Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007545

RESUMO

The development of cost-efficient, long-lifespan, and all-climate sodium-ion batteries is of great importance for advancing large-scale energy storage but is plagued by the lack of suitable cathode materials. Here, we report low-cost Na-rich Mn-based Prussian blue analogues with superior rate capability and ultralong cycling stability over 10,000 cycles via structural optimization with electrochemically inert Ni atoms. Their thermal stability, all-climate properties, and potential in full cells are investigated in detail. Multiple in situ characterizations reveal that the outstanding performances benefit from their highly reversible three-phase transformations and trimetal (Mn-Ni-Fe) synergistic effects. In addition, a high sodium diffusion coefficient and a low volume distortion of 2.3% are observed through in situ transmission electron microscopy and first-principles calculations. Our results provide insights into the structural engineering of Prussian blue analogues for advanced sodium-ion batteries in large-scale energy storage applications.

2.
Small ; : e2403852, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046073

RESUMO

N-type PbSe thermoelectric materials encounter challenges in improving the power factor due to the single-band structure near the Fermi level, which obstructs typical band convergence. The primary strategy for enhancing the thermoelectric figure of merit (ZT) for n-type PbSe involves reducing lattice thermal conductivity (κlat) by introducing various defect structures. However, lattice mismatches resulting from internal defects within the matrix can diminish carrier mobility, thereby affecting electrical transport properties. In this study, n-type AgCuTe-alloyed PbSe systems achieve a peak ZT value of ≈1.5 at 773 K. Transmission electron microscopy reveals nanoprecipitates of Ag2Te, the room temperature second phase of AgCuTe, within the PbSe matrix. Meanwhile, a unique semi-coherent phase boundary is observed between the PbSe matrix and the Ag2Te nanoprecipitates. This semi-coherent phase interface effectively scatters low-frequency phonons while minimizing damage to carrier mobility. Additionally, the dynamic doping effect of Cu atoms from the decomposition of AgCuTe within the matrix further optimize the high-temperature thermoelectric performance. Overall, these factors significantly enhance the ZT across the whole temperature range. The ZT value of ≈1.5 indicates high competitiveness compared to the latest reported n-type PbSe materials, suggesting that these findings hold promise for advancing the development of efficient thermoelectric systems.

3.
Artigo em Inglês | MEDLINE | ID: mdl-39078614

RESUMO

High-performance electrocaloric materials are essential for the development of solid-state cooling technologies; however, the contradiction of the electrocaloric effect (ECE) and temperature span in ferroelectrics frustrates practical applications. In this work, through modulating oxygen octahedra distortion and short-range polar nanodomains with moderate coupling strength, an EC value of ΔT ∼ 0.30 K with an ultrawide temperature span of 85 K is obtained in the x = 0.04 composition [(0.88 - x)NaNbO3-0.12BaTiO3-xLiSbO3 (x = 0-0.06)]. The LiSbO3 dopant induces a P4bm-to-R3cH phase transition and intensifies the oxygen octahedra distortion degree, accompanied by the ferroelectric domain smashing into polar nanodomains. Also, LiSbO3 addition enhances the relaxation degree with a downshift of Tfd (ferroelectric-to-diffuse phase transition temperature) and TJ (temperature of the maximal current density value), and Tfd is shifted to near room temperature with an absence of TJ in x = 0.04. Local energy barriers induced by oxygen octahedra distortion inhibit the phase transition in conjunction with activation of short-range polar order switching under thermal stimuli, which is the underlying mechanism for an excellent EC performance for x = 0.04. This work not only clarifies that ferroelectrics with oxygen octahedra distortion and short-range polar order are expected to achieve remarkable EC performances but also provides a design strategy to seek emergent EC behaviors in complex oxygen-octahedra-distortion materials.

4.
Adv Mater ; : e2405876, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935407

RESUMO

The disordered phase of spinel LiMn1.5Ni0.5O4 (LNMO) is more appealing as high-voltage cathode due to its superior electrochemical performance compared to its ordered counterpart. Various methods are developed to induce a phase transition. However, the resulting materials often suffer from capacity degradation due to the adverse influence of accompanying Mn3+ ions. This study presents the utilization of local magnetic fields generated by a magnetic Fe3O4 shell to induce a disordered phase transition in LNMO at lower temperature, transitioning it from an order state without significantly increasing the Mn3+ content. The pivotal role played by the local magnetic fields is evidenced through comparisons with samples with nonmagnetic Al2O3 shell, samples subjected to sole heat treatment, and samples heat-treated within magnetic fields. The key finding is that magnetic fields can initiate a radical pair mechanism, enabling the induction of order-disorder phase transition even at lower temperatures. The disordered spinal LNMO with a magnetic Fe3O4 shell exhibits excellent cycling stability and kinetic properties in electrochemical characterization as a result. This innovation not only unravels the intricate interplay between the disordered phase and Mn3+ content in the cathode spinel but also pioneers the use of magnetic field effects for manipulating material phases.

5.
ChemSusChem ; : e202400515, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38705848

RESUMO

The construction of nanostructured heterostructure is a potent strategy for achieving high-performance photoelectrochemical (PEC) water splitting. Among these, constructing BiVO4-based heterostructure stands out as a promising method for optimizing light-harvesting efficiency and reducing severe charge recombination. Herein, we present a novel approach to fabricate a type II heterostructure of core/shell Bi2S3/BiVO4 using electrolytic deposition and successive ionic layer adsorption and reaction (SILAR) methods. We identify the type II heterostructure and the difference in fermi energy using UV-Vis spectroscopy, X-ray photoelectron spectroscopy, and PEC measurements. This redistribution of charges due to the fermi energy difference induces an interfacial built-in electric field from BiVO4 to Bi2S3, reinforcing the photogenerated hole transfer kinetics from BiVO4 to Bi2S3. The Bi2S3/BiVO4 heterostructure exhibits a superior photocurrent (6.0 mA cm-2), enhanced charge separation efficiency (85 %), and higher open-circuit photovoltage (350 mV). Additionally, the heterostructure displays a prolonged average lifetime of charge (1.63 ns), verifying this heterojunction could boost interfacial carriers' migration via an additional nonradiative quenching pathway. Furthermore, the lower photoluminescence (PL) intensity demonstrates the interfacial built-in electric field is beneficial for boosting charge migration.

6.
Nanoscale ; 16(22): 10597-10606, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38758161

RESUMO

Tribocatalysis is a method that converts mechanical energy into chemical energy. In this study, we synthesized tungsten bronze structured Ba0.75Sr0.25Nb1.9Ta0.1O6 ferroelectric ceramic submicron powder using a traditional solid-state route, and the powder exhibited excellent performance in tribocatalytic water splitting for hydrogen production. Under the friction stirring of three polytetrafluoroethylene (PTFE) magnetic stirring bars in pure water, the rate of hydrogen generation by the Ba0.75Sr0.25Nb1.9Ta0.1O6 ferroelectric submicron powder is 200 µmol h-1 g-1, and after 72 hours, the accumulated hydrogen production reaches 15 892.8 µmol g-1. Additionally, this ferroelectric tungsten bronze ferroelectric material also exhibits excellent tribocatalytic degradation ability toward RhB dyes, with degradation efficiency reaching 96% in 2 hours. The study of tribocatalysis based on tungsten bronze ferroelectric materials represents a significant step forward in versatile energy utilization for clean energy and environmental wastewater degradation.

7.
Adv Mater ; 36(29): e2402232, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38684179

RESUMO

Recently, the real topology has been attracting widespread interest in two dimensions (2D). Here, based on first-principles calculations and theoretical analysis, the monolayer Cr2Se2O (ML-CrSeO) is revealed as the first material example of a 2D antiferromagnetic (AFM) real Chern insulator (RCI) with topologically protected corner states. Unlike previous RCIs, it is found that the real topology of the ML-CrSeO is rooted in one certain mirror subsystem of the two spin channels, and cannot be directly obtained from all the valence bands in each spin channel as commonly believed. In particular, due to antiferromagnetism, the corner modes in ML-CrSeO exhibit strong corner-contrasted spin polarization, leading to spin-corner coupling (SCC). This SCC enables a direct connection between spin space and real space. Consequently, large and switchable net magnetization can be induced in the ML-CrSeO nanodisk by electrostatic means, such as potential step and in-plane electric field, and the corresponding magnetoelectric responses behave like a sign function, distinguished from that of the conventional multiferroic materials. This work considerably broadens the candidate range of RCI materials, and opens up a new direction for topo-spintronics and 2D AFM materials research.

8.
Nat Commun ; 15(1): 2618, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521767

RESUMO

While phonon anharmonicity affects lattice thermal conductivity intrinsically and is difficult to be modified, controllable lattice defects routinely function only by scattering phonons extrinsically. Here, through a comprehensive study of crystal structure and lattice dynamics of Zintl-type Sr(Cu,Ag,Zn)Sb thermoelectric compounds using neutron scattering techniques and theoretical simulations, we show that the role of vacancies in suppressing lattice thermal conductivity could extend beyond defect scattering. The vacancies in Sr2ZnSb2 significantly enhance lattice anharmonicity, causing a giant softening and broadening of the entire phonon spectrum and, together with defect scattering, leading to a ~ 86% decrease in the maximum lattice thermal conductivity compared to SrCuSb. We show that this huge lattice change arises from charge density reconstruction, which undermines both interlayer and intralayer atomic bonding strength in the hierarchical structure. These microscopic insights demonstrate a promise of artificially tailoring phonon anharmonicity through lattice defect engineering to manipulate lattice thermal conductivity in the design of energy conversion materials.

9.
Nanotechnology ; 35(22)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387098

RESUMO

BiFeO3is one of the star materials in the field of ferroelectric photovoltaic for its relatively narrow bandgap (2.2-2.7 eV) and better visible light absorption. However, a high temperature over 600 °C is indispensable in the usual BiFeO3growth process, which may lead to impure phase, interdiffusion of components near the interface, oxygen vacancy and ferrous iron ions, which will result in large leakage current and greatly aggravate the ferroelectricity and photoelectric response. Here we prepared Sm, Nd doped epitaxial BiFeO3film via a rapid microwave assisted hydrothermal process at low temperature. The Bi0.9Sm0.5Nd0.5FeO3film exhibits narrow bandgap (1.35 eV) and photo response to red light, the on-off current ratio reaches over 105. The decrease in band gap and +2/+3 variable element doping are responsible for the excellent photo response. The excellent photo response performances are much better than any previously reported BiFeO3films, which has great potential for applications in photodetection, ferroelectric photovoltaic and optoelectronic devices.

10.
Nano Lett ; 23(23): 11280-11287, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38047724

RESUMO

2D van der Waals (vdW) materials offer infinite possibilities for constructing unique ferroelectrics through simple layer stacking and rotation. In this work, we stack nonferroelectric GeS2 and ferroelectric CuInP2S6 to form heterostructures by combining sliding ferroelectric polarization with displacement ferroelectric polarization to achieve multiple polarization states. First-principles calculations reveal that the polarization reversal of the CuInP2S6 component in the GeS2/CuInP2S6/GeS2 heterostructure can simultaneously drive the switching of sliding ferroelectric polarization, displaying a robust coupling of the two polarizations and leading to the overall polarization switching. Based on this, ferroelectric arrays with a density of 6.55 × 1012 cm-2 (equivalent to a storage density of 0.7 TB cm-2) were constructed in a moiré superlattice, and the polarization strength of array elements was 11.77 pC/m, higher than that of all reported 2D vdW out-of-plane ferroelectrics. High density, large polarization, and electrically switchable array elements in ferroelectric arrays provide unprecedented opportunities to design 2D high-density nonvolatile ferroelectric memories.

11.
Nanomaterials (Basel) ; 13(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37764533

RESUMO

Bi2Se3, one of the most extensively studied topological insulators, has received significant attention, and abundant research has been dedicated to exploring its surface electronic properties. However, little attention has been given to its piezoelectric properties. Herein, we investigate the piezoelectric response in a five-layer Bi2Se3 nanosheet using scanning probe microscopy (SPM) techniques. The piezoelectricity of Bi2Se3 is characterized using both conventional piezoresponse force microscopy (PFM) and a sequential excitation scanning probe microscopy (SE-SPM) technique. To confirm the linear piezoelectricity of Bi2Se3 two-dimensional materials, measurements of point-wise linear and quadratic electromechanical responses are carried out. Furthermore, the presence of polarization and relaxation is confirmed through hysteresis loops. As expected, the Bi2Se3 nanosheet exhibits an electromechanical solid response. Due to the inevitable loss of translational symmetry at the crystal edge, the lattice of the odd-layer Bi2Se3 nanosheet is noncentrosymmetric, indicating its potential for linear piezoelectricity. This research holds promise for nanoelectromechanical systems (NEMS) applications and future nanogenerators.

12.
ACS Appl Mater Interfaces ; 15(38): 45016-45025, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37702038

RESUMO

The manipulation of defect chemistry is crucial in the design of high-performance thermoelectric materials. Studies have demonstrated that alloying compounds within the I-V-VI2 family, such as AgSbTe2, NaSbTe2, etc., can effectively enhance the thermoelectric performance of SnTe by controlling the hole concentration and reducing the lattice thermal conductivity. In this paper, samples of SnTe alloyed with MnSb2Se4 were prepared, and the microstructure, electrical properties, and thermal properties were thoroughly investigated. Based on SEM and TEM analysis, it was observed that MnSb2Se4 can dissolve into SnTe during the preparation of the samples, which leads to the formation of various secondary phases with different compositions and point defects. Consequently, the lattice thermal conductivity is reduced to 0.44 W m-1 K-1 at 800 K, approaching the amorphous limit. Furthermore, the diffusion of the Mn and Sb elements leads to a significant improvement in the Seebeck coefficient through valence band convergence. The vacancy concentration in SnTe can also be modulated by alloying with MnSb2Se4. The findings indicated that MnSb2Se4 alloying can enhance the thermoelectric performance of SnTe through increasing the vacancy concentration, promoting valence band convergence, and introducing secondary phases. Consequently, a ZT value of 1.36 at 800 K for Sn1.03Te-5%MnSb2Se4 can be achieved.

13.
Sci Bull (Beijing) ; 68(21): 2639-2657, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37734982

RESUMO

Two-dimensional (2D) magnetism and nontrivial band topology are both areas of research that are currently receiving significant attention in the study of 2D materials. Recently, a novel class of materials has emerged, known as 2D magnetic topological materials, which elegantly combine 2D magnetism and nontrivial topology. This field has garnered increasing interest, especially due to the emergence of several novel magnetic topological states that have been generalized into the 2D scale. These states include antiferromagnetic topological insulators/semimetals, second-order topological insulators, and topological half-metals. Despite the rapid advancements in this emerging research field in recent years, there have been few comprehensive summaries of the state-of-the-art progress. Therefore, this review aims to provide a thorough analysis of current progress on 2D magnetic topological materials. We cover various 2D magnetic topological insulators, a range of 2D magnetic topological semimetals, and the novel 2D topological half-metals, systematically analyzing the basic topological theory, the course of development, the material realization, and potential applications. Finally, we discuss the challenges and prospects for 2D magnetic topological materials, highlighting the potential for future breakthroughs in this exciting field.

14.
J Phys Chem Lett ; 14(33): 7519-7525, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37584347

RESUMO

In this study, we investigate the dynamic magnetoelectric (ME) coupling behaviors of GdFeO3 under pulsed magnetic fields. When a magnetic field is applied along the c-axis, and the temperature is near the compensation temperature (Tcomp = 3.5 K), we observe a subtle transition involving the reversal of Fe3+ moments at approximately 0.8 T in magnetization (M) measurements. This transition induces a corresponding jump in electrical polarization (P), which is not present in the static field measurements. The dynamic intertwining between M and P signifies a competition between antiferromagnetic (AFM) coupling between Gd3+ and Fe3+ moments and their Zeeman energies. The robust AFM coupling leads to the reversal of Fe3+ moments near Tcomp, triggering the abrupt change in P. Based on the exchange striction mechanism in the ferrimagnetic GdFeO3, we propose the possibility of achieving highly magnetic field sensitive ME coupling near the compensation temperature in ferrimagnetic multiferroic orthoferrites.

15.
Glob Chall ; 7(6): 2300019, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37287592

RESUMO

Recent advances in wearable energy harvesting technology as solutions to occupational health and safety programs are presented. Workers are often exposed to harmful conditions-especially in the mining and construction industries-where chronic health issues can emerge over time. While wearable sensors technology can aid in early detection and long-term exposure tracking, powering them and the associated risks are often an impediment for their widespread use, such as the need for frequent charging and battery safety. Repetitive vibration exposure is one such hazard, e.g., whole body vibration, yet it can also provide parasitic energy that can be harvested to power wearable sensors and overcome the battery limitations. This review can critically analyze the vibration effect on workers' health, the limitations of currently available devices, explore new options for powering different personal protective equipment devices, and discuss opportunities and directions for future research. The recent progress in self-powered vibration sensors and systems from the perspective of the underlying materials, applications, and fabrication techniques is reviewed. Lastly, the challenges and perspectives are discussed for reference to the researchers who are interested in self-powered vibration sensors.

16.
Nat Mater ; 22(8): 999-1006, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37202488

RESUMO

Ultralow thermal conductivity and fast ionic diffusion endow superionic materials with excellent performance both as thermoelectric converters and as solid-state electrolytes. Yet the correlation and interdependence between these two features remain unclear owing to a limited understanding of their complex atomic dynamics. Here we investigate ionic diffusion and lattice dynamics in argyrodite Ag8SnSe6 using synchrotron X-ray and neutron scattering techniques along with machine-learned molecular dynamics. We identify a critical interplay of the vibrational dynamics of mobile Ag and a host framework that controls the overdamping of low-energy Ag-dominated phonons into a quasi-elastic response, enabling superionicity. Concomitantly, the persistence of long-wavelength transverse acoustic phonons across the superionic transition challenges a proposed 'liquid-like thermal conduction' picture. Rather, a striking thermal broadening of low-energy phonons, starting even below 50 K, reveals extreme phonon anharmonicity and weak bonding as underlying features of the potential energy surface responsible for the ultralow thermal conductivity (<0.5 W m-1 K-1) and fast diffusion. Our results provide fundamental insights into the complex atomic dynamics in superionic materials for energy conversion and storage.

17.
Nanomaterials (Basel) ; 13(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36903736

RESUMO

Skyrmions are promising for the next generation of spintronic devices, which involves the production and transfer of skyrmions. The creation of skyrmions can be realized by a magnetic field, electric field, or electric current while the controllable transfer of skyrmions is hindered by the skyrmion Hall effect. Here, we propose utilizing the interlayer exchange coupling induced by the Ruderman-Kittel-Kasuya-Yoshida interactions to create skyrmions through hybrid ferromagnet/synthetic antiferromagnet structures. An initial skyrmion in ferromagnetic regions could create a mirroring skyrmion with an opposite topological charge in antiferromagnetic regions driven by the current. Furthermore, the created skyrmions could be transferred in synthetic antiferromagnets without deviations away from the main trajectories due to the suppression of the skyrmion Hall effect in comparison to the transfer of the skyrmion in ferromagnets. The interlayer exchange coupling can be tuned, and the mirrored skyrmions can be separated when they reach the desired locations. Using this approach, the antiferromagnetic coupled skyrmions can be repeatedly created in hybrid ferromagnet/synthetic antiferromagnet structures. Our work not only supplies a highly efficient approach to create isolated skyrmions and correct the errors in the process of skyrmion transport, but also paves the way to a vital information writing technique based on the motion of skyrmions for skyrmion-based data storage and logic devices.

18.
Phys Chem Chem Phys ; 25(12): 8882-8890, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36916444

RESUMO

The interaction between rare earth and iron spins in rare earth orthoferrites leads to remarkable phenomena, such as the spin-flip process. This is despite the rare earth spins not being magnetically ordered. Instead, they are polarized by the ordered iron spins. The interaction between the two spin families is not well understood. This study reports the temperature dependence of the net magnetic moment for rare earth spins, by measuring the overall magnetization for ErFeO3 and NdFeO3 single crystals. The obtained temperature dependence can be described well using a model based on the mean field theory, giving tanh(const./T) temperature dependence. This functional dependence is not disrupted by the spin-flip transition as the crystals are cooled.

19.
ACS Nano ; 17(7): 6811-6821, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36943144

RESUMO

The oxygen evolution reaction (OER) is a critical step for sustainable fuel production through electrochemistry process. Maximizing active sites of nanocatalyst with enhanced intrinsic activity, especially the activation of lattice oxygen, is gradually recognized as the primary incentive. Since the surface reconfiguration to oxyhydroxide is unavoidable for oxygen-activated transition metal oxides, developing a surface termination like oxyhydroxide in oxides is highly desirable. In this work, we demonstrate an unusual surface termination of (111)-facet Co3O4 nanosheet that is exclusively containing edge-sharing octahedral Co3+ similar to CoOOH that can perform at approximately 40 times higher current density at 1.63 V (vs RHE) than commercial RuO2. It is found that this surface termination has an oxidized oxygen state in contrast to standard Co-O systems, which can serve as active site independently, breaking the scaling relationship limit. This work forwards the applications of oxide electrocatalysts in the energy conversion field by surface termination engineering.

20.
Materials (Basel) ; 16(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36837366

RESUMO

High-quality NdCrSb3 single crystals are grown using a Sn-flux method, for electronic transport and magnetic structure study. Ferromagnetic ordering of the Nd3+ and Cr3+ magnetic sublattices are observed at different temperatures and along different crystallographic axes. Due to the Dzyaloshinskii-Moriya interaction between the two magnetic sublattices, the Cr moments rotate from the b axis to the a axis upon cooling, resulting in a spin reorientation (SR) transition. The SR transition is reflected by the temperature-dependent magnetization curves, e.g., the Cr moments rotate from the b axis to the a axis with cooling from 20 to 9 K, leading to a decrease in the b-axis magnetization f and an increase in the a-axis magnetization. Our elastic neutron scattering along the a axis shows decreasing intensity of magnetic (300) peak upon cooling from 20 K, supporting the SR transition. Although the magnetization of two magnetic sublattices favours different crystallographic axes and shows significant anisotropy in magnetic and transport behaviours, their moments are all aligned to the field direction at sufficiently large fields (30 T). Moreover, the magnetic structure within the SR transition region is relatively fragile, which results in negative magnetoresistance by applying magnetic fields along either a or b axis. The metallic NdCrSb3 single crystal with two ferromagnetic sublattices is an ideal system to study the magnetic interactions, as well as their influences on the electronic transport properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...