RESUMO
Immunologic self-tolerance involves signals from co-inhibitory receptors. Several T cell co-inhibitors, including PD-1, are expressed upon activation, whereas CD5 and BTLA are expressed constitutively. The relationship between constitutively expressed co-inhibitors and when they are needed is unknown. Deletion of Btla demonstrated BTLA regulates CD5 expression. Loss of BTLA signals, but not signalling by its ligand, HVEM, leads to increased CD5 expression. Higher CD5 expression set during thymic selection is associated with increased self-recognition, suggesting that BTLA might be needed early to establish self-tolerance. We found that BTLA and PD-1 were needed post-thymic selection in recent thymic emigrants (RTE). RTE lacking BTLA caused a CD4 T cell and MHC class II dependent multi-organ autoimmune disease. Together, our findings identify a negative regulatory pathway between two constitutively expressed co-inhibitors, calibrating their expression. Expression of constitutive and induced co-inhibitory receptors is needed early to establish tolerance in the periphery for RTE.
Assuntos
Antígenos CD5 , Receptores Imunológicos , Timo , Animais , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Camundongos , Timo/metabolismo , Timo/imunologia , Antígenos CD5/metabolismo , Antígenos CD5/genética , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/genética , Tolerância Imunológica , Regulação da Expressão Gênica , Camundongos Knockout , Transdução de SinaisRESUMO
Brain tumors in children are a devastating disease in a high proportion of patients. Owing to inconsistent results in clinical trials in unstratified patients, the role of immunotherapy remains unclear. We performed an in-depth survey of the single-cell transcriptomes and clonal relationship of intra-tumoral T cells from children with brain tumors. Our results demonstrate that a large fraction of T cells in the tumor tissue are clonally expanded with the potential to recognize tumor antigens. Such clonally expanded T cells display enrichment of transcripts linked to effector function, tissue residency, immune checkpoints and signatures of neoantigen-specific T cells and immunotherapy response. We identify neoantigens in pediatric brain tumors and show that neoantigen-specific T cell gene signatures are linked to better survival outcomes. Notably, among the patients in our cohort, we observe substantial heterogeneity in the degree of clonal expansion and magnitude of T cell response. Our findings suggest that characterization of intra-tumoral T cell responses may enable selection of patients for immunotherapy, an approach that requires prospective validation in clinical trials.
Assuntos
Neoplasias Encefálicas , Linfócitos T , Humanos , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Criança , Linfócitos T/imunologia , Antígenos de Neoplasias/imunologia , Imunoterapia/métodos , Pré-Escolar , Masculino , Feminino , Adolescente , Linfócitos do Interstício Tumoral/imunologia , Análise de Célula Única/métodos , Transcriptoma , Células ClonaisRESUMO
Mucosal-associated invariant T (MAIT) cells are a subset of T lymphocytes that respond to microbial metabolites. We defined MAIT cell populations in different organs and characterized the developmental pathway of mouse and human MAIT cells in the thymus using single-cell RNA sequencing and phenotypic and metabolic analyses. We showed that the predominant mouse subset, which produced IL-17 (MAIT17), and the subset that produced IFN-γ (MAIT1) had not only greatly different transcriptomes but also different metabolic states. MAIT17 cells in different organs exhibited increased lipid uptake, lipid storage, and mitochondrial potential compared with MAIT1 cells. All these properties were similar in the thymus and likely acquired there. Human MAIT cells in lung and blood were more homogeneous but still differed between tissues. Human MAIT cells had increased fatty acid uptake and lipid storage in blood and lung, similar to human CD8 T resident memory cells, but unlike mouse MAIT17 cells, they lacked increased mitochondrial potential. Although mouse and human MAIT cell transcriptomes showed similarities for immature cells in the thymus, they diverged more strikingly in the periphery. Analysis of pet store mice demonstrated decreased lung MAIT17 cells in these so-called "dirty" mice, indicative of an environmental influence on MAIT cell subsets and function.
Assuntos
Células T Invariantes Associadas à Mucosa , Humanos , Transcriptoma , Linfócitos T CD8-Positivos , Timo , LipídeosRESUMO
Ligation of retinoic acid receptor alpha (RARα) by RA promotes varied transcriptional programs associated with immune activation and tolerance, but genetic deletion approaches suggest the impact of RARα on TCR signaling. Here, we examined whether RARα would exert roles beyond transcriptional regulation. Specific deletion of the nuclear isoform of RARα revealed an RARα isoform in the cytoplasm of T cells. Extranuclear RARα was rapidly phosphorylated upon TCR stimulation and recruited to the TCR signalosome. RA interfered with extranuclear RARα signaling, causing suboptimal TCR activation while enhancing FOXP3+ regulatory T cell conversion. TCR activation induced the expression of CRABP2, which translocates RA to the nucleus. Deletion of Crabp2 led to increased RA in the cytoplasm and interfered with signalosome-RARα, resulting in impaired anti-pathogen immunity and suppressed autoimmune disease. Our findings underscore the significance of subcellular RA/RARα signaling in T cells and identify extranuclear RARα as a component of the TCR signalosome and a determinant of immune responses.
Assuntos
Doenças Autoimunes , Ativação Linfocitária , Humanos , Receptor alfa de Ácido Retinoico/genética , Membrana Celular , Receptores de Antígenos de Linfócitos TRESUMO
Colitis is characterized by an exacerbated intestinal immune response, but the genetic and other mechanisms regulating immune activation remain incompletely understood. In order to identify new pathways leading to colitis, we sought to identify genes with increased expression in the colons of patients that also are near loci identified by genome wide association studies (GWAS) associated with IBD risk. One such SNP, rs9557195 was of particular interest because it is within an intron of G-protein-coupled receptor (GPR) 183, known to be important for lymphocyte migration. Furthermore, this SNP is in close proximity to the gene encoding another G-protein coupled receptor, GPR18. Analyzing publicly available datasets, we found transcripts of GPR183 and GPR18 to be increased in colon biopsies from ulcerative colitis and Crohn's disease patients, and GPR183 was even more increased in patients resistant to TNF treatment. Expression of both genes also was increased in mouse models of colitis. Therefore, our aim was to understand if increased expression of these GPRs in the intestine is related to disease severity in colitis models. Here we investigated the role of these receptors in the T cell transfer model and the dextran sulfate sodium model. In the T cell transfer model, GPR183 expression on donor T cells, as well as on other cell types in the Rag-/- recipients, was not essential for severe colitis induction. Furthermore, deficiency in Rag-/- mice for the enzyme that synthesizes a cholesterol metabolite that is a major ligand for GPR183 also did not affect disease. Similarly, lack of GPR18 expression in T cells or other cell types did not affect colitis pathogenesis in the T cell transfer or in the dextran sulfate sodium model. Therefore, despite increased expression of transcripts for these genes in the intestine during inflammation in humans and mice, they are not required for disease severity in mouse models of colitis induced by chemical injury or T cell cytokines, perhaps due to redundancy in mechanisms important for homing and survival of lymphocytes to the inflamed intestine.
Assuntos
Colite , Estudo de Associação Genômica Ampla , Camundongos , Humanos , Animais , Sulfato de Dextrana/efeitos adversos , Camundongos Endogâmicos C57BL , Colite/induzido quimicamente , Colite/genética , Modelos Animais de Doenças , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Linfócitos T CD4-Positivos/metabolismoRESUMO
Intraepithelial T cells (IETs) are in close contact with intestinal epithelial cells and the underlying basement membrane, and they detect invasive pathogens. How intestinal epithelial cells and basement membrane influence IET survival and function, at steady state or after infection, is unclear. The herpes virus entry mediator (HVEM), a member of the TNF receptor superfamily, is constitutively expressed by intestinal epithelial cells and is important for protection from pathogenic bacteria. Here, we showed that at steady-state LIGHT, an HVEM ligand, binding to epithelial HVEM promoted the survival of small intestine IETs. RNA-seq and addition of HVEM ligands to epithelial organoids indicated that HVEM increased epithelial synthesis of basement membrane proteins, including collagen IV, which bound to ß1 integrins expressed by IETs. Therefore, we proposed that IET survival depended on ß1 integrin binding to collagen IV and showed that ß1 integrin-collagen IV interactions supported IET survival in vitro. Moreover, the absence of ß1 integrin expression by T lymphocytes decreased TCR αß+ IETs in vivo. Intravital microscopy showed that the patrolling movement of IETs was reduced without epithelial HVEM. As likely consequences of decreased number and movement, protective responses to Salmonella enterica were reduced in mice lacking either epithelial HVEM, HVEM ligands, or ß1 integrins. Therefore, IETs, at steady state and after infection, depended on HVEM expressed by epithelial cells for the synthesis of collagen IV by epithelial cells. Collagen IV engaged ß1 integrins on IETs that were important for their maintenance and for their protective function in mucosal immunity.
Assuntos
Linfócitos Intraepiteliais , Animais , Colágeno , Células Epiteliais/metabolismo , Integrinas/metabolismo , Ligantes , CamundongosRESUMO
HVEM is a TNF (tumor necrosis factor) receptor contributing to a broad range of immune functions involving diverse cell types. It interacts with a TNF ligand, LIGHT, and immunoglobulin (Ig) superfamily members BTLA and CD160. Assessing the functional impact of HVEM binding to specific ligands in different settings has been complicated by the multiple interactions of HVEM and HVEM binding partners. To dissect the molecular basis for multiple functions, we determined crystal structures that reveal the distinct HVEM surfaces that engage LIGHT or BTLA/CD160, including the human HVEM-LIGHT-CD160 ternary complex, with HVEM interacting simultaneously with both binding partners. Based on these structures, we generated mouse HVEM mutants that selectively recognized either the TNF or Ig ligands in vitro. Knockin mice expressing these muteins maintain expression of all the proteins in the HVEM network, yet they demonstrate selective functions for LIGHT in the clearance of bacteria in the intestine and for the Ig ligands in the amelioration of liver inflammation.
Assuntos
Antígenos CD/metabolismo , Receptores Imunológicos/metabolismo , Membro 14 de Receptores do Fator de Necrose Tumoral/química , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Animais , Antígenos CD/química , Antígenos CD/genética , Cristalografia por Raios X , Drosophila/citologia , Drosophila/genética , Feminino , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Mutação , Receptores Imunológicos/química , Receptores Imunológicos/genética , Membro 14 de Receptores do Fator de Necrose Tumoral/genética , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/química , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Yersiniose/genética , Yersiniose/patologiaRESUMO
Innate lymphoid cells (ILCs) are important regulators of early infection at mucosal barriers. ILCs are divided into three groups based on expression profiles, and are activated by cytokines and neuropeptides. Yet, it remains unknown if ILCs integrate other signals in providing protection. We show that signaling through herpes virus entry mediator (HVEM), a member of the tumor necrosis factor (TNF) receptor superfamily, in ILC3 is important for host defense against oral infection with the bacterial pathogen Yersinia enterocolitica. HVEM stimulates protective interferon-γ (IFN-γ) secretion from ILCs, and mice with HVEM-deficient ILC3 exhibit reduced IFN-γ production, higher bacterial burdens and increased mortality. In addition, IFN-γ production is critical as adoptive transfer of wild-type but not IFN-γ-deficient ILC3 can restore protection to mice lacking ILCs. We identify the TNF superfamily member, LIGHT, as the ligand inducing HVEM signals in ILCs. Thus HVEM signaling mediated by LIGHT plays a critical role in regulating ILC3-derived IFN-γ production for protection following infection. VIDEO ABSTRACT.
Assuntos
Infecções por Enterobacteriaceae/prevenção & controle , Interferon gama/metabolismo , Linfócitos/imunologia , Linfócitos/metabolismo , Membro 14 de Receptores do Fator de Necrose Tumoral/imunologia , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Transferência Adotiva , Adulto , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Infecções por Enterobacteriaceae/patologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuropeptídeos/metabolismo , Transporte Proteico , Receptores CCR6/genética , Receptores CCR6/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Baço/microbiologia , Baço/patologia , Yersinia enterocolitica/patogenicidadeRESUMO
Mast cells (MCs) are tissue resident sentinels that mature and orchestrate inflammation in response to infection and allergy. While they are also frequently observed in tumors, the contribution of MCs to carcinogenesis remains unclear. Here, we show that sequential oncogenic events in gut epithelia expand different types of MCs in a temporal-, spatial-, and cytokine-dependent manner. The first wave of MCs expands focally in benign adenomatous polyps, which have elevated levels of IL-10, IL-13, and IL-33, and are rich in type-2 innate lymphoid cells (ILC2s). These vanguard MCs adhere to the transformed epithelial cells and express murine mast cell protease 2 (mMCP2; a typical mucosal MC protease) and, to a lesser extent, the connective tissue mast cell (CTMC) protease mMCP6. Persistence of MCs is strictly dependent on T cell-derived IL-10, and their loss in the absence of IL-10-expressing T cells markedly delays small bowel (SB) polyposis. MCs expand profusely in polyposis-prone mice when T cells overexpress IL-10. The frequency of polyp-associated MCs is unaltered in response to broad-spectrum antibiotics, arguing against a microbial component driving their recruitment. Intriguingly, when polyps become invasive, a second wave of mMCP5+/mMCP6+ CTMCs expands in the tumor stroma and at invasive tumor borders. Ablation of mMCP6 expression attenuates polyposis, but invasive properties of the remaining lesions remain intact. Our findings argue for a multistep process in SB carcinogenesis in which distinct MC subsets, and their elaborated proteases, guide disease progression.
Assuntos
Quimases/metabolismo , Citocinas/metabolismo , Neoplasias Intestinais/patologia , Intestino Delgado/patologia , Linfócitos/patologia , Mastócitos/patologia , Mucosa/patologia , Animais , Células Cultivadas , Neoplasias Intestinais/imunologia , Neoplasias Intestinais/metabolismo , Intestino Delgado/imunologia , Intestino Delgado/metabolismo , Linfócitos/imunologia , Linfócitos/metabolismo , Mastócitos/imunologia , Mastócitos/metabolismo , Camundongos , Mucosa/imunologia , Mucosa/metabolismo , Estadiamento de NeoplasiasRESUMO
The thymus plays a central role in self-tolerance, partly by eliminating precursors with a T cell receptor (TCR) that binds strongly to self-antigens. However, the generation of self-agonist-selected lineages also relies on strong TCR signaling. How thymocytes discriminate between these opposite outcomes remains elusive. Here, we identified a human agonist-selected PD-1+ CD8αα+ subset of mature CD8αß+ T cells that displays an effector phenotype associated with agonist selection. TCR stimulation of immature post-ß-selection thymocyte blasts specifically gives rise to this innate subset and fixes early T cell receptor alpha variable (TRAV) and T cell receptor alpha joining (TRAJ) rearrangements in the TCR repertoire. These findings suggest that the checkpoint for agonist selection precedes conventional selection in the human thymus.
RESUMO
Vitamin A is a multifunctional vitamin implicated in a wide range of biological processes. Its control over the immune system and functions are perhaps the most pleiotropic not only for development but also for the functional fate of almost every cell involved in protective or regulatory adaptive or innate immunity. This is especially key at the intestinal border, where dietary vitamin A is first absorbed. Most effects of vitamin A are exerted by its metabolite, retinoic acid (RA), which through ligation of nuclear receptors controls transcriptional expression of RA target genes. In addition to this canonical function, RA and RA receptors (RARs), either as ligand-receptor or separately, play extranuclear, nongenomic roles that greatly expand the multiple mechanisms employed for their numerous and paradoxical functions that ultimately link environmental sensing with immune cell fate. This review discusses RA and RARs and their complex roles in innate and adaptive immunity.
Assuntos
Sistema Imunitário , Mucosa Intestinal/fisiologia , Receptores do Ácido Retinoico/imunologia , Tretinoína/metabolismo , Vitamina A/imunologia , Imunidade Adaptativa , Animais , Humanos , Imunidade Inata , Imunomodulação , Receptores do Ácido Retinoico/metabolismo , Tretinoína/imunologiaRESUMO
OBJECTIVE: Up-regulation of glucose metabolism has been implicated not only in tumor cell growth but also in immune cells upon activation. However, little is known about the metabolite profile in rheumatoid arthritis (RA), particularly in fibroblast-like synoviocytes (FLS). This study was undertaken to evaluate whether changes in glucose metabolism in RA FLS could play a role in inflammation and joint damage. METHODS: Synovium and FLS were obtained from patients with RA and patients with osteoarthritis (OA). The rate of glycolysis after stimulation of FLS with lipopolysaccharide and platelet-derived growth factor BB was measured using glycolysis stress test technology. FLS function was evaluated using a glycolysis inhibitor, 2-deoxy-d-glucose (2-DG). After stimulation of the FLS, a migration scratch assay, MTT assay, and enzyme-linked immunosorbent assay were performed to measure the effect of 2-DG on FLS migration, viability of the FLS, and cytokine secretion, respectively. IRDye 800CW 2-DG was used to assess glucose uptake in the arthritic joints and stromal cells of mice after K/BxN mouse serum transfer. The mice were injected daily, intraperitoneally, with 3-bromopyruvate (BrPa; 5 mg/kg) to assess the effect of inhibition of glycolysis in vivo. RESULTS: Compared to human OA FLS, the balance between glycolysis and oxidative phosphorylation was shifted toward glycolysis in RA FLS. Glucose transporter 1 (GLUT1) messenger RNA (mRNA) expression correlated with baseline functions of the RA FLS. Glucose deprivation or incubation of the FLS with glycolytic inhibitors impaired cytokine secretion and decreased the rate of proliferation and migration of the cells. In a mouse model of inflammatory arthritis, GLUT1 mRNA expression in the synovial lining cells was observed, and increased levels of glucose uptake and glycolytic gene expression were detected in the stromal compartment of the arthritic mouse joints. Inhibition of glycolysis by BrPa, administered in vivo, significantly decreased the severity of arthritis in this mouse model. CONCLUSION: Targeting metabolic pathways is a novel approach to understanding the mechanisms of disease. Inhibition of glycolysis may directly modulate synoviocyte-mediated inflammatory functions and could be an effective treatment strategy for arthritis.
Assuntos
Artrite Reumatoide/metabolismo , Glucose/metabolismo , Sinoviócitos/metabolismo , Animais , Artrite Reumatoide/etiologia , Fibroblastos , Glicólise , Humanos , CamundongosRESUMO
Innate immune responses are regulated in the intestine to prevent excessive inflammation. Here we show that a subset of mouse colonic macrophages constitutively produce the anti-inflammatory cytokine IL-10. In mice infected with Citrobacter rodentium, a model for enteropathogenic Escherichia coli infection in humans, these macrophages are required to prevent intestinal pathology. IL-23 is significantly increased in infected mice with a myeloid cell-specific deletion of IL-10, and the addition of IL-10 reduces IL-23 production by intestinal macrophages. Furthermore, blockade of IL-23 leads to reduced mortality in the context of macrophage IL-10 deficiency. Transcriptome and other analyses indicate that IL-10-expressing macrophages receive an autocrine IL-10 signal. Interestingly, only transfer of the IL-10 positive macrophages could rescue IL-10-deficient infected mice. Therefore, these data indicate a pivotal role for intestinal macrophages that constitutively produce IL-10, in controlling excessive innate immune activation and preventing tissue damage after an acute bacterial infection.
Assuntos
Imunidade Inata/fisiologia , Interleucina-10/metabolismo , Interleucina-23/metabolismo , Intestinos/citologia , Macrófagos/metabolismo , Animais , Células da Medula Óssea/fisiologia , Caspase 1/genética , Caspase 1/metabolismo , Feminino , Regulação da Expressão Gênica/fisiologia , Interleucina-10/genética , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-23/genética , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Pressão Osmótica , Cloreto de Sódio na Dieta/administração & dosagem , Cloreto de Sódio na Dieta/toxicidade , Estresse Fisiológico , Células Th17RESUMO
IL10 is attributed with immune-suppressive and anti-inflammatory properties, which could promote or suppress cancer in the gastrointestinal tract. Loss of IL10 exacerbates colonic inflammation, leading to colitis and cancer. Consistent with this, transfer of IL10-competent regulatory T cells (Treg) into mice with colitis or hereditary polyposis protects against disease, while IL10-deficient mice are predisposed to polyposis with increased colon polyp load. Little is known about the protective or pathogenic function of IL10 in cancers of the small intestine. We found CD4(+) T cells and CD4(+) Foxp3(+) Tregs to be the major sources of IL10 in the small intestine and responsible for the increase in IL10 during polyposis in the APC(Δ468) mouse model of hereditary polyposis. Targeted ablation of IL10 in T cells caused severe IL10 deficiency and delayed polyp growth. However, these polyps progressively lost cytotoxic activity and eventually progressed to cancer. Several observations suggested that the effect was due to the loss of IFNγ-dependent immune surveillance. IL10-incompetent CD4(+) T cells failed to secrete IFNγ when stimulated with polyp antigens and were inefficient in T-helper-1 (TH1) commitment. By contrast, the TH17 commitment was unaffected. These findings were validated using mice whose T cells overexpress IL10. In these mice, we observed high intra-polyp cytotoxic activity and attenuation of polyposis. Thus, expression of IL10 by T cells is protective and required for immune surveillance in the small intestine.
Assuntos
Vigilância Imunológica , Interleucina-10/imunologia , Neoplasias Intestinais/imunologia , Intestino Delgado/patologia , Linfócitos T Reguladores/imunologia , Transferência Adotiva , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos KnockoutRESUMO
Coreceptor CD4 and CD8αß double-negative (DN) TCRαß(+) intraepithelial T cells, although numerous, have been greatly overlooked and their contribution to the immune response is not known. Here we used T cell receptor (TCR) sequencing of single cells combined with retrogenic expression of TCRs to study the fate and the major histocompatibility complex (MHC) restriction of DN TCRαß(+) intraepithelial T cells. The data show that commitment of thymic precursors to the DN TCRαß(+) lineage is imprinted by their TCR specificity. Moreover, the TCRs they express display a diverse and unusual pattern of MHC restriction that is nonoverlapping with that of CD4(+) or CD8αß(+) T cells, indicating that they sense antigens that are not recognized by the conventional T cell subsets. The new insights indicate that DN TCRαß(+) T cells form a third lineage of TCRαß T lymphocytes expressing a variable TCR repertoire, which serve nonredundant immune functions.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Linhagem da Célula/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Animais , Diferenciação Celular/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Vigilância Imunológica/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos KnockoutRESUMO
Although the negative selection of self-reactive B cells in the bone marrow of mammals has been clearly demonstrated, it remains unclear in models of gut-associated B cell lymphopoiesis, such as that of the chicken (Gallus gallus). We have generated chicken surface IgM-related receptors in which the diversity region of the lamprey variable lymphocyte receptor (VLR) has been fused to the C region of chicken surface IgM (Tµ). Expression of a VLR:Tµ receptor with specificity for PE supported normal development of B cells, whereas a VLR:Tµ receptor specific to hen egg lysozyme (a self-antigen with respect to chicken B cells) induced, in vivo, complete deletion of VLR(HEL)Tµ-expressing B cells. In ovo i.v. injection of PE resulted in deletion of VLR(PE)Tµ-expressing Β cells in the embryo spleen, demonstrating that negative selection was independent of the bursal microenvironment. Although chickens transduced with a murine CD8α:chicken Igα fusion protein contained B cells expressing mCD8α:chIgα, cotransfection of the mCD8α:chIgα construct, together with thymus leukemia Ag (a natural ligand for mCD8α), resulted in reduced levels of mCD8α:chIgα-expressing B cells in inverse proportion to the levels of thymus leukemia Ag-expressing cells. Deletion of mCD8α:chIgα-expressing cells was specific for B cells and required active signaling downstream of the mCD8α:chIgα receptor. Ag-mediated negative selection of developing chicken B cells can therefore occur independently of the bursal microenvironment and is dependent on signaling downstream of the BCR.
Assuntos
Autoantígenos/imunologia , Proteínas Aviárias/imunologia , Linfócitos B/imunologia , Microambiente Celular/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Transdução de Sinais/imunologia , Animais , Autoantígenos/metabolismo , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Linfócitos B/metabolismo , Bolsa de Fabricius/citologia , Bolsa de Fabricius/imunologia , Bolsa de Fabricius/metabolismo , Antígenos CD79/genética , Antígenos CD79/imunologia , Antígenos CD79/metabolismo , Antígenos CD8/genética , Antígenos CD8/imunologia , Antígenos CD8/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Embrião de Galinha , Galinhas , Fibroblastos/citologia , Fibroblastos/imunologia , Fibroblastos/metabolismo , Citometria de Fluxo , Imunoglobulina M/genética , Imunoglobulina M/imunologia , Imunoglobulina M/metabolismo , Lampreias/genética , Lampreias/imunologia , Camundongos , Muramidase/imunologia , Ligação Proteica/imunologia , Receptores de Antígenos/genética , Receptores de Antígenos/imunologia , Receptores de Antígenos/metabolismo , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/metabolismo , Receptores Fc/genética , Receptores Fc/imunologia , Receptores Fc/metabolismoRESUMO
During thymic development, thymocytes expressing a T cell receptor consisting of an alpha and beta chain (TCRαß), commit to either the cytotoxic- or T helper-lineage fate. This lineage dichotomy is controlled by key transcription factors, including the T helper (Th) lineage master regulator, the Th-inducing BTB/POZ domain-containing Kruppel-like zinc-finger transcription factor, ThPOK, (formally cKrox or Zfp67; encoded by Zbtb7b), which suppresses the cytolytic program in major histocompatibility complex (MHC) class II-restricted CD4(+) thymocytes and the Runt related transcription factor 3 (Runx3), which counteracts ThPOK in MHC class I restricted precursor cells and promotes the lineage commitment of CD8αß(+) cytolytic T lymphocytes (CTL). ThPOK continues to repress the CTL gene program in mature CD4(+) T cells, even as they differentiate into effector Th cell subsets. The Th cell fate however is not fixed and two recent studies showed that mature, antigen-stimulated CD4(+) T cells have the flexibility to terminate the expression of ThPOK and functionally reprogram to cytotoxic effector cells. This unexpected plasticity of CD4(+) T cells results in the post-thymic termination of the Th lineage fate and the functional differentiation of distinct MHC class II-restricted CD4(+) CTL. The recognition of CD4 CTL as a defined separate subset of effector cells and the identification of the mechanisms and factors that drive their reprogramming finally create new opportunities to explore the physiological relevance of these effector cells in vivo and to determine their pivotal roles in both, protective immunity as well as in immune-related pathology.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Citotoxicidade Imunológica , Subpopulações de Linfócitos T/imunologia , Animais , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular/imunologia , Linhagem da Célula/imunologia , Regulação da Expressão Gênica , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Ativação Linfocitária/imunologia , Tecido Linfoide/imunologia , Tecido Linfoide/metabolismo , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Timo/imunologia , Timo/metabolismo , Fatores de Transcrição/metabolismo , Transcrição GênicaRESUMO
Development of a self-tolerant T-cell receptor (TCR) repertoire with the potential to recognize the universe of infectious agents depends on proper regulation of TCR signalling. The repertoire is whittled down during T-cell development in the thymus by the ability of quasi-randomly generated TCRs to interact with self-peptides presented by major histocompatibility complex (MHC) proteins. Low-affinity TCR interactions with self-MHC proteins generate weak signals that initiate 'positive selection', causing maturation of CD4- or CD8αß-expressing 'single-positive' thymocytes from CD4(+)CD8αß(+) 'double-positive' precursors. These develop into mature naive T cells of the secondary lymphoid organs. TCR interaction with high-affinity agonist self-ligands results in 'negative selection' by activation-induced apoptosis or 'agonist selection' of functionally differentiated self-antigen-experienced T cells. Here we show that positive selection is enabled by the ability of the T-cell-specific protein Themis to specifically attenuate TCR signal strength via SHP1 recruitment and activation in response to low- but not high-affinity TCR engagement. Themis acts as an analog-to-digital converter translating graded TCR affinity into clear-cut selection outcome. By dampening mild TCR signals Themis increases the affinity threshold for activation, enabling positive selection of T cells with a naive phenotype in response to low-affinity self-antigens.
Assuntos
Proteínas/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/imunologia , Linfócitos T/citologia , Linfócitos T/metabolismo , Timócitos/citologia , Timócitos/metabolismo , Animais , Apoptose , Autoantígenos/imunologia , Sinalização do Cálcio , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Proteínas/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/imunologia , Timócitos/imunologiaRESUMO
The B and T lymphocyte attenuator (BTLA) is an Ig super family member that binds to the herpes virus entry mediator (HVEM), a TNF receptor super family (TNFRSF) member. Engagement of BTLA by HVEM triggers inhibitory signals, although recent evidence indicates that BTLA also may act as an activating ligand for HVEM. In this study, we reveal a novel role for the BTLA-HVEM pathway in promoting the survival of activated CD8(+) T cells in the response to an oral microbial infection. Our data show that both BTLA- and HVEM-deficient mice infected with Listeria monocytogenes had significantly reduced numbers of primary effector and memory CD8(+) T cells, despite normal proliferation and expansion compared to controls. In addition, blockade of the BTLA-HVEM interaction early in the response led to significantly reduced numbers of antigen-specific CD8(+) T cells. HVEM expression on the CD8(+) T cells as well as BTLA expression on a cell type other than CD8(+) T lymphocytes, was required. Collectively, our data demonstrate that the function of the BTLA-HVEM pathway is not limited to inhibitory signaling in T lymphocytes, and instead, that BTLA can provide crucial, HVEM-dependent signals that promote survival of antigen activated CD8(+) T cell during bacterial infection.