Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Sci Bull (Beijing) ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38853045

RESUMO

Flexible light-emitting fibers and fabrics serve to bridge human-machine interactions. The desire for practical applications and the commercialization of flexible light-emitting fibers has accelerated structural progress and improvements. This review focuses on the structural design of light-emitting fibers and fabrics, starting with a summary of design principles, emission mechanisms, and structural evolution of coaxial structured light-emitting fibers. Subsequently, we explore recent advances in the helical structure design strategies that boost the mechanical sensitivity of light-emitting fibers. Following that, we analyze continuous preparation processes and the development of large-area intelligent light-emitting fabrics based on interwoven structures. Examples based on stiff and rigid inorganic-based light-emitting diodes integrated into flexible systems are also presented. Finally, we discuss the current challenges and future opportunities for light-emitting applications in the field of wearable and smart devices.

2.
Chem Soc Rev ; 53(14): 7489-7530, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38894663

RESUMO

Global population growth and industrialization have exacerbated the nonrenewable energy crises and environmental issues, thereby stimulating an enormous demand for producing environmentally friendly materials. Typically, biomass-based aerogels (BAs), which are mainly composed of biomass materials, show great application prospects in various fields because of their exceptional properties such as biocompatibility, degradability, and renewability. To improve the performance of BAs to meet the usage requirements of different scenarios, a large number of innovative works in the past few decades have emphasized the importance of micro-structural design in regulating macroscopic functions. Inspired by the ubiquitous random or regularly arranged structures of materials in nature ranging from micro to meso and macro scales, constructing different microstructures often corresponds to completely different functions even with similar biomolecular compositions. This review focuses on the preparation process, design concepts, regulation methods, and the synergistic combination of chemical compositions and microstructures of BAs with different porous structures from the perspective of gel skeleton and pore structure. It not only comprehensively introduces the effect of various microstructures on the physical properties of BAs, but also analyzes their potential applications in the corresponding fields of thermal management, water treatment, atmospheric water harvesting, CO2 absorption, energy storage and conversion, electromagnetic interference (EMI) shielding, biological applications, etc. Finally, we provide our perspectives regarding the challenges and future opportunities of BAs. Overall, our goal is to provide researchers with a thorough understanding of the relationship between the microstructures and properties of BAs, supported by a comprehensive analysis of the available data.

3.
Angew Chem Int Ed Engl ; 63(29): e202403391, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38717757

RESUMO

Room temperature phosphorescence (RTP) materials have garnered significant attention owing to its distinctive optical characteristics and broad range of potential applications. However, the challenge remains in producing RTP materials with more simplicity, versatility, and practicality on a large scale, particularly in achieving chiral signals within a single system. Herein, we show that a straightforward and effective combination of wet spinning and twisting technique enables continuously fabricating RTP fibers with twisting-induced helical chirality. By leveraging the hydrogen bonding interactions between polyvinyl alcohol (PVA) and quinoline derivatives, along with the rigid microenvironment provided by PVA chains, typically, Q-NH2@PVA fiber demonstrates outstanding phosphorescent characteristics with RTP lifetime of 1.08 s and phosphorescence quantum yield of 24.6 %, and the improved tensile strength being 1.7 times than pure PVA fiber (172±5.82 vs 100±5.65 MPa). Impressively, the transformation from RTP to circularly polarized room temperature phosphorescence (CP-RTP) is readily achieved by imparting left- or right-hand helical structure through simply twisting, enabling large-scale production of chiral Q-NH2@PVA fiber with dissymmetry factor of 10-2. Besides, an array of displays and encryption patterns are crafted by weaving or seaming to exemplify the promising applications of these PVA-based fibers with outstanding adaptivity in cutting-edge anti-counterfeiting technology.

4.
ACS Appl Mater Interfaces ; 16(21): 27794-27803, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38748448

RESUMO

The development of optical humidity detection has been of considerable interest in highly integrated wearable electronics and packaged equipment. However, improving their capacities for color recognition at ultralow humidity and response-recovery rate remains a significant challenge. Herein, we propose a type of hybrid water-harvesting channel to construct brand-new passive fluorescence humidity sensors (PFHSs). Specifically, the hybrid water-harvesting channels involve porous metal-organic frameworks and a hydrophilic poly(acrylic acid) network that can capture water vapors from the ambient environment even at ultralow humidity, into which polar-responsive aggregation-induced emission molecules are doped to impart humidity-sensitive luminescence colors. As a result, the PFHSs exhibit clearly defined fluorescence signals within 0-98% RH coupling with desirable performances such as a fast response rate, precise quantitative feedback, and durable reversibility. Given the flexible processability of this system, we further upgrade the porous structure via electrostatic spinning to furnish a kind of Nano-PFHSs, demonstrating an impressive response time (<100 ms). Finally, we validate the promising applications of these sensors in electronic humidity monitoring and successfully fabricate a portable and rapid humidity indicator card.

5.
ACS Sens ; 9(5): 2499-2508, 2024 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-38683974

RESUMO

Carbon nanotubes (CNTs) hold great promise in next-generation sensors because of their remarkable physical properties. Yet, maintaining precise stacking configurations of CNTs to make full use of their remarkable properties is challenging because of their susceptibility to spontaneous reconstruction. Inspired by the weaving technology, we propose a CNT-graphene nanoribbon hybrid woven model that can maintain the specific structure of CNTs to achieve their elaborately designed function. In this study, comprehensive molecular dynamics simulations are carried out to investigate the thermal stability of the CNT-graphene hybrid woven model, as well as their potential for pressure sensing applications by utilizing the unique response of thermal transport to mechanical deformation at heterojunctions. The thermal stability is sensitive to the size of the graphene nanoribbon, and the woven structure remains stable from 200-500 K when its width is greater than 2.0 nm. Moreover, it is exciting that the sensors are effective at predicting the shapes of externally loaded objects through the analysis of the thermal conductivity distribution, which can be derived from the relationship between the thermal conduction and the pressure. Our findings shed light on the bottom-up functional design of nanomaterials and expand wider applications of high-performance nanosensors in other related fields.


Assuntos
Grafite , Simulação de Dinâmica Molecular , Nanotubos de Carbono , Pressão , Nanotubos de Carbono/química , Grafite/química , Condutividade Térmica
6.
Small ; 20(22): e2307671, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38221752

RESUMO

The recent groundbreaking achievement in the synthesis of large-sized single crystal C60 monolayer, which is covalently bonded in a plane using C60 as building blocks. The asymmetric lattice structure endows it with anisotropic phonon modes and conductivity. If these C60 are arranged in form of 1D fiber, the improved manipulation of phonon conduction along the fiber axis could be anticipated. Here, thermal properties of C60-fiber, including thermal transfer along the C60-fiber axis and across the interlayer interface are investigated using molecular dynamic simulations. Taking advantage of the distinctively hollow spherical structure of C60 building blocks, the spherical structure deformation and encapsulation induced thermal reduction can be up to 56% and 80%, respectively. By applying external electronic fields in H2O@C60 model, its thermal conductivity decreases up to 60%, which realizes the contactless thermal regulation. ln particular, the thermal rectification phenomenon is discovered by inserting atoms/molecules in C60 with a rational designed mass-gradient, and its maximum thermal rectification factor is predicted to ≈45%. These investigations aim to achieve effective regulation of the thermal conductivity of C60-fibers. This work showcases the potential of C60-fiber in the realms of thermal management and thermal sensing, paving the way to C60-based functional materials.

7.
Invest Ophthalmol Vis Sci ; 64(7): 22, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37314756

RESUMO

Purpose: To explore the mechanisms relating the gut microbiome (GM) to age-related macular degeneration (AMD), as they remain unclear. GM taxa that appear to act within the gut-retina axis may affect the risk of AMD. Methods: Single-nucleotide polymorphisms (SNPs) of 196 GM taxa were obtained from the MiBioGen consortium, and a Mendelian randomization (MR) study was carried out to estimate the causality between GM taxa and AMD (defined as an endpoint based on ICD-9 and ICD-10). Using the data from the FinnGen consortium (6157 patients and 288,237 controls), we explored the GM taxa for causality and verified the results at the replication stage based on the MRC-IEU consortium (3553 cases and 147,089 controls). Inverse variance weighting (IVW) was the main method used to analyze causality, and the MR results were verified using heterogeneity tests and pleiotropy tests. Results: According to the MR results, order Rhodospirillales (P = 3.38 × 10-2), family Victivallaceae (P = 3.14 × 10-2), family Rikenellaceae (P = 3.58 × 10-2), genus Slackia (P = 3.15 × 10-2), genus Faecalibacterium (P = 3.01 × 10-2), genus Bilophila (P = 1.11 × 10-2), and genus Candidatus Soleaferrea (P = 2.45 × 10-2) were suggestively associated with AMD. In the replication stage, only order Rhodospirillales (P = 0.03) passed validation. The heterogeneity (P > 0.05) and pleiotropy (P > 0.05) tests in two stages confirmed the robustness of the MR results. Conclusions: We confirmed that order Rhodospirillales influenced the risk of AMD based on the gut-retina axis, providing new impetus for the development of the GM as an intervention to prevent the occurrence and development of AMD.


Assuntos
Actinobacteria , Microbioma Gastrointestinal , Degeneração Macular , Humanos , Degeneração Macular/genética , Retina , Causalidade
8.
Front Endocrinol (Lausanne) ; 14: 1163787, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37113483

RESUMO

Aldosterone, as a mineralocorticoid of adrenal origin, has effects that are not limited to the urinary tract. As an important regulator in Vasoactive hormone pathways, aldosterone may play an effect in the pathogenesis of diabetic retinopathy (DR) through the regulation of oxidative stress, vascular regulation, and inflammatory mechanisms. This implies that mineralocorticoids, including aldosterone, have great potential and value for the diagnosis and treatment of DR. Because early studies did not focus on the intrinsic association between mineralocorticoids and DR, targeted research is still in its infancy and there are still many obstacles to its application in the clinical setting. Recent studies have improved the understanding of the effects of aldosterone on DR, and we review them with the aim of exploring possible mechanisms for the treatment and prevention of DR.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Humanos , Aldosterona/metabolismo , Mineralocorticoides/metabolismo , Retinopatia Diabética/etiologia , Retinopatia Diabética/tratamento farmacológico , Antagonistas de Receptores de Mineralocorticoides/uso terapêutico , Diabetes Mellitus/tratamento farmacológico
9.
Adv Mater ; 35(29): e2300813, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37080594

RESUMO

Thermal protection under extreme conditions requires materials with excellent thermal insulation properties and exceptional mechanical properties to withstand a variety of complex external stresses. Mesoporous silica aerogels are the most widely used insulation materials due to their ultralow thermal conductivity. However, they still suffer from mechanical fragility and structural instability in practical applications. Herein, a nacre-mimetic nanocomposite aerogel, synthesized via in situ growth of inorganic minerals in a lamellar cellulose nanofibrous network, is reported. The multiscale structural adaptation of the inorganic-organic components endows nanocomposite aerogels with rapid configuration recovery during ambient pressure drying. The resulting aerogels show ultralow thermal conductivities (17.4 mW m-1  K-1 at 1.0 atm). These aerogels also integrate challenging mechanical properties, including high compressive stiffness to resist deformation under the pressure of an adult, superelasticity to prevent static and dynamic stress cracking even under the crushing of a vehicle (1.6 t), and high bending flexibility to adapt to any surface. Moreover, they exhibit excellent structural stability under fatigue stress/strain cycles over a wide temperature range (-196 to 200 °C). The combination of high thermal insulation performance and excellent mechanical properties offers a potential material system for robust thermal superinsulation under extreme conditions, especially for aerospace applications.

10.
Nanomicro Lett ; 15(1): 64, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36899127

RESUMO

Solar-driven interfacial evaporation is an emerging technology for water desalination. Generally, double-layered structure with separate surface wettability properties is usually employed for evaporator construction. However, creating materials with tunable properties is a great challenge because the wettability of existing materials is usually monotonous. Herein, we report vinyltrimethoxysilane as a single molecular unit to hybrid with bacterial cellulose (BC) fibrous network, which can be built into robust aerogel with entirely distinct wettability through controlling assembly pathways. Siloxane groups or carbon atoms are exposed on the surface of BC nanofibers, resulting in either superhydrophilic or superhydrophobic aerogels. With this special property, single component-modified aerogels could be integrated into a double-layered evaporator for water desalination. Under 1 sun, our evaporator achieves high water evaporation rates of 1.91 and 4.20 kg m-2 h-1 under laboratory and outdoor solar conditions, respectively. Moreover, this aerogel evaporator shows unprecedented lightweight, structural robustness, long-term stability under extreme conditions, and excellent salt-resistance, highlighting the advantages in synthesis of aerogel materials from the single molecular unit.

11.
Cell Biol Int ; 47(6): 1092-1105, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36807611

RESUMO

Diabetic retinopathy is a common microvascular complication of diabetes mellitus. The maintenance of retinal capillary endothelial cell homeostasis requires a complete and unobtrusive flow of autophagy because it may help combat the inflammatory response, apoptosis, and oxidative stress damage of cells in diabetes mellitus. The transcription factor EB is a master regulator of autophagy and lysosomal biogenesis, but its role in diabetic retinopathy remains unknown. This study aimed to confirm the involvement of transcription factor EB in diabetic retinopathy and explore the role of transcription factor EB in hyperglycemia-linked endothelial injury in vitro. First, the expression levels, including the nuclear location of transcription factor EB and autophagy, were reduced in diabetic retinal tissues and high glucose-treated human retinal capillary endothelial cells. Subsequently, autophagy was mediated by transcription factor EB in vitro. Moreover, transcription factor EB overexpression reversed high glucose-induced autophagy inhibition and lysosomal dysfunction and protected human retinal capillary endothelial cells from inflammation, apoptosis, and oxidative stress damage caused by high glucose treatment. Additionally, under high-glucose stimulation, the autophagy inhibitor chloroquine attenuated transcription factor EB overexpression-mediated protection, and the autophagy agonist Torin1 rescued transcription factor EB knockdown-induced damage effects. Taken together, these results suggest that transcription factor EB is involved in the development of diabetic retinopathy. In addition, transcription factor EB protects human retinal capillary endothelial cells from high glucose-induced endothelial damage via autophagy.


Assuntos
Retinopatia Diabética , Hiperglicemia , Humanos , Retinopatia Diabética/metabolismo , Células Endoteliais/metabolismo , Autofagia , Hiperglicemia/metabolismo , Fatores de Transcrição , Glucose/farmacologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos
12.
Hum Genet ; 142(8): 1139-1148, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36576600

RESUMO

BACKGROUND: It is unclear whether gut microbiota (GM) affects the risk of optic neuritis (ON) through the "gut-brain" axis and the "gut-retina" axis. To examine the causal relationship between GM and ON, we conducted Mendelian randomization (MR) study. METHODS: Up to 18,340 samples of 24 population-based cohorts were included in genome-wide association study (GWAS) of 196 GM taxa. ON outcomes were selected from the FinnGen GWAS (951 ON cases and 307,092 controls). In addition, the GWAS based on UK Biobank (UKB) (105 ON cases and 456,243 controls) was used for further exploration. Inverse variance weighted (IVW) was carried out to estimate their effects on ON risk and the MR assumptions were evaluated in sensitivity analyses. RESULTS: Among the 196 GM taxa, the IVW results confirmed that Family -Peptococcaceae (P = 2.17 × 10-3), Genus- Hungatella (P = 4.57 × 10-3) and genus-Eubacterium_rectale_group (P = 0.02) were correlated with the risk of ON based on Finngen GWAS. Based on data from UKB, Genus- Eubacterium_hallii_group (P = 1.50 × 10-3) and Genus- Ruminococcaceae_UCG_002 (P = 0.02) were correlated with the risk of ON. At the phylum, class and order levels, no GM taxa were causally related to ON (P > 0.05). Heterogeneity (P > 0.05) and pleiotropy (P > 0.05) analysis confirmed the robustness of the MR results. CONCLUSION: Our MR findings support the causal effect of specific GM taxa on ON. GM may affect the risk of ON through the "gut-brain" axis and the "gut-retina" axis. However, further research is needed to confirm the relevant mechanism of the relationship between GM and ON.


Assuntos
Microbioma Gastrointestinal , Neurite Óptica , Humanos , Microbioma Gastrointestinal/genética , Análise da Randomização Mendeliana , Estudo de Associação Genômica Ampla , Causalidade
13.
Front Genet ; 13: 1050341, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36544483

RESUMO

We aimed to create a mitophagy-related risk model via data mining of gene expression profiles to predict prognosis in uveal melanoma (UM) and develop a novel method for improving the prediction of clinical outcomes. Together with clinical information, RNA-seq and microarray data were gathered from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. ConsensusClusterPlus was used to detect mitophagy-related subgroups. The genes involved with mitophagy, and the UM prognosis were discovered using univariate Cox regression analysis. In an outside population, a mitophagy risk sign was constructed and verified using least absolute shrinkage and selection operator (LASSO) regression. Data from both survival studies and receiver operating characteristic (ROC) curve analyses were used to evaluate model performance, a bootstrap method was used test the model. Functional enrichment and immune infiltration were examined. A risk model was developed using six mitophagy-related genes (ATG12, CSNK2B, MTERF3, TOMM5, TOMM40, and TOMM70), and patients with UM were divided into low- and high-risk subgroups. Patients in the high-risk group had a lower chance of living longer than those in the low-risk group (p < 0.001). The ROC test indicated the accuracy of the signature. Moreover, prognostic nomograms and calibration plots, which included mitophagy signals, were produced with high predictive performance, and the risk model was strongly associated with the control of immune infiltration. Furthermore, functional enrichment analysis demonstrated that several mitophagy subtypes may be implicated in cancer, mitochondrial metabolism, and immunological control signaling pathways. The mitophagy-related risk model we developed may be used to anticipate the clinical outcomes of UM and highlight the involvement of mitophagy-related genes as prospective therapeutic options in UM. Furthermore, our study emphasizes the essential role of mitophagy in UM.

14.
Front Endocrinol (Lausanne) ; 13: 988506, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36506045

RESUMO

Background: Diabetic retinopathy (DR), a neurovascular disease, is a leading cause of visual loss worldwide and severely affects quality of life. Several studies have shown that ferroptosis plays an important role in the pathogenesis of DR; however, its molecule mechanism remains incompletely elucidated. Hence, this study aimed to investigate the pathogenesis of ferroptosis and explore potential ferroptosis-related gene biomarkers and a pharmacological compound for treating DR. Methods: Ferroptosis-related differentially expressed genes (DEGs) were identified in the GSE102485 dataset. Functional enrichment analyses were then performed and a protein-protein interaction (PPI) network was constructed to screen candidates of ferroptosis-related hub genes (FRHGs). FRHGs were further screened based on least absolute shrinkage and selection operator (LASSO) regression and random forest algorithms, and were then validated with the GSE60436 dataset and previous studies. A receiver operating characteristic (ROC) curve monofactor analysis was conducted to evaluate the diagnostic performance of the FRHGs, and immune infiltration analysis was performed. Moreover, the pharmacological compound targeting the FRHGs were verified by molecular docking. Finally, the FRHGs were validated using quantitative real-time polymerase chain reaction (qRT-PCR) analysis. Results: The 40 ferroptosis-related DEGs were extracted, and functional enrichment analyses mainly implicated apoptotic signaling, response to oxidative stress, ferroptosis, and lipid and atherosclerosis pathways. By integrating the PPI, LASSO regression, and random forest analyses to screen the FRHGs, and through validation, we identified five FRHGs that performed well in the diagnosis (CAV1, CD44, NOX4, TLR4, and TP53). Immune infiltration analysis revealed that immune microenvironment changes in DR patients may be related to these five FRHGs. Molecular docking also showed that glutathione strongly bound the CAV1 and TLR4 proteins. Finally, the upregulated expression of FRHGs (CD44, NOX4, TLR4, and TP53) was validated by qRT-PCR analysis in human retinal capillary endothelial cells cultured under high-glucose environment. Conclusions: CAV1, CD44, NOX4, TLR4, and TP53 are potential biomarkers for DR and may be involved in its occurrence and progression by regulating ferroptosis and the immune microenvironment. Further, glutathione exhibits potential therapeutic efficacy on DR by targeting ferroptosis. Our study provides new insights into the ferroptosis-related pathogenesis of DR, as well as its diagnosis and treatment.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Humanos , Retinopatia Diabética/tratamento farmacológico , Simulação de Acoplamento Molecular , Células Endoteliais , Qualidade de Vida , Aprendizado de Máquina , Biomarcadores , Glutationa
15.
PLoS One ; 17(9): e0275302, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36173955

RESUMO

Ageratina adenophora originating from central America has flooded forests, pastures, and farmland in more than 40 tropical and subtropical countries, causing huge ecological disasters and economic losses. In this paper, we intended to use a complex inoculum composed of Pseudomonas putita and Clostridium thermocellum to in-situ compost A. adenophora debris and then to compare the phytotoxicity of extracts from uncomposted and composted A. adenophora (UCA and CA respectively) to barley seed germination and young seedling growth. A field experiment was finally conducted to reveal the effects of UCA and CA on barley nutrients uptake, yield, grain quality, soil enzyme activities, microbial biomass and biodiversity. In-situ composting sharply decreased 4,7-dimethyl-1-(propan-2-ylidene)-1,4,4a,8a-tetrahydronaphthalene- 2,6(1H,7H)-dione(DTD) and 6-hydroxy-5-isopropyl-3,8-dimethyl-4a,5,6,7,8,8a-hexahydronaphthal en-2(1 H)-one(HHO) from 2096.3 and 743.7 mg kg-1 in uncomposted A. adenophora to 194.4 and 68.19 mg kg-1 in composted A. adenophora. UCAE showed negative influences on seed germination performances (except lower rates on germination percentage). The mechanism may be the inhibition of bio-macromolecules hydrolysis (including proteins, starch, and phytin) in endosperms and their hydrolysates for forming new plants. CAE promoted seed germination and seedling growth, increased chlorophyll levels in leaves, and stimulated dehydrogenase and nitrate reductase activities in plants, while UCAE got opposite performance. Compared with chemical fertilizers, application of CA in combination with chemical fertilizers significantly improved plant nutrient uptake (nitrogen, phosphorus, and potassium), yield, grain quality, quantity of 16S rDNA sequences, richness and diversity of bacterial communities in contrast to UCA which behaved otherwise. Taken together, the use of the microbial agent to in-situ compost A. adenophora may be an effective approach for agricultural use of A. adenophora debris as a plant-friendly organic fertilizer, being undoubtedly worth advocating.


Assuntos
Ageratina , Compostagem , Hordeum , Clorofila , Grão Comestível , Fertilizantes , Nitrato Redutases , Nitrogênio , Oxirredutases , Fósforo , Ácido Fítico , Extratos Vegetais , Potássio , Plântula , Solo , Amido
16.
Adv Fiber Mater ; 4(6): 1304-1333, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966612

RESUMO

Abstract: In the recent COVID-19 pandemic, World Health Organization emphasized that early detection is an effective strategy to reduce the spread of SARS-CoV-2 viruses. Several diagnostic methods, such as reverse transcription-polymerase chain reaction (RT-PCR) and lateral flow immunoassay (LFIA), have been applied based on the mechanism of specific recognition and binding of the probes to viruses or viral antigens. Although the remarkable progress, these methods still suffer from inadequate cellular materials or errors in the detection and sampling procedure of nasopharyngeal/oropharyngeal swab collection. Therefore, developing accurate, ultrafast, and visualized detection calls for more advanced materials and technology urgently to fight against the epidemic. In this review, we first summarize the current methodologies for SARS-CoV-2 diagnosis. Then, recent representative examples are introduced based on various output signals (e.g., colorimetric, fluorometric, electronic, acoustic). Finally, we discuss the limitations of the methods and provide our perspectives on priorities for future test development.

17.
Chemistry ; 28(55): e202201664, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-35796204

RESUMO

Mesoscopic aggregate is important to transfer or even amplify the molecular information in macroscopic materials. As an important branch of aggregate science, aggregation-induced emissive luminogens (AIEgens) often show slight or even no emission in solutions but exhibit bright emission when they aggregate, which open a new avenue for the practical applications. Due to the flexible and rotor structure of AIEgens, the aggregate structure of AIEgens is highly sensitive to the surrounding microenvironment, resulting in adjustable optical properties. Fibers integrated of a multiplicity of functional components are ideal carriers to control the aggregation processes, further assembly of fibers produces large-scale fabrics with amplified functions and practical values. In this Concept article, we focus on the latest advances on the synergy between "AIE+Fiber" for the boosted performance that beyond AIE, and their applications are presented and abstracted out to stimulate new ideas for developing "AIE+Fiber" systems.

18.
Biomaterials ; 287: 121666, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35835002

RESUMO

Environmental monitoring and personal protection are critical for preventing and for protecting human health during all infectious disease outbreaks (including COVID-19). Fluorescent probes combining sensing, imaging and therapy functions, could not only afford direct visualizing existence of biotargets and monitoring their dynamic information, but also provide therapeutic functions for killing various bacteria or viruses. Luminogens with aggregation-induced emission (AIE) could be well suited for above requirements because of their typical photophysical properties and therapeutic functions. Integration of these molecules with fibers or textiles is of great interest for developing flexible devices and wearable systems. In this review, we mainly focus on how fibers and AIEgens to be combined for health protection based on the latest advances in biosensing and bioprotection. We first discuss the construction of fibrous sensors for visualization of biomolecules. Next recent advances in therapeutic fabrics for individual protection are introduced. Finally, the current challenges and future opportunities for "AIE + Fiber" in sensing and therapeutic applications are presented.

19.
Front Chem ; 10: 843070, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237563

RESUMO

Solar-driven vapor generation is emerging as an eco-friendly and cost-effective water treatment technology for harvesting solar energy. Aerogels are solid materials with desirable high-performance properties, including low density, low thermal conductivity, and high porosity with a large internal surface, which exhibit outstanding performance in the area of solar vapor generation. Using fibers as building blocks in aerogels could achieve unexpected performance in solar vapor generation due to their entangled fibrous network and high surface area. In this review, based on the fusion of the one-dimensional fibers and three-dimensional porous aerogels, we discuss recent development in fibrous aerogels for solar vapor generation based on building blocks synthesis, photothermal materials selection, pore structures construction and device design. Thermal management and water management of fibrous aerogels are also evaluated to improve evaporation performance. Focusing on materials science and engineering, we overview the key challenges and future research opportunities of fibrous aerogels in both fundamental research and practical application of solar vapor generation technology.

20.
Nat Nanotechnol ; 17(4): 372-377, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35058651

RESUMO

Fibre batteries are of significant interest because they can be woven into flexible textiles to form compact, wearable and light-weight power solutions1,2. However, current methods adapted from planar batteries through layer-by-layer coating processes can only make fibre batteries with low production rates, which fail to meet the requirements for real applications2. Here, we present a new and general solution-extrusion method that can produce continuous fibre batteries in a single step at industrial scale. Our three-channel industrial spinneret simultaneously extrudes and combines electrodes and electrolyte of fibre battery at high production rates. The laminar flow between functional components guarantees their seamless interfaces during extrusion. Our method yields 1,500 km of continuous fibre batteries for every spinneret unit, that is, more than three orders of magnitude longer fibres than previously reported1,2. Finally, we show a proof-of-principle for roughly 10 m2 of woven textile for smart tent applications, with a battery with energy density of 550 mWh m-2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...