Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(20)2023 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-37895124

RESUMO

Small heat shock proteins (sHSPs) represent a first line of stress defense in many bacteria. The primary function of these molecular chaperones involves preventing irreversible protein denaturation and aggregation. In Escherichia coli, fibrillar EcIbpA binds unfolded proteins and keeps them in a folding-competent state. Further, its structural homologue EcIbpB induces the transition of EcIbpA to globules, thereby facilitating the substrate transfer to the HSP70-HSP100 system for refolding. The phytopathogenic Acholeplasma laidlawii possesses only a single sHSP, AlIbpA. Here, we demonstrate non-trivial features of the function and regulation of the chaperone-like activity of AlIbpA according to its interaction with other components of the mycoplasma multi-chaperone network. Our results show that the efficiency of the A. laidlawii multi-chaperone system is driven with the ability of AlIbpA to form both globular and fibrillar structures, thus combining functions of both IbpA and IbpB when transferring the substrate proteins to the HSP70-HSP100 system. In contrast to EcIbpA and EcIbpB, AlIbpA appears as an sHSP, in which the competition between the N- and C-terminal domains regulates the shift of the protein quaternary structure between a fibrillar and globular form, thus representing a molecular mechanism of its functional regulation. While the C-terminus of AlIbpA is responsible for fibrils formation and substrate capture, the N-terminus seems to have a similar function to EcIbpB through facilitating further substrate protein disaggregation using HSP70. Moreover, our results indicate that prior to the final disaggregation process, AlIbpA can directly transfer the substrate to HSP100, thereby representing an alternative mechanism in the HSP interaction network.


Assuntos
Proteínas de Escherichia coli , Proteínas de Choque Térmico Pequenas , Proteínas de Choque Térmico/metabolismo , Acholeplasma laidlawii/química , Acholeplasma laidlawii/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/metabolismo , Escherichia coli/metabolismo , Proteínas de Choque Térmico Pequenas/metabolismo
2.
Biochim Biophys Acta Gen Subj ; 1866(12): 130220, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35934107

RESUMO

Small heat shock proteins (sHSPs) control the proteins stability in the cell preventing their irreversible denaturation. While many mycoplasmas possess the sHSP gene in the genome, Acholeplasma laidlawii is the only mycoplasma capable of surviving in the environment. Here we report that the sHSP IbpA directly interacts with the key division protein FtsZ in A. laidlawii, representing the first example of such interaction in prokaryotes. FtsZ co-immunoprecipitates with IbpA from A. laidlawii crude extract and in vitro binds IbpA with KD ~ 1 µM. Proteins co-localize in the soluble fraction of the cell at 30-37 °C and in the non-soluble fraction after 1 h exposition to cold stress (4 °C). Under heat shock conditions (42 °C) the amount of FtsZ decreases and the protein remains in both soluble and non-soluble fractions. Furthermore, in vitro, FtsZ co-elutes with IbpAHis6 from A. laidlawii crude extract at any temperatures from 4 to 42 °C, with highest yield at 42 °C. Moreover, in vitro FtsZ retains its GTPase activity in presence of IbpA, and the filaments and bundles formation seems to be even improved by sHSP at 30-37 °C. At extreme temperatures, either 4 or 42 °C, IbpA facilitates FtsZ polymerization, although filaments under 4 °C appears shorter and with lower density, while at 42 °C IbpA sticks around the bundles, preventing their destruction by heat. Taken together, these data suggest that sHSP IbpA in A. laidlawii contributes to the FtsZ stability control and may be assisting appropriate cell division under unfavorable conditions.


Assuntos
Proteínas de Bactérias , Proteínas de Choque Térmico Pequenas , Acholeplasma laidlawii/genética , Acholeplasma laidlawii/metabolismo , Proteínas de Choque Térmico Pequenas/genética , Proteínas de Choque Térmico Pequenas/metabolismo , Resposta ao Choque Térmico , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
3.
RSC Adv ; 10(14): 8364-8376, 2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35497866

RESUMO

Small heat shock proteins (sHSPs) are ubiquitous molecular chaperones preventing the irreversible denaturation of proteins. While in Escherichia coli two sHSPs IbpA and IbpB work in strong cooperation, the sole Mollicute with free-living ability Acholeplasma laidlawii carries a single gene encoding the sHSP protein AlIbpA. In vitro, independently of the temperature, AlIbpA forms a heterogeneous mixture of approximately 24-mer globules, fibrils and huge protein aggregates. The removal of either 12 or 25 N-terminal amino acids led to the formation of fibrils and enhanced the protein ability to prevent the temperature-induced aggregation of insulin, assuming the fibrillar form as an active protein. In turn, the deletion of the C-terminus or substitution of C-terminal LEL motif by SEP decreased the temperature stability of AlIbpA and eliminated its chaperone function completely, although the protein remained predominantly in a globular state. This suggests that the C-terminal LEL motif is necessary for the chaperon-like activity of AlIbpA and fibril formation. Double N- and C-terminal truncations abolished both the chaperone-like activity and huge oligomer formation. Since the globular form of sHSPs is considered as their inactive form, our data suggest that the N-terminus of AlIbpA is responsible for the huge globule (low-active form) formation and behaves as an intramolecular inhibitor of the fibrils (active form) formation and substrates binding. Taken together these data demonstrate non-trivial properties of AlIbpA, in which the competitive action of N- and C-termini governs the equilibrium between either fibrillar or globular structures representing a possible molecular mechanism of the AlIbpA activity regulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...