Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
Front Aging Neurosci ; 16: 1420290, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38934017

RESUMO

Background: Changes in everyday functioning constitute a clinically meaningful outcome, even in the early stages of Alzheimer's disease. Performance-based assessments of everyday functioning might help uncover these early changes. We aimed to investigate how changes over time in everyday functioning relate to tau and amyloid in cognitively unimpaired older adults. Methods: Seventy-six cognitively unimpaired participants (72 ± 6 years old, 61% female) completed multiple Harvard Automated Phone Task (APT) assessments over 2.0 ± 0.9 years. The Harvard APT consists of three tasks, performed through an automated phone system, in which participants refill a prescription (APT-Script), select a new primary care physician (APT-PCP), and transfer money to pay a bill (APT-Bank). Participants underwent Pittsburgh compound-B and flortaucipir positron emission tomography scans at baseline. We computed distribution volume ratios for a cortical amyloid aggregate and standardized uptake volume ratios for medial temporal and neocortical tau regions. In separate linear mixed models, baseline amyloid by time and tau by time interactions were used to predict longitudinal changes in performance on the Harvard APT tasks. Three-way amyloid by tau by time interactions were also investigated. Lastly, we examined associations between tau and change in Harvard APT scores in exploratory voxel-wise whole-brain analyses. All models were adjusted for age, sex, and education. Results: Amyloid [unstandardized partial regression coefficient estimate (ß) = -0.007, 95% confidence interval (95% CI) = (-0.013, -0.001)], and medial temporal tau [ß = -0.013, 95% CI = (-0.022, -0.004)] were associated with change over time in years on APT-PCP only, i.e., higher baseline amyloid and higher baseline tau were associated with steeper rate of decline of APT-PCP. Voxel-wise analyses showed widespread associations between tau and change in APT-PCP scores over time. Conclusion: Even among cognitively unimpaired older adults, changes over time in the performance of cognitively complex everyday activities relate to cortical amyloid and widespread cerebral tau burden at baseline. These findings support the link between Alzheimer's disease pathology and function and highlight the importance of measuring everyday functioning in preclinical disease stages.

2.
bioRxiv ; 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38746192

RESUMO

OBJECTIVE: Recombinant monoclonal therapeutic antibodies like lecanemab, which target amyloid beta in Alzheimer's disease, offer a promising approach for modifying the disease progression. Due to its relatively short half-life, Lecanemab, administered as a bi-monthly infusion (typically 10mg/kg) has a relatively brief half-life. Interaction with abundant plasma proteins binder in the bloodstream can affect pharmacokinetics of drugs, including their half-life. In this study we investigated potential plasma protein binding interaction to lecanemab using lecanemab biosimilar. METHODS: Lecanemab biosimilar used in this study was based on publicly available sequences. ELISA and Western blotting were used to assess lecanemab biosimilar immunoreactivity in the fractions human plasma sample obtained through size exclusion chromatography. The binding of lecanemab biosimilar to candidate binders was confirmed by Western blotting, ELISA, and surface plasmon resonance analysis. RESULTS: Using a combination of equilibrium dialysis, ELISA, and Western blotting in human plasma, we first describe the presence of likely plasma protein binding partner to lecanemab biosimilar, and then identify fibrinogen as one of them. Utilizing surface plasmon resonance, we confirmed that lecanemab biosimilar does bind to fibrinogen, although with lower affinity than to monomeric amyloid beta. CONCLUSION: In the context of lecanemab therapy, these results imply that fibrinogen levels could impact the levels of free antibodies in the bloodstream and that fibrinogen might serve as a reservoir for lecanemab. More broadly, these results indicate that plasma protein binding may be an important consideration when clinically utilizing therapeutic antibodies in neurodegenerative disease.

3.
Brain Commun ; 6(3): fcae159, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784820

RESUMO

Approximately 5% of Alzheimer's disease patients develop symptoms before age 65 (early-onset Alzheimer's disease), with either sporadic (sporadic early-onset Alzheimer's disease) or dominantly inherited (dominantly inherited Alzheimer's disease) presentations. Both sporadic early-onset Alzheimer's disease and dominantly inherited Alzheimer's disease are characterized by brain amyloid-ß accumulation, tau tangles, hypometabolism and neurodegeneration, but differences in topography and magnitude of these pathological changes are not fully elucidated. In this study, we directly compared patterns of amyloid-ß plaque deposition and glucose hypometabolism in sporadic early-onset Alzheimer's disease and dominantly inherited Alzheimer's disease individuals. Our analysis included 134 symptomatic sporadic early-onset Alzheimer's disease amyloid-Positron Emission Tomography (PET)-positive cases from the University of California, San Francisco, Alzheimer's Disease Research Center (mean ± SD age 59.7 ± 5.6 years), 89 symptomatic dominantly inherited Alzheimer's disease cases (age 45.8 ± 9.3 years) and 102 cognitively unimpaired non-mutation carriers from the Dominantly Inherited Alzheimer Network study (age 44.9 ± 9.2). Each group underwent clinical and cognitive examinations, 11C-labelled Pittsburgh Compound B-PET and structural MRI. 18F-Fluorodeoxyglucose-PET was also available for most participants. Positron Emission Tomography scans from both studies were uniformly processed to obtain a standardized uptake value ratio (PIB50-70 cerebellar grey reference and FDG30-60 pons reference) images. Statistical analyses included pairwise global and voxelwise group comparisons and group-independent component analyses. Analyses were performed also adjusting for covariates including age, sex, Mini-Mental State Examination, apolipoprotein ε4 status and average composite cortical of standardized uptake value ratio. Compared with dominantly inherited Alzheimer's disease, sporadic early-onset Alzheimer's disease participants were older at age of onset (mean ± SD, 54.8 ± 8.2 versus 41.9 ± 8.2, Cohen's d = 1.91), with more years of education (16.4 ± 2.8 versus 13.5 ± 3.2, d = 1) and more likely to be apolipoprotein ε4 carriers (54.6% ε4 versus 28.1%, Cramer's V = 0.26), but similar Mini-Mental State Examination (20.6 ± 6.1 versus 21.2 ± 7.4, d = 0.08). Sporadic early-onset Alzheimer's disease had higher global cortical Pittsburgh Compound B-PET binding (mean ± SD standardized uptake value ratio, 1.92 ± 0.29 versus 1.58 ± 0.44, d = 0.96) and greater global cortical 18F-fluorodeoxyglucose-PET hypometabolism (mean ± SD standardized uptake value ratio, 1.32 ± 0.1 versus 1.39 ± 0.19, d = 0.48) compared with dominantly inherited Alzheimer's disease. Fully adjusted comparisons demonstrated relatively higher Pittsburgh Compound B-PET standardized uptake value ratio in the medial occipital, thalami, basal ganglia and medial/dorsal frontal regions in dominantly inherited Alzheimer's disease versus sporadic early-onset Alzheimer's disease. Sporadic early-onset Alzheimer's disease showed relatively greater 18F-fluorodeoxyglucose-PET hypometabolism in Alzheimer's disease signature temporoparietal regions and caudate nuclei, whereas dominantly inherited Alzheimer's disease showed relatively greater hypometabolism in frontal white matter and pericentral regions. Independent component analyses largely replicated these findings by highlighting common and unique Pittsburgh Compound B-PET and 18F-fluorodeoxyglucose-PET binding patterns. In summary, our findings suggest both common and distinct patterns of amyloid and glucose hypometabolism in sporadic and dominantly inherited early-onset Alzheimer's disease.

4.
Alzheimers Dement ; 20(6): 4351-4365, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38666355

RESUMO

INTRODUCTION: Amyloid beta and tau pathology are the hallmarks of sporadic Alzheimer's disease (AD) and autosomal dominant AD (ADAD). However, Lewy body pathology (LBP) is found in ≈ 50% of AD and ADAD brains. METHODS: Using an α-synuclein seed amplification assay (SAA) in cerebrospinal fluid (CSF) from asymptomatic (n = 26) and symptomatic (n = 27) ADAD mutation carriers, including 12 with known neuropathology, we investigated the timing of occurrence and prevalence of SAA positive reactivity in ADAD in vivo. RESULTS: No asymptomatic participant and only 11% (3/27) of the symptomatic patients tested SAA positive. Neuropathology revealed LBP in 10/12 cases, primarily affecting the amygdala or the olfactory areas. In the latter group, only the individual with diffuse LBP reaching the neocortex showed α-synuclein seeding activity in CSF in vivo. DISCUSSION: Results suggest that in ADAD LBP occurs later than AD pathology and often as amygdala- or olfactory-predominant LBP, for which CSF α-synuclein SAA has low sensitivity. HIGHLIGHTS: Cerebrospinal fluid (CSF) real-time quaking-induced conversion (RT-QuIC) detects misfolded α-synuclein in ≈ 10% of symptomatic autosomal dominant Alzheimer's disease (ADAD) patients. CSF RT-QuIC does not detect α-synuclein seeding activity in asymptomatic mutation carriers. Lewy body pathology (LBP) in ADAD mainly occurs as olfactory only or amygdala-predominant variants. LBP develops late in the disease course in ADAD. CSF α-synuclein RT-QuIC has low sensitivity for focal, low-burden LBP.


Assuntos
Doença de Alzheimer , Corpos de Lewy , alfa-Sinucleína , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/líquido cefalorraquidiano , alfa-Sinucleína/líquido cefalorraquidiano , alfa-Sinucleína/genética , Feminino , Masculino , Pessoa de Meia-Idade , Corpos de Lewy/patologia , Idoso , Mutação , Encéfalo/patologia , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Peptídeos beta-Amiloides/metabolismo , Progressão da Doença
5.
Lancet Neurol ; 23(5): 500-510, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631766

RESUMO

BACKGROUND: In people with genetic forms of Alzheimer's disease, such as in Down syndrome and autosomal-dominant Alzheimer's disease, pathological changes specific to Alzheimer's disease (ie, accumulation of amyloid and tau) occur in the brain at a young age, when comorbidities related to ageing are not present. Studies including these cohorts could, therefore, improve our understanding of the early pathogenesis of Alzheimer's disease and be useful when designing preventive interventions targeted at disease pathology or when planning clinical trials. We compared the magnitude, spatial extent, and temporal ordering of tau spread in people with Down syndrome and autosomal-dominant Alzheimer's disease. METHODS: In this cross-sectional observational study, we included participants (aged ≥25 years) from two cohort studies. First, we collected data from the Dominantly Inherited Alzheimer's Network studies (DIAN-OBS and DIAN-TU), which include carriers of autosomal-dominant Alzheimer's disease genetic mutations and non-carrier familial controls recruited in Australia, Europe, and the USA between 2008 and 2022. Second, we collected data from the Alzheimer Biomarkers Consortium-Down Syndrome study, which includes people with Down syndrome and sibling controls recruited from the UK and USA between 2015 and 2021. Controls from the two studies were combined into a single group of familial controls. All participants had completed structural MRI and tau PET (18F-flortaucipir) imaging. We applied Gaussian mixture modelling to identify regions of high tau PET burden and regions with the earliest changes in tau binding for each cohort separately. We estimated regional tau PET burden as a function of cortical amyloid burden for both cohorts. Finally, we compared the temporal pattern of tau PET burden relative to that of amyloid. FINDINGS: We included 137 people with Down syndrome (mean age 38·5 years [SD 8·2], 74 [54%] male, and 63 [46%] female), 49 individuals with autosomal-dominant Alzheimer's disease (mean age 43·9 years [11·2], 22 [45%] male, and 27 [55%] female), and 85 familial controls, pooled from across both studies (mean age 41·5 years [12·1], 28 [33%] male, and 57 [67%] female), who satisfied the PET quality-control procedure for tau-PET imaging processing. 134 (98%) people with Down syndrome, 44 (90%) with autosomal-dominant Alzheimer's disease, and 77 (91%) controls also completed an amyloid PET scan within 3 years of tau PET imaging. Spatially, tau PET burden was observed most frequently in subcortical and medial temporal regions in people with Down syndrome, and within the medial temporal lobe in people with autosomal-dominant Alzheimer's disease. Across the brain, people with Down syndrome had greater concentrations of tau for a given level of amyloid compared with people with autosomal-dominant Alzheimer's disease. Temporally, increases in tau were more strongly associated with increases in amyloid for people with Down syndrome compared with autosomal-dominant Alzheimer's disease. INTERPRETATION: Although the general progression of amyloid followed by tau is similar for people Down syndrome and people with autosomal-dominant Alzheimer's disease, we found subtle differences in the spatial distribution, timing, and magnitude of the tau burden between these two cohorts. These differences might have important implications; differences in the temporal pattern of tau accumulation might influence the timing of drug administration in clinical trials, whereas differences in the spatial pattern and magnitude of tau burden might affect disease progression. FUNDING: None.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Síndrome de Down , Masculino , Feminino , Humanos , Adulto , Doença de Alzheimer/genética , Estudos Transversais , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Amiloide , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Disfunção Cognitiva/patologia
6.
JAMA Neurol ; 81(6): 582-593, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38683602

RESUMO

Importance: Effects of antiamyloid agents, targeting either fibrillar or soluble monomeric amyloid peptides, on downstream biomarkers in cerebrospinal fluid (CSF) and plasma are largely unknown in dominantly inherited Alzheimer disease (DIAD). Objective: To investigate longitudinal biomarker changes of synaptic dysfunction, neuroinflammation, and neurodegeneration in individuals with DIAD who are receiving antiamyloid treatment. Design, Setting, and Participants: From 2012 to 2019, the Dominantly Inherited Alzheimer Network Trial Unit (DIAN-TU-001) study, a double-blind, placebo-controlled, randomized clinical trial, investigated gantenerumab and solanezumab in DIAD. Carriers of gene variants were assigned 3:1 to either drug or placebo. The present analysis was conducted from April to June 2023. DIAN-TU-001 spans 25 study sites in 7 countries. Biofluids and neuroimaging from carriers of DIAD gene variants in the gantenerumab, solanezumab, and placebo groups were analyzed. Interventions: In 2016, initial dosing of gantenerumab, 225 mg (subcutaneously every 4 weeks) was increased every 8 weeks up to 1200 mg. In 2017, initial dosing of solanezumab, 400 mg (intravenously every 4 weeks) was increased up to 1600 mg every 4 weeks. Main Outcomes and Measures: Longitudinal changes in CSF levels of neurogranin, soluble triggering receptor expressed on myeloid cells 2 (sTREM2), chitinase 3-like 1 protein (YKL-40), glial fibrillary acidic protein (GFAP), neurofilament light protein (NfL), and plasma levels of GFAP and NfL. Results: Of 236 eligible participants screened, 43 were excluded. A total of 142 participants (mean [SD] age, 44 [10] years; 72 female [51%]) were included in the study (gantenerumab, 52 [37%]; solanezumab, 50 [35%]; placebo, 40 [28%]). Relative to placebo, gantenerumab significantly reduced CSF neurogranin level at year 4 (mean [SD] ß = -242.43 [48.04] pg/mL; P < .001); reduced plasma GFAP level at year 1 (mean [SD] ß = -0.02 [0.01] ng/mL; P = .02), year 2 (mean [SD] ß = -0.03 [0.01] ng/mL; P = .002), and year 4 (mean [SD] ß = -0.06 [0.02] ng/mL; P < .001); and increased CSF sTREM2 level at year 2 (mean [SD] ß = 1.12 [0.43] ng/mL; P = .01) and year 4 (mean [SD] ß = 1.06 [0.52] ng/mL; P = .04). Solanezumab significantly increased CSF NfL (log) at year 4 (mean [SD] ß = 0.14 [0.06]; P = .02). Correlation analysis for rates of change found stronger correlations between CSF markers and fluid markers with Pittsburgh compound B positron emission tomography for solanezumab and placebo. Conclusions and Relevance: This randomized clinical trial supports the importance of fibrillar amyloid reduction in multiple AD-related processes of neuroinflammation and neurodegeneration in CSF and plasma in DIAD. Additional studies of antiaggregated amyloid therapies in sporadic AD and DIAD are needed to determine the utility of nonamyloid biomarkers in determining disease modification. Trial Registration: ClinicalTrials.gov Identifier: NCT04623242.


Assuntos
Doença de Alzheimer , Anticorpos Monoclonais Humanizados , Biomarcadores , Humanos , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Feminino , Masculino , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/sangue , Método Duplo-Cego , Pessoa de Meia-Idade , Biomarcadores/líquido cefalorraquidiano , Biomarcadores/sangue , Adulto , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Proteína 1 Semelhante à Quitinase-3/sangue , Proteína 1 Semelhante à Quitinase-3/líquido cefalorraquidiano , Idoso , Proteínas de Neurofilamentos/líquido cefalorraquidiano , Proteínas de Neurofilamentos/sangue
8.
J Cereb Blood Flow Metab ; : 271678X241237624, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38452039

RESUMO

In addition to amyloid and tau pathology, elevated systemic vascular risk, white matter injury, and reduced cerebral blood flow contribute to late-life cognitive decline. Given the strong collinearity among these parameters, we proposed a framework to extract the independent latent features underlying cognitive decline using the Harvard Aging Brain Study (N = 166 cognitively unimpaired older adults at baseline). We used the following measures from the baseline visit: cortical amyloid, inferior temporal cortex tau, relative cerebral blood flow, white matter hyperintensities, peak width of skeletonized mean diffusivity, and Framingham Heart Study cardiovascular disease risk. We used exploratory factor analysis to extract orthogonal factors from these variables and their interactions. These factors were used in a regression model to explain longitudinal Preclinical Alzheimer Cognitive Composite-5 (PACC) decline (follow-up = 8.5 ±2.7 years). We next examined whether gray matter volume atrophy acts as a mediator of factors and PACC decline. Latent factors of systemic vascular risk, white matter injury, and relative cerebral blood flow independently explain cognitive decline beyond amyloid and tau. Gray matter volume atrophy mediates these associations with the strongest effect on white matter injury. These results suggest that systemic vascular risk contributes to cognitive decline beyond current markers of cerebrovascular injury, amyloid, and tau.

9.
Brain ; 147(6): 2158-2168, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38315899

RESUMO

Vascular dysfunction is increasingly recognized as an important contributor to the pathogenesis of Alzheimer's disease. Alterations in vascular endothelial growth factor (VEGF) pathways have been implicated as potential mechanisms. However, the specific impact of VEGF proteins in preclinical Alzheimer's disease and their relationships with other Alzheimer's disease and vascular pathologies during this critical early period remain to be elucidated. We included 317 older adults from the Harvard Aging Brain Study, a cohort of individuals who were cognitively unimpaired at baseline and followed longitudinally for up to 12 years. Baseline VEGF family protein levels (VEGFA, VEGFC, VEGFD, PGF and FLT1) were measured in fasting plasma using high-sensitivity immunoassays. Using linear mixed effects models, we examined the interactive effects of baseline plasma VEGF proteins and amyloid PET burden (Pittsburgh Compound-B) on longitudinal cognition (Preclinical Alzheimer Cognitive Composite-5). We further investigated if effects on cognition were mediated by early neocortical tau accumulation (flortaucipir PET burden in the inferior temporal cortex) or hippocampal atrophy. Lastly, we examined the impact of adjusting for baseline cardiovascular risk score or white matter hyperintensity volume. Baseline plasma VEGFA and PGF each showed a significant interaction with amyloid burden on prospective cognitive decline. Specifically, low VEGFA and high PGF were associated with greater cognitive decline in individuals with elevated amyloid, i.e. those on the Alzheimer's disease continuum. Concordantly, low VEGFA and high PGF were associated with accelerated longitudinal tau accumulation in those with elevated amyloid. Moderated mediation analyses confirmed that accelerated tau accumulation fully mediated the effects of low VEGFA and partially mediated (31%) the effects of high PGF on faster amyloid-related cognitive decline. The effects of VEGFA and PGF on tau and cognition remained significant after adjusting for cardiovascular risk score or white matter hyperintensity volume. There were concordant but non-significant associations with longitudinal hippocampal atrophy. Together, our findings implicate low VEGFA and high PGF in accelerating early neocortical tau pathology and cognitive decline in preclinical Alzheimer's disease. Additionally, our results underscore the potential of these minimally-invasive plasma biomarkers to inform the risk of Alzheimer's disease progression in the preclinical population. Importantly, VEGFA and PGF appear to capture distinct effects from vascular risks and cerebrovascular injury. This highlights their potential as new therapeutic targets, in combination with anti-amyloid and traditional vascular risk reduction therapies, to slow the trajectory of preclinical Alzheimer's disease and delay or prevent the onset of cognitive decline.


Assuntos
Doença de Alzheimer , Cognição , Fator A de Crescimento do Endotélio Vascular , Proteínas tau , Humanos , Doença de Alzheimer/sangue , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Masculino , Feminino , Fator A de Crescimento do Endotélio Vascular/sangue , Fator A de Crescimento do Endotélio Vascular/metabolismo , Idoso , Proteínas tau/metabolismo , Proteínas tau/sangue , Estudos Longitudinais , Idoso de 80 Anos ou mais , Cognição/fisiologia , Tomografia por Emissão de Pósitrons , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/sangue , Biomarcadores/sangue
10.
Front Neurosci ; 18: 1347320, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38344467

RESUMO

Cerebral amyloid angiopathy (CAA) is a type of cerebrovascular disorder characterised by the accumulation of amyloid within the leptomeninges and small/medium-sized cerebral blood vessels. Typically, cerebral haemorrhages are one of the first clinical manifestations of CAA, posing a considerable challenge to the timely diagnosis of CAA as the bleedings only occur during the later disease stages. Fluid biomarkers may change prior to imaging biomarkers, and therefore, they could be the future of CAA diagnosis. Additionally, they can be used as primary outcome markers in prospective clinical trials. Among fluid biomarkers, blood-based biomarkers offer a distinct advantage over cerebrospinal fluid biomarkers as they do not require a procedure as invasive as a lumbar puncture. This article aimed to provide an overview of the present clinical data concerning fluid biomarkers associated with CAA and point out the direction of future studies. Among all the biomarkers discussed, amyloid ß, neurofilament light chain, matrix metalloproteinases, complement 3, uric acid, and lactadherin demonstrated the most promising evidence. However, the field of fluid biomarkers for CAA is an under-researched area, and in most cases, there are only one or two studies on each of the biomarkers mentioned in this review. Additionally, a small sample size is a common limitation of the discussed studies. Hence, it is hard to reach a solid conclusion on the clinical significance of each biomarker at different stages of the disease or in various subpopulations of CAA. In order to overcome this issue, larger longitudinal and multicentered studies are needed.

11.
Alzheimers Dement ; 20(1): 47-62, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37740921

RESUMO

INTRODUCTION: Studies suggest distinct differences in the development, presentation, progression, and response to treatment of Alzheimer's disease (AD) between females and males. We investigated sex differences in cognition, neuroimaging, and fluid biomarkers in dominantly inherited AD (DIAD). METHODS: Three hundred twenty-five mutation carriers (55% female) and one hundred eighty-six non-carriers (58% female) of the Dominantly Inherited Alzheimer Network Observational Study were analyzed. Linear mixed models and Spearman's correlation explored cross-sectional sex differences in cognition, cerebrospinal fluid (CSF) biomarkers, Pittsburgh compound B positron emission tomography (11 C-PiB PET) and structural magnetic resonance imaging (MRI). RESULTS: Female carriers performed better than males on delayed recall and processing speed despite similar hippocampal volumes. As the disease progressed, symptomatic females revealed higher increases in MRI markers of neurodegeneration and memory impairment. PiB PET and established CSF AD markers revealed no sex differences. DISCUSSION: Our findings suggest an initial cognitive reserve in female carriers followed by a pronounced increase in neurodegeneration coupled with worse performance on delayed recall at later stages of DIAD.


Assuntos
Doença de Alzheimer , Humanos , Feminino , Masculino , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Doença de Alzheimer/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Estudos Transversais , Caracteres Sexuais , Tomografia por Emissão de Pósitrons , Mutação/genética , Biomarcadores
12.
Alzheimers Dement ; 20(3): 1573-1585, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38041855

RESUMO

INTRODUCTION: A wide array of post-translational modifications of the tau protein occurs in Alzheimer's disease (AD) and they are critical to pathogenesis and biomarker development. Several promising tau markers, pT181, pT217, and pT231, rely on increased phosphorylation within a common molecular motif threonine-proline-proline (TPP). METHODS: We validated new and existing antibodies against pT217, pT231, pT175, and pT181, then combined immunohistochemistry (IHC) and immunoassays (ELISA) to broadly examine the phosphorylation of the tau TPP motif in AD brains. RESULTS: The tau burden, as examined by IHC and ELISA, correlates to Braak stages across all TPP sites. Moreover, we observed regional variability across four TPP motif phosphorylation sites in multiple brains of sporadic AD patients. DISCUSSION: We conclude that there is an elevation of TPP tau phosphorylation in AD brains as disease advances. The regional variability of pTPP tau suggests that examining different phosphorylation sites is essential for a comprehensive assessment of tau pathology.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Proteínas tau/metabolismo , Fosforilação , Treonina/metabolismo , Encéfalo/patologia , Prolina/metabolismo
13.
Alzheimers Dement ; 20(2): 1038-1049, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37855447

RESUMO

INTRODUCTION: This study aimed to investigate the influence of the overall Alzheimer's disease (AD) genetic architecture on Down syndrome (DS) status, cognitive measures, and cerebrospinal fluid (CSF) biomarkers. METHODS: AD polygenic risk scores (PRS) were tested for association with DS-related traits. RESULTS: The AD risk PRS was associated with disease status in several cohorts of sporadic late- and early-onset and familial late-onset AD, but not in familial early-onset AD or DS. On the other hand, lower DS Mental Status Examination memory scores were associated with higher PRS, independent of intellectual disability and APOE (PRS including APOE, PRSAPOE , p = 2.84 × 10-4 ; PRS excluding APOE, PRSnonAPOE , p = 1.60 × 10-2 ). PRSAPOE exhibited significant associations with Aß42, tTau, pTau, and Aß42/40 ratio in DS. DISCUSSION: These data indicate that the AD genetic architecture influences cognitive and CSF phenotypes in DS adults, supporting common pathways that influence memory decline in both traits. HIGHLIGHTS: Examination of the polygenic risk of AD in DS presented here is the first of its kind. AD PRS influences memory aspects in DS individuals, independently of APOE genotype. These results point to an overlap between the genes and pathways that leads to AD and those that influence dementia and memory decline in the DS population. APOE ε4 is linked to DS cognitive decline, expanding cognitive insights in adults.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Síndrome de Down , Adulto , Humanos , Doença de Alzheimer/diagnóstico , Síndrome de Down/genética , Estratificação de Risco Genético , Apolipoproteínas E/genética , Fenótipo , Disfunção Cognitiva/diagnóstico , Biomarcadores/líquido cefalorraquidiano , Cognição , Transtornos da Memória , Peptídeos beta-Amiloides/líquido cefalorraquidiano
14.
Mol Neurodegener ; 18(1): 98, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38111006

RESUMO

BACKGROUND: "Brain-predicted age" estimates biological age from complex, nonlinear features in neuroimaging scans. The brain age gap (BAG) between predicted and chronological age is elevated in sporadic Alzheimer disease (AD), but is underexplored in autosomal dominant AD (ADAD), in which AD progression is highly predictable with minimal confounding age-related co-pathology. METHODS: We modeled BAG in 257 deeply-phenotyped ADAD mutation-carriers and 179 non-carriers from the Dominantly Inherited Alzheimer Network using minimally-processed structural MRI scans. We then tested whether BAG differed as a function of mutation and cognitive status, or estimated years until symptom onset, and whether it was associated with established markers of amyloid (PiB PET, CSF amyloid-ß-42/40), phosphorylated tau (CSF and plasma pTau-181), neurodegeneration (CSF and plasma neurofilament-light-chain [NfL]), and cognition (global neuropsychological composite and CDR-sum of boxes). We compared BAG to other MRI measures, and examined heterogeneity in BAG as a function of ADAD mutation variants, APOE Îµ4 carrier status, sex, and education. RESULTS: Advanced brain aging was observed in mutation-carriers approximately 7 years before expected symptom onset, in line with other established structural indicators of atrophy. BAG was moderately associated with amyloid PET and strongly associated with pTau-181, NfL, and cognition in mutation-carriers. Mutation variants, sex, and years of education contributed to variability in BAG. CONCLUSIONS: We extend prior work using BAG from sporadic AD to ADAD, noting consistent results. BAG associates well with markers of pTau, neurodegeneration, and cognition, but to a lesser extent, amyloid, in ADAD. BAG may capture similar signal to established MRI measures. However, BAG offers unique benefits in simplicity of data processing and interpretation. Thus, results in this unique ADAD cohort with few age-related confounds suggest that brain aging attributable to AD neuropathology can be accurately quantified from minimally-processed MRI.


Assuntos
Doença de Alzheimer , Humanos , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Amiloide , Envelhecimento , Biomarcadores , Tomografia por Emissão de Pósitrons , Proteínas tau/genética , Proteínas tau/metabolismo
15.
Neurology ; 101(24): e2533-e2544, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37968130

RESUMO

BACKGROUND AND OBJECTIVES: Hippocampal volume (HV) atrophy is a well-known biomarker of memory impairment. However, compared with ß-amyloid (Aß) and tau imaging, it is less specific for Alzheimer disease (AD) pathology. This lack of specificity could provide indirect information about potential copathologies that cannot be observed in vivo. In this prospective cohort study, we aimed to assess the associations among Aß, tau, HV, and cognition, measured over a 10-year follow-up period with a special focus on the contributions of HV atrophy to cognition after adjusting for Aß and tau. METHODS: We enrolled 283 older adults without dementia or overt cognitive impairment in the Harvard Aging Brain Study. In this report, we only analyzed data from individuals with available longitudinal imaging and cognition data. Serial MRI (follow-up duration 1.3-7.0 years), neocortical Aß imaging on Pittsburgh Compound B PET scans (1.9-8.5 years), entorhinal and inferior temporal tau on flortaucipir PET scans (0.8-6.0 years), and the Preclinical Alzheimer Cognitive Composite (3.0-9.8 years) were prospectively collected. We evaluated the longitudinal associations between Aß, tau, volume, and cognition data and investigated sequential models to test the contribution of each biomarker to cognitive decline. RESULTS: We analyzed data from 128 clinically normal older adults, including 72 (56%) women and 56 (44%) men; median age at inclusion was 73 years (range 63-87). Thirty-four participants (27%) exhibited an initial high-Aß burden on PET imaging. Faster HV atrophy was correlated with faster cognitive decline (R2 = 0.28, p < 0.0001). When comparing all biomarkers, HV slope was associated with cognitive decline independently of Aß and tau measures, uniquely accounting for 10% of the variance. Altogether, 45% of the variance in cognitive decline was explained by combining the change measures in the different imaging biomarkers. DISCUSSION: In older adults, longitudinal hippocampal atrophy is associated with cognitive decline, independently of Aß or tau, suggesting that non-AD pathologies (e.g., TDP-43, vascular) may contribute to hippocampal-mediated cognitive decline. Serial HV measures, in addition to AD-specific biomarkers, may help evaluate the contribution of non-AD pathologies that cannot be measured otherwise in vivo.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Masculino , Humanos , Feminino , Idoso , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Proteínas tau , Estudos Prospectivos , Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides , Disfunção Cognitiva/diagnóstico por imagem , Biomarcadores , Atrofia , Tomografia por Emissão de Pósitrons
16.
Brain Commun ; 5(6): fcad280, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37942088

RESUMO

Approximately 5% of Alzheimer's disease cases have an early age at onset (<65 years), with 5-10% of these cases attributed to dominantly inherited mutations and the remainder considered as sporadic. The extent to which dominantly inherited and sporadic early-onset Alzheimer's disease overlap is unknown. In this study, we explored the clinical, cognitive and biomarker profiles of early-onset Alzheimer's disease, focusing on commonalities and distinctions between dominantly inherited and sporadic cases. Our analysis included 117 participants with dominantly inherited Alzheimer's disease enrolled in the Dominantly Inherited Alzheimer Network and 118 individuals with sporadic early-onset Alzheimer's disease enrolled at the University of California San Francisco Alzheimer's Disease Research Center. Baseline differences in clinical and biomarker profiles between both groups were compared using t-tests. Differences in the rates of decline were compared using linear mixed-effects models. Individuals with dominantly inherited Alzheimer's disease exhibited an earlier age-at-symptom onset compared with the sporadic group [43.4 (SD ± 8.5) years versus 54.8 (SD ± 5.0) years, respectively, P < 0.001]. Sporadic cases showed a higher frequency of atypical clinical presentations relative to dominantly inherited (56.8% versus 8.5%, respectively) and a higher frequency of APOE-ε4 (50.0% versus 28.2%, P = 0.001). Compared with sporadic early onset, motor manifestations were higher in the dominantly inherited cohort [32.5% versus 16.9% at baseline (P = 0.006) and 46.1% versus 25.4% at last visit (P = 0.001)]. At baseline, the sporadic early-onset group performed worse on category fluency (P < 0.001), Trail Making Test Part B (P < 0.001) and digit span (P < 0.001). Longitudinally, both groups demonstrated similar rates of cognitive and functional decline in the early stages. After 10 years from symptom onset, dominantly inherited participants experienced a greater decline as measured by Clinical Dementia Rating Sum of Boxes [3.63 versus 1.82 points (P = 0.035)]. CSF amyloid beta-42 levels were comparable [244 (SD ± 39.3) pg/ml dominantly inherited versus 296 (SD ± 24.8) pg/ml sporadic early onset, P = 0.06]. CSF phosphorylated tau at threonine 181 levels were higher in the dominantly inherited Alzheimer's disease cohort (87.3 versus 59.7 pg/ml, P = 0.005), but no significant differences were found for t-tau levels (P = 0.35). In summary, sporadic and inherited Alzheimer's disease differed in baseline profiles; sporadic early onset is best distinguished from dominantly inherited by later age at onset, high frequency of atypical clinical presentations and worse executive performance at baseline. Despite these differences, shared pathways in longitudinal clinical decline and CSF biomarkers suggest potential common therapeutic targets for both populations, offering valuable insights for future research and clinical trial design.

17.
JAMA Neurol ; 80(12): 1353-1363, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37843849

RESUMO

Importance: Increased white matter hyperintensity (WMH) volume is a common magnetic resonance imaging (MRI) finding in both autosomal dominant Alzheimer disease (ADAD) and late-onset Alzheimer disease (LOAD), but it remains unclear whether increased WMH along the AD continuum is reflective of AD-intrinsic processes or secondary to elevated systemic vascular risk factors. Objective: To estimate the associations of neurodegeneration and parenchymal and vessel amyloidosis with WMH accumulation and investigate whether systemic vascular risk is associated with WMH beyond these AD-intrinsic processes. Design, Setting, and Participants: This cohort study used data from 3 longitudinal cohort studies conducted in tertiary and community-based medical centers-the Dominantly Inherited Alzheimer Network (DIAN; February 2010 to March 2020), the Alzheimer's Disease Neuroimaging Initiative (ADNI; July 2007 to September 2021), and the Harvard Aging Brain Study (HABS; September 2010 to December 2019). Main Outcome and Measures: The main outcomes were the independent associations of neurodegeneration (decreases in gray matter volume), parenchymal amyloidosis (assessed by amyloid positron emission tomography), and vessel amyloidosis (evidenced by cerebral microbleeds [CMBs]) with cross-sectional and longitudinal WMH. Results: Data from 3960 MRI sessions among 1141 participants were included: 252 pathogenic variant carriers from DIAN (mean [SD] age, 38.4 [11.2] years; 137 [54%] female), 571 older adults from ADNI (mean [SD] age, 72.8 [7.3] years; 274 [48%] female), and 318 older adults from HABS (mean [SD] age, 72.4 [7.6] years; 194 [61%] female). Longitudinal increases in WMH volume were greater in individuals with CMBs compared with those without (DIAN: t = 3.2 [P = .001]; ADNI: t = 2.7 [P = .008]), associated with longitudinal decreases in gray matter volume (DIAN: t = -3.1 [P = .002]; ADNI: t = -5.6 [P < .001]; HABS: t = -2.2 [P = .03]), greater in older individuals (DIAN: t = 6.8 [P < .001]; ADNI: t = 9.1 [P < .001]; HABS: t = 5.4 [P < .001]), and not associated with systemic vascular risk (DIAN: t = 0.7 [P = .40]; ADNI: t = 0.6 [P = .50]; HABS: t = 1.8 [P = .06]) in individuals with ADAD and LOAD after accounting for age, gray matter volume, CMB presence, and amyloid burden. In older adults without CMBs at baseline, greater WMH volume was associated with CMB development during longitudinal follow-up (Cox proportional hazards regression model hazard ratio, 2.63; 95% CI, 1.72-4.03; P < .001). Conclusions and Relevance: The findings suggest that increased WMH volume in AD is associated with neurodegeneration and parenchymal and vessel amyloidosis but not with elevated systemic vascular risk. Additionally, increased WMH volume may represent an early sign of vessel amyloidosis preceding the emergence of CMBs.


Assuntos
Doença de Alzheimer , Amiloidose , Substância Branca , Humanos , Feminino , Idoso , Adulto , Masculino , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Doença de Alzheimer/complicações , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Estudos Longitudinais , Estudos de Coortes , Estudos Transversais , Imageamento por Ressonância Magnética , Amiloidose/complicações , Proteínas Amiloidogênicas
18.
Nat Med ; 29(8): 1979-1988, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37550416

RESUMO

Alzheimer's disease (AD) pathology develops many years before the onset of cognitive symptoms. Two pathological processes-aggregation of the amyloid-ß (Aß) peptide into plaques and the microtubule protein tau into neurofibrillary tangles (NFTs)-are hallmarks of the disease. However, other pathological brain processes are thought to be key disease mediators of Aß plaque and NFT pathology. How these additional pathologies evolve over the course of the disease is currently unknown. Here we show that proteomic measurements in autosomal dominant AD cerebrospinal fluid (CSF) linked to brain protein coexpression can be used to characterize the evolution of AD pathology over a timescale spanning six decades. SMOC1 and SPON1 proteins associated with Aß plaques were elevated in AD CSF nearly 30 years before the onset of symptoms, followed by changes in synaptic proteins, metabolic proteins, axonal proteins, inflammatory proteins and finally decreases in neurosecretory proteins. The proteome discriminated mutation carriers from noncarriers before symptom onset as well or better than Aß and tau measures. Our results highlight the multifaceted landscape of AD pathophysiology and its temporal evolution. Such knowledge will be critical for developing precision therapeutic interventions and biomarkers for AD beyond those associated with Aß and tau.


Assuntos
Doença de Alzheimer , Proteômica , Humanos , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Biomarcadores/metabolismo , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Mutação , Idade de Início
19.
Nat Neurosci ; 26(8): 1449-1460, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37429916

RESUMO

The Dominantly Inherited Alzheimer Network (DIAN) is an international collaboration studying autosomal dominant Alzheimer disease (ADAD). ADAD arises from mutations occurring in three genes. Offspring from ADAD families have a 50% chance of inheriting their familial mutation, so non-carrier siblings can be recruited for comparisons in case-control studies. The age of onset in ADAD is highly predictable within families, allowing researchers to estimate an individual's point in the disease trajectory. These characteristics allow candidate AD biomarker measurements to be reliably mapped during the preclinical phase. Although ADAD represents a small proportion of AD cases, understanding neuroimaging-based changes that occur during the preclinical period may provide insight into early disease stages of 'sporadic' AD also. Additionally, this study provides rich data for research in healthy aging through inclusion of the non-carrier controls. Here we introduce the neuroimaging dataset collected and describe how this resource can be used by a range of researchers.


Assuntos
Doença de Alzheimer , Artrogripose , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Tomografia por Emissão de Pósitrons , Imageamento por Ressonância Magnética , Neuroimagem , Mutação/genética , Peptídeos beta-Amiloides/genética
20.
Sci Transl Med ; 15(703): eabq5923, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37406134

RESUMO

Proteomic studies for Alzheimer's disease (AD) are instrumental in identifying AD pathways but often focus on single tissues and sporadic AD cases. Here, we present a proteomic study analyzing 1305 proteins in brain tissue, cerebrospinal fluid (CSF), and plasma from patients with sporadic AD, TREM2 risk variant carriers, patients with autosomal dominant AD (ADAD), and healthy individuals. We identified 8 brain, 40 CSF, and 9 plasma proteins that were altered in individuals with sporadic AD, and we replicated these findings in several external datasets. We identified a proteomic signature that differentiated TREM2 variant carriers from both individuals with sporadic AD and healthy individuals. The proteins associated with sporadic AD were also altered in patients with ADAD, but with a greater effect size. Brain-derived proteins associated with ADAD were also replicated in additional CSF samples. Enrichment analyses highlighted several pathways, including those implicated in AD (calcineurin and Apo E), Parkinson's disease (α-synuclein and LRRK2), and innate immune responses (SHC1, ERK-1, and SPP1). Our findings suggest that combined proteomics across brain tissue, CSF, and plasma can be used to identify markers for sporadic and genetically defined AD.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Proteômica , Encéfalo/metabolismo , Imunidade Inata , Heterozigoto , Biomarcadores/metabolismo , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...