Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 247
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(33): 22286-22291, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39136548

RESUMO

Propane dehydrogenation (PDH) is a highly efficient approach for industrial production of propylene, and the dual-atom catalysts (DACs) provide new pathways in advancing atomic catalysis for PDH with dual active sites. In this work, we have developed an efficient strategy to identify promising DACs for PDH reaction by combining high-throughput density functional theory (DFT) calculations and the machine-learning (ML) technique. By choosing the γ-Al2O3(100) surface as the substrate to anchor dual metal atoms, 435 kinds of DACs have been considered to evaluate their PDH catalytic activity. Four ML algorithms are employed to predict the PDH activity and determine the relationship between the intrinsic characteristics of DACs and the catalytic activity. The promising catalysts of CuFe, CuCo and CoZn DACs are finally screened out, which are further validated by the whole kinetic reaction calculations, and the highly efficient performance of DACs is attributed to the synergistic effects and interactions between the paired active sites.

2.
J Phys Chem A ; 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39194318

RESUMO

Graphyne has attracted considerable interest and attention since its successful synthesis, due to its enormous potential for applications in the fields of electronics, energy, catalysis, information technology, etc. Although various methods for synthesizing graphyne have been explored, single-layer graphynes have not been successfully developed. Hexaethynylbenzene (HEB) is considered an ideal precursor molecule because it can undergo Glaser coupling reactions between molecules to synthesize single layer graphdiyne on single crystal metal surfaces via on-surface reactions. Unfortunately, this method fails to achieve the expected results, and the underlying mechanism is not clear. In this work, we employed a combination of ab initio molecular dynamics (AIMD) and quantum mechanics (QM) methods to investigate the initial reaction mechanism of HEB molecules on a Au(111) surface. We revealed that HEB molecules undergo both intermolecular coupling and intramolecular cyclization on the Au(111) surface. The favorable pathways of these two types of reactions were then distinguished, confirming that the distance between the terminal carbon atoms of the ethynyl groups plays an important role in C-C coupling. The insights revealed from this work could facilitate the rational design of precursor molecules and deepen the understanding of the reaction processes.

3.
Chem Commun (Camb) ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39189054

RESUMO

To weaken the adverse effects of traditional planar heterojunctions on phototransistors, an effective strategy for achieving low dark-current and high photoresponsive organic phototransistors via constructing a sandwich heterostructure is demonstrated. This work offers a new route for the design and development of high-performance phototransistor devices.

4.
Angew Chem Int Ed Engl ; : e202411722, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39081066

RESUMO

Thermally-induced dehydrogenative coupling of polyphenylenes on metal surfaces is an important technique to synthesize 𝜋-conjugated carbon nanostructures with atomic precision. However, this protocol has rarely been utilized to fabricate structurally defined carbon nanosheets composed of sp- and sp2-hybridized carbon atoms. Here, we present the synthesis of butadiyne-linked hexabenzocoronenes (HBCs) on Au(111) surfaces as core-expanded graphdiynes. The reaction started from hexa(4-ethylphenyl)benzene, which undergoes dehydrogenation toward hexa(4-vinylphenyl)benzene, followed by planarization to hexabenzocoronene, coupling between the vinyl groups, and further dehydrogenation. In addition to butadiyne linkages, benzene groups were also found as another type of linker. The reaction sequences were monitored by scanning tunneling microscopy and bond-resolved non-contact atomic force microscopy, which disclose the structures of intermediates and final products. In combination with density functional theory simulations, the key steps from ethyl substituents to butadiyne and benzene linkers were elucidated. This is a new on-surface synthesis of core-expanded graphdiynes with unprecedented electronic properties.

5.
Nat Commun ; 15(1): 6475, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39085228

RESUMO

Conjugated polymers are promising candidates for molecular wires in nanoelectronics, with flexibility in mechanics, stability in chemistry and variety in electrical conductivity. Polyene, as a segment of polyacetylene, is a typical conjugated polymer with straightforward structure and wide-range adjustable conductance. To obtain atomic scale understanding of charge transfer in polyene, we have measured the conductance of a single polyene-based molecular chain via lifting it up with scanning tunneling microscopy tip. Different from semiconducting characters in pristine polyene (polyacetylene), high conductance and low decay constant are obtained, along with an electronic state around Fermi level and characteristic vibrational mode. These observed phenomena result from pinned molecular orbital owing to molecule-electrode coupling at the interface, and weakened bond length alternation due to electron-phonon coupling inside single molecular chain. Our findings emphasize the interfacial characteristics in molecular junctions and promising properties of polyene, with single molecular conductance as a vital tool for bringing insights into the design and construction of nanodevices.

6.
J Phys Chem Lett ; 15(28): 7175-7182, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38968158

RESUMO

An organic electrochemical transistor (OECT) is one of the promising devices for bioelectronics due to its high transconductance, encompassing low operation voltage, and good compatibility with aqueous conditions. Despite these advantages, the challenge of balancing ion penetration and electron transport remains a significant issue in OECTs. Herein, we present an amphiphilic interface modification strategy to successfully prepare OECTs in aqueous conditions based on a high-mobility hydrophobic polypyrrole derivative. An amphiphilic interface mixed with an amphiphilic polymer and the active layer markedly promotes ion penetration and results in a significant improvement in performance, with the switch time reduced from several seconds to nearly 100 ms and the transconductance increased by an order of magnitude. The high-performance OECTs fabricated by this method show promising applications in high-performance neuromorphic devices and ECG recording in advancing the field of electrochemical transistors.

7.
J Phys Chem Lett ; 15(17): 4593-4601, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38639727

RESUMO

Graphdiyne (GDY) is an appealing two-dimensional carbon material, but the on-surface synthesis of a single layer remains challenging. Demetalation of well-crystalline metal acetylide networks, though in its infancy, provides a new avenue to on-surface synthesized GDY substructures. In spite of the synthetic efforts and theoretical concerns, there are few reports steeped in elaborate characterization of the electronic influence of metalation. In this context, we focused on the surface supported Au-bis-acetylide network, which underwent demetalation after further annealing to form hydrogen-substituted GDY. We made a comprehensive study on the geometric structure and electronic structure and the corresponding demetalized structure on Au(111) through STM, noncontact atomic force microscopy (nc-AFM), scanning tunneling spectroscopy (STS), and density functional theory (DFT) simulations. The bandgap of the Au-bis-acetylide network on Au(111) is measured to be 2.7 eV, while the bandgap of a fully demetalized Au-bis-acetylide network is estimated to be about 4.1 eV. Our findings reveal that the intercalated Au adatoms are positioned closer to the metal surface compared with the organic skeletons, facilitating electronic hybridization between the surface state and unoccupied frontier molecular orbitals of organic components. This leads to an extended conjugation through Au-bis-acetylene bonds, resulting in a reduced bandgap.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38663012

RESUMO

Organic semiconductor (OSC) gas sensors have garnered considerable attention due to their promising selectivity and inherent flexibility. Introducing a functional group or modification layer is an important route to modulate the doping/trapping state of the active layer and the gas absorption/desorption process. However, the majority of the functionalization lies in the surface/interface assembling process, which is difficult to control the functional group density. This in turn brings challenges for precise modulation of the charge transport and the doping/trapping density, which will affect the repeatability and reproducibility of sensing performance. Herein, we propose a facile bulk trapping strategy incorporating amino-terminated additive molecules via the vacuum deposition process, achieving ultrahigh sensitivity of ∼2000%/ppm at room temperature to NO2 gas and approaching ∼3000%/ppm at 50 °C. Additionally, the device exhibits commendable reproducibility, stability, and low concentration detection ability, reaching down to several ppb, indicating promising potential for future applications. Comprehensive analysis of electrical properties and density functional theory calculations reveals that these exceptional properties arise from the favorable electrical characteristics of the bulk trapping structure, the high mobility of C8-BTBT, and the elevated adsorption energy of NO2. This approach enables the construction of stable and reproducible sensitive sensors and helps to understand the sensing mechanism in OSC gas sensors.

9.
Nat Commun ; 15(1): 3030, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589464

RESUMO

On-surface synthesis provides tools to prepare low-dimensional supramolecular structures. Traditionally, reactive radicals are a class of single-electron species, serving as exceptional electron-withdrawing groups. On metal surfaces, however, such species are affected by conduction band screening effects that may even quench their unpaired electron characteristics. As a result, radicals are expected to be less active, and reactions catalyzed by surface-stabilized radicals are rarely reported. Herein, we describe a class of inter-molecular radical transfer reactions on metal surfaces. With the assistance of aryl halide precursors, the coupling of terminal alkynes is steered from non-dehydrogenated to dehydrogenated products, resulting in alkynyl-Ag-alkynyl bonds. Dehalogenated molecules are fully passivated by detached hydrogen atoms. The reaction mechanism is unraveled by various surface-sensitive technologies and density functional theory calculations. Moreover, we reveal the universality of this mechanism on metal surfaces. Our studies enrich the on-surface synthesis toolbox and develop a pathway for producing low-dimensional organic materials.

10.
J Am Chem Soc ; 146(15): 10655-10665, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38564662

RESUMO

While Ru-catalyzed hydrogenolysis holds significant promise in converting waste polyolefins into value-added alkane fuels, a major constraint is the high cost of noble metal catalysts. In this work, we propose, for the first time, that Co-based catalysts derived from CoAl-layered double hydroxide (LDH) are alternatives for efficient polyolefin hydrogenolysis. Leveraging the chemical flexibility of the LDH platform, we reveal that metallic Co species serve as highly efficient active sites for polyolefin hydrogenolysis. Furthermore, we introduced Ni into the Co framework to tackle the issue of restricted hydrogenation ability associated with contiguous Co-Co sites. In-situ analysis indicates that the integration of Ni induces electron transfer and facilitates hydrogen spillover. This dual effect synergistically enhances the hydrogenation/desorption of olefin intermediates, resulting in a significant reduction in the yield of low-value CH4 from 27.1 to 12.6%. Through leveraging the unique properties of LDH, we have developed efficient and cost-effective catalysts for the sustainable recycling and valorization of waste polyolefin materials.

11.
J Am Chem Soc ; 146(10): 7076-7087, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38428949

RESUMO

The present polyolefin hydrogenolysis recycling cases acknowledge that zerovalent Ru exhibits high catalytic activity. A pivotal rationale behind this assertion lies in the propensity of the majority of Ru species to undergo reduction to zerovalent Ru within the hydrogenolysis milieu. Nonetheless, the suitability of zerovalent Ru as an optimal structural configuration for accommodating multiple elementary reactions remains ambiguous. Here, we have constructed stable Ru0-Ruδ+ complex species, even under reaction conditions, through surface ligand engineering of commercially available Ru/C catalysts. Our findings unequivocally demonstrate that surface-ligated Ru species can be stabilized in the form of a Ruδ+ state, which, in turn, engenders a perturbation of the σ bond electron distribution within the polyolefin carbon chain, ultimately boosting the rate-determining step of C-C scission. The optimized catalysts reach a solid conversion rate of 609 g·gRu-1·h-1 for polyethylene. This achievement represents a 4.18-fold enhancement relative to the pristine Ru/C catalyst while concurrently preserving a remarkable 94% selectivity toward valued liquid alkanes. Of utmost significance, this surface ligand engineering can be extended to the gentle mixing of catalysts in ligand solution at room temperature, thus rendering it amenable for swift integration into industrial processes involving polyolefin degradation.

12.
Adv Mater ; 36(5): e2308952, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37951211

RESUMO

Organic transistors possess inherent advantages such as flexibility, biocompatibility, customizable chemical structures, solution-processability, and amplifying capabilities, making them highly promising for portable healthcare sensor applications. Through convenient and diverse modifications at the material and device surfaces or interfaces, organic transistors allow for a wide range of sensor applications spanning from chemical and biological to physical sensing. In this comprehensive review, the surface and interface engineering aspect associated with four types of typical healthcare sensors is focused. The device operation principles and sensing mechanisms are systematically analyzed and highlighted, and particularly surface/interface functionalization strategies that contribute to the enhancement of sensing performance are focused. An outlook and perspective on the critical issues and challenges in the field of healthcare sensing using organic transistors are provided as well.

13.
Adv Mater ; 36(1): e2305882, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37690084

RESUMO

The coupling of different 2D materials (2DMs) to form van der Waals heterostructures (vdWHs) is a powerful strategy for adjusting the electronic properties of 2D semiconductors, for applications in opto-electronics and quantum computing. 2D molybdenum disulfide (MoS2 ) represents an archetypical semiconducting, monolayer thick versatile platform for the generation of hybrid vdWH with tunable charge transport characteristics through its interfacing with molecules and assemblies thereof. However, the physisorption of (macro)molecules on 2D MoS2 yields hybrids possessing a limited thermal stability, thereby jeopardizing their technological applications. Herein, the rational design and optimized synthesis of 2D covalent organic frameworks (2D-COFs) for the generation of MoS2 /2D-COF vdWHs exhibiting strong interlayer coupling effects are reported. The high crystallinity of the 2D-COF films makes it possible to engineer an ultrastable periodic doping effect on MoS2 , boosting devices' field-effect mobility at room temperature. Such a performance increase can be attributed to the synergistic effect of the efficient interfacial electron transfer process and the pronounced suppression of MoS2 's lattice vibration. This proof-of-concept work validates an unprecedented approach for the efficient modulation of the electronic properties of 2D transition metal dichalcogenides toward high-performance (opto)electronics for CMOS digital circuits.

14.
J Phys Chem Lett ; 14(50): 11286-11291, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38063416

RESUMO

Thermal stimulus has been considered as a promising strategy for controlling on-surface reactions, allowing the formation of diverse products on metal substrates. Here, we successfully achieve hierarchical dehydrogenation reactions of amino groups on a Cu(100) surface. By carefully adjusting the experimental parameters, we synthesize large-scale and low-defect density surface metal-organic frameworks on copper surfaces. Our work sheds light on a controllable route for the synthesis of high-quality metal-organic coordination supramolecular structures via on-surface chemistry.

15.
J Am Chem Soc ; 145(47): 25570-25578, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37967022

RESUMO

Effective control over the crystallization of metal-organic framework (MOF) films is of great importance not only for the performance study and optimization in related applications but also for the fundamental understanding of the involved reticular chemistry. Featuring many technological advantages, electrochemical synthesis has been extensively reported for many MOF materials but is still challenged by the production of dense oriented films with a large-range tuning of thickness. Here, we report a ligand-oxidation-based anodic strategy capable of synthesizing oriented films of two-dimensional (2D) and three-dimensional (3D) conductive M-catecholate MOFs (2D Cu3(HHTP)2, 2D Zn3(HHTP)2, 2D Co3(HHTP)2, 3D YbHHTP, and 2D Cu2TBA) with tunable thicknesses up to tens of micrometers on commonly used electrodes. This anodic strategy relies on the oxidation of redox-active catechol ligands and follows a stepwise electrochemical-chemical reaction mechanism to achieve effective control over crystallizing M-catecholate MOFs into films oriented in the [001] direction. Benefiting from the electrically conductive nature, Cu3(HHTP)2 films could be thickened at a steady rate (17.4 nm·min-1) from ∼90 nm to 10.7 µm via a growth mechanism differing from those adopted in previous electrochemical synthesis of dense MOF films with limited thickness due to the self-inhibition effect. This anodic synthesis could be further combined with a templating strategy to fabricate not only films with well-defined 2D features in sizes from micrometers to millimeters but also high aspect ratio mesostructures, such as nanorods, of Cu3(HHTP)2.

16.
J Phys Chem Lett ; 14(43): 9584-9589, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37862333

RESUMO

Two-dimensional (2D) tessellation of organic species acquired increased interest recently because of their potential applications in physics, biology, and chemistry. Herein, we successfully synthesized the chiral distorted Kagome lattice p3 (333) with bicomponent precursors on Ag(111). Scanning tunneling microscopy and density functional calculation studies reveal that the networks are formed by multiple intermolecular hydrogen bonds. The network structures can be rationally tuned by adjusting the stoichiometric ratio of the reaction precursors. Our study provides new strategies to synthesize complex low-dimensional nanostructures on metal surfaces.

17.
Angew Chem Int Ed Engl ; 62(37): e202304549, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37439325

RESUMO

Hydrophobic conjugated polymers have poor ionic transport property, so hydrophilic side chains are often grafted for their application as organic electrochemical transistors (OECTs). However, this modification lowers their charge transport ability. Here, an ionic gel interfacial layer is applied to improve the ionic transport while retaining the charge transport ability of the polymers. By using the ionic gels comprising gel matrix and ionic liquids as the interfacial layers, the hydrophobic polymer achieves the OECT feature with high transconductance, low threshold voltage, high current on/off ratio, short switching time, and high operational stability. The working mechanism is also revealed. Moreover, the OECT performance can be tuned by varying the types and ratios of ionic gels. With the proposed ionic gel strategy, OECTs can be effectively realized with hydrophobic conjugated polymers.

18.
ACS Nano ; 17(15): 14309-14346, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37471703

RESUMO

Graphdiyne (GDY), a rising star of carbon allotropes, features a two-dimensional all-carbon network with the cohybridization of sp and sp2 carbon atoms and represents a trend and research direction in the development of carbon materials. The sp/sp2-hybridized structure of GDY endows it with numerous advantages and advancements in controlled growth, assembly, and performance tuning, and many studies have shown that GDY has been a key material for innovation and development in the fields of catalysis, energy, photoelectric conversion, mode conversion and transformation of electronic devices, detectors, life sciences, etc. In the past ten years, the fundamental scientific issues related to GDY have been understood, showing differences from traditional carbon materials in controlled growth, chemical and physical properties and mechanisms, and attracting extensive attention from many scientists. GDY has gradually developed into one of the frontiers of chemistry and materials science, and has entered the rapid development period, producing large numbers of fundamental and applied research achievements in the fundamental and applied research of carbon materials. For the exploration of frontier scientific concepts and phenomena in carbon science research, there is great potential to promote progress in the fields of energy, catalysis, intelligent information, optoelectronics, and life sciences. In this review, the growth, self-assembly method, aggregation structure, chemical modification, and doping of GDY are shown, and the theoretical calculation and simulation and fundamental properties of GDY are also fully introduced. In particular, the applications of GDY and its formed aggregates in catalysis, energy storage, photoelectronic, biomedicine, environmental science, life science, detectors, and material separation are introduced.

19.
ACS Appl Mater Interfaces ; 15(6): 8355-8366, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36735056

RESUMO

Organic semiconductor (OSC) gas sensors are receiving tremendous attention with the rise of wearable devices. Due to the complicated charge transport characteristics of OSCs, it is usually difficult to optimize their gas sensitivity by directly tailoring the original signals, as in many other kinds of sensors. Instead, device engineering strategies are frequently centered on enhancing the gas-film interaction. Herein, by introducing interface doping between self-assembled monolayers and triisopropylsilylethynyl-substituted pentacene films, we report a wide tuning of OSC gas sensitivity via charge transport manipulation and achieve an ultrahigh sensitivity of nearly 2000%/ppm to NO2, simultaneously resulting in a fast square-wave-like response feature. In addition, this sensor demonstrates good humidity stability and operates well in flexible devices. More importantly, we identify that charge transport manipulation tailors the gas sensibility of OSCs by means of electronic structure instead of original signal values: compared to shallow traps, the presence of proper deep traps is conducive to gaining high sensitivity and ultrafast response/recovery speeds. This approach is also effective for tuning the sensitivity to reductive gases, verifying its generality for promoting the performance of OSC gas sensors, as well as a promising strategy for other types of sensors or detectors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...