírus da Hepatite B , Hepatite B , Camundongos , Animais , Vírus da Hepatite B/genética , Linfócitos T CD8-Positivos , Camundongos Endogâmicos C57BL , Bactérias , Tolerância Imunológica , Replicação Viral , Modelos Animais de Doenças
17.
Cell Mol Gastroenterol Hepatol ; 16(2): 201-221, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37054914

RESUMO

BACKGROUND & AIMS: A single hepatitis B virus (HBV) particle is sufficient to establish chronic infection of the liver after intravenous injection, suggesting that the virus targets hepatocytes via a highly efficient transport pathway. We therefore investigated whether HBV uses a physiological liver-directed pathway that supports specific host-cell targeting in vivo. METHODS: We established the ex vivo perfusion of intact human liver tissue that recapitulates the liver physiology to investigate HBV liver targeting. This model allowed us to investigate virus-host cell interactions in a cellular microenvironment mimicking the in vivo situation. RESULTS: HBV was rapidly sequestered by liver macrophages within 1 hour after a virus pulse perfusion but was detected in hepatocytes only after 16 hours. We found that HBV associates with lipoproteins in serum and within machrophages. Electron and immunofluorescence microscopy corroborated a co-localization in recycling endosomes within peripheral and liver macrophages. Recycling endosomes accumulated HBV and cholesterol, followed by transport of HBV back to the cell surface along the cholesterol efflux pathway. To reach hepatocytes as final target cells, HBV was able to utilize the hepatocyte-directed cholesterol transport machinery of macrophages. CONCLUSIONS: Our results propose that by binding to liver targeted lipoproteins and using the reverse cholesterol transport pathway of macrophages, HBV hijacks the physiological lipid transport pathways to the liver to most efficiently reach its target organ. This may involve transinfection of liver macrophages and result in deposition of HBV in the perisinusoidal space from where HBV can bind its receptor on hepatocytes.


Assuntos
Vírus da Hepatite B , Hepatite B , Humanos , Vírus da Hepatite B/fisiologia , Hepatócitos/metabolismo , Colesterol/metabolismo , Lipoproteínas/metabolismo , Lipídeos
18.
Small ; 19(15): e2207030, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36604983

RESUMO

The "double-edged sword" effect of macrophages under the influence of different microenvironments determines the outcome and prognosis of tissue injury. Accurate and stable reprogramming macrophages (Mφ) are the key to rapid wound healing. In this study, an immunized microsphere-engineered GelMA hydrogel membrane is constructed for oral mucosa treatment. The nanoporous poly(lactide-co-glycolide) (PLGA) microsphere drug delivery system combined with the photo-cross-linkable hydrogel is used to release the soybean lecithin (SL)and IL-4 complexes (SL/IL-4) sustainedly. In this way, it is realized effective wound fit, improvement of drug encapsulation, and stable triphasic release of interleukin-4 (IL-4). In both in vivo and in vitro experiments, it is demonstrated that the hydrogel membrane can reprogram macrophages in the microenvironment into M2Mφ anti-inflammatory types, thereby inhibiting the local excessive inflammatory response. Meanwhile, high levels of platelet-derived growth factor (PDGF) secreted by M2Mφ macrophages enhanced neovascular maturation by 5.7-fold, which assisted in achieving rapid healing of oral mucosa. These findings suggest that the immuno-engineered hydrogel membrane system can re-modulating the biological effects of Mφ, and potentiating the maturation of neovascularization, ultimately achieving the rapid repair of mucosal tissue. This new strategy is expected to be a safe and promising immunomodulatory biomimetic material for clinical translation.


Assuntos
Hidrogéis , Interleucina-4 , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Microesferas , Macrófagos , Mucosa
19.
Hepatology ; 77(4): 1366-1381, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35718932

RESUMO

BACKGROUND AND AIMS: Murine hepatic cells cannot support hepatitis B virus (HBV) infection even with supplemental expression of viral receptor, human sodium taurocholate cotransporting polypeptide (hNTCP). However, the specific restricted step remains elusive. In this study, we aimed to dissect HBV infection process in murine hepatic cells. APPROACH AND RESULTS: Cells expressing hNTCP were inoculated with HBV or hepatitis delta virus (HDV). HBV pregenomic RNA (pgRNA), covalently closed circular DNA (cccDNA), and different relaxed circular DNA (rcDNA) intermediates were produced in vitro . The repair process from rcDNA to cccDNA was assayed by in vitro repair experiments and in mouse with hydrodynamic injection. Southern blotting and in situ hybridization were used to detect HBV DNA. HBV, but not its satellite virus HDV, was restricted from productive infection in murine hepatic cells expressing hNTCP. Transfection of HBV pgRNA could establish HBV replication in human, but not in murine, hepatic cells. HBV replication-competent plasmid, cccDNA, and recombinant cccDNA could support HBV transcription in murine hepatic cells. Different rcDNA intermediates could be repaired to form cccDNA both in vitro and in vivo . In addition, rcDNA could be detected in the nucleus of murine hepatic cells, but cccDNA could not be formed. Interestingly, nuclease sensitivity assay showed that the protein-linked rcDNA isolated from cytoplasm was completely nuclease resistant in murine, but not in human, hepatic cells. CONCLUSIONS: Our results imply that the disassembly of cytoplasmic HBV nucleocapsids is restricted in murine hepatic cells. Overcoming this limitation may help to establish an HBV infection mouse model.


Assuntos
Vírus da Hepatite B , Hepatite B , Camundongos , Humanos , Animais , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , DNA Viral/genética , Replicação Viral/genética , Hepatócitos/metabolismo , Nucleocapsídeo/metabolismo , Hepatite B/genética , Citoplasma/metabolismo , DNA Circular/metabolismo
20.
Huan Jing Ke Xue ; 43(11): 5180-5191, 2022 Nov 08.
Artigo em Chinês | MEDLINE | ID: mdl-36437090

RESUMO

In order to explore the spatial and temporal changes in spatial patterns and source changes in heavy metals in Xiangzhou District, 395 and 326 soil samples were collected from cultivated soil in Xiangzhou District in November 2009 and November 2019, respectively. The contents of Cr, Pb, As, Hg, and Cd during these two years were measured. The spatial pattern and variation distribution of five types of heavy metals during these two years were obtained by using the empirical Bayesian Kriging (EBK) method. The effect (q-statistic) of 19 environmental factors and 5 types of heavy metals was calculated by using the geographical detector model (GDM), and the changes over the two years were compared. The results showed that compared with that in 2009, the heavy metal contents of Cr, Pb, Hg, and As in Xiangzhou District were decreased as a whole in 2019, whereas the Cd content increased overall. The spatial differentiation of heavy metals in the soil in Xiangzhou District in 2019 was more complicated than that in 2009. Pb, Hg, and Cd in the south and Hg in the central urban area and surrounding areas also increased. The content of each element decreased to the north and northwest. Compared with that in 2009, the explanatory power of natural factors and the distance between pollution enterprises on the single factor of the five soil heavy metal contents in 2019 decreased, and the influence on the contents under the control of single factors decreased significantly. The superposition influence of human activity factors increased, especially the distance between residential land, road, and land for pollution enterprises and environmental factors on soil heavy metal elements. These results indicated that the changes in soil heavy metal sources in 2019 tended to be complex, with structural factors as the main influencing factor. The influence of the emission of polluting enterprises on heavy metal elements decreased, whereas the influence of human activities on heavy metal content increased.


Assuntos
Mercúrio , Metais Pesados , Poluentes do Solo , Humanos , Solo/química , Poluentes do Solo/análise , Teorema de Bayes , Cádmio , Chumbo , Monitoramento Ambiental/métodos , Metais Pesados/análise , Análise Espacial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...