RESUMO
Chlamydia abortus causes the disease ovine enzootic abortion, which is one of the most infectious causes of foetal death in small ruminants worldwide. While the disease can be controlled using live and inactivated commercial vaccines, there is scope for improvements in safety for both sheep and human handlers of the vaccines. We have previously reported the development of a new prototype vaccine based on a detergent-extracted outer membrane protein preparation of C. abortus that was determined to be more efficacious and safer than the commercial vaccines when administered in two inoculations three weeks apart. In this new study, we have developed this vaccine further by comparing its efficacy when delivered in one or two (1 × 20 µg and 2 × 10 µg) doses, as well as also comparing the effect of reducing the antigen content of the vaccine by 50% (2 × 5 µg and 1 × 10 µg). All vaccine formulations performed well in comparison to the unvaccinated challenge control group, with no significant differences observed between vaccine groups, demonstrating that the vaccine can be administered as a single inoculation and at a lower dose without compromising efficacy. Future studies should focus on further defining the optimal antigen dose to increase the commercial viability of the vaccine.
RESUMO
We describe the development, testing and specificity of a modified oligonucleotide probe for the specific detection of Mycobacterium avium subsp. paratuberculosis (MAP) in culture and in infected tissue using fluorescent in situ hybridisation and confocal microscopy. The detection of MAP in both animal and human tissue using our modified probe allows for a more rapid diagnosis of MAP infection compared to the more often applied detection methods of culture and PCR and has the potential for quantification of cellular abundance. This approach would enable earlier treatment intervention and therefore the potential for reduced morbidity.
Assuntos
Hibridização in Situ Fluorescente , Mycobacterium avium subsp. paratuberculosis , Paratuberculose , Mycobacterium avium subsp. paratuberculosis/genética , Mycobacterium avium subsp. paratuberculosis/isolamento & purificação , Hibridização in Situ Fluorescente/métodos , Animais , Humanos , Paratuberculose/microbiologia , Paratuberculose/diagnóstico , Ovinos , Microscopia Confocal/métodos , Sensibilidade e Especificidade , Doenças dos Ovinos/microbiologia , Doenças dos Ovinos/diagnóstico , Células Cultivadas , Sondas de Oligonucleotídeos/genéticaRESUMO
Neosporosis and toxoplasmosis are major causes of abortion in livestock worldwide, leading to substantial economic losses. Detection tools are fundamental to the diagnosis and management of those diseases. Current immunohistochemistry (IHC) tests, using sera raised against whole parasite lysates, have not been able to distinguish between Toxoplasma gondii and Neospora caninum. We used T. gondii and N. caninum recombinant proteins, expressed in Escherichia coli and purified using insoluble conditions, to produce specific polyclonal rabbit antisera. We aimed to develop species-specific sera that could be used in IHC on formalin-fixed, paraffin-embedded (FFPE) tissue sections to improve the diagnosis of ruminant abortions caused by protozoa. Two polyclonal rabbit sera, raised against recombinant proteins, anti-Neospora-rNcSRS2 and anti-Toxoplasma-rTgSRS2, had specificity for the parasite they were raised against. We tested the specificity for each polyclonal serum using FFPE tissue sections known to be infected with T. gondii and N. caninum. The anti-Neospora-rNcSRS2 serum labeled specifically only N. caninum-infected tissue blocks, and the anti-Toxoplasma-rTgSRS2 serum was specific to only T. gondii-infected tissues. Moreover, tissues from 52 cattle and 19 sheep previously diagnosed by lesion profiles were tested using IHC with our polyclonal sera and PCR. The overall agreement between IHC and PCR was 90.1% for both polyclonal anti-rNcSRS2 and anti-rTgSRS2 sera. The polyclonal antisera were specific and allowed visual confirmation of protozoan parasites by IHC, but they were not as sensitive as PCR testing.
Assuntos
Anticorpos Antiprotozoários , Coccidiose , Neospora , Toxoplasma , Toxoplasmose Animal , Neospora/imunologia , Neospora/isolamento & purificação , Animais , Toxoplasma/imunologia , Coccidiose/veterinária , Coccidiose/diagnóstico , Coccidiose/parasitologia , Toxoplasmose Animal/diagnóstico , Toxoplasmose Animal/parasitologia , Anticorpos Antiprotozoários/sangue , Coelhos , Ovinos , Especificidade da Espécie , Doenças dos Ovinos/diagnóstico , Doenças dos Ovinos/parasitologia , Imuno-Histoquímica/veterinária , Doenças dos Bovinos/diagnóstico , Doenças dos Bovinos/parasitologia , Sensibilidade e Especificidade , BovinosRESUMO
Chlamydia abortus, the aetiological agent of enzootic abortion of ewes, is a major cause of reproductive loss in small ruminants worldwide, accounting for significant economic losses to the farming industry. Disease can be managed through the use of commercial inactivated or live whole organism-based vaccines, although both have limitations particularly in terms of efficacy, safety and disease-associated outbreaks. Here we report a comparison of two experimental vaccines (chlamydial outer membrane complex (COMC) and octyl glucoside (OG)-COMC) based on detergent extracted outer membrane preparations of C. abortus and delivered as prime-boost immunisations, with the commercial live vaccine Cevac® Chlamydia in a pregnant sheep challenge model. No abortions occurred in either experimental vaccine group, while a single abortion occurred in the commercial vaccine group. Bacterial shedding, as a measure of potential risk of transmission of infection to naïve animals, was lowest in the COMC vaccinated group, with reductions of 87.5%, 86.4% and 74% observed for the COMC, OG-COMC and live commercial vaccine groups, respectively, compared to the unvaccinated challenge control group. The results show that the COMC vaccine performed the best and is a safer efficacious alternative to the commercial vaccines. However, to improve commercial viability, future studies should optimise the antigen dose and number of inoculations required.
RESUMO
Chlamydia abortus infects livestock species worldwide and is the cause of enzootic abortion of ewes (EAE). In Europe, control of the disease is achieved using a live vaccine based on C. abortus 1B strain. Although the vaccine has been useful for controlling disease outbreaks, abortion events due to the vaccine have been reported. Recently, placental pathology resulting from a vaccine type strain (vt) infection has been reported and shown to be similar to that resulting from a natural wild-type (wt) infection. The aim of this study was to extend these observations by comparing the distribution and severity of the lesions, the composition of the predominating cell infiltrate, the amount of bacteria present and the role of the blood supply in infection. A novel system for grading the histological and pathological features present was developed and the resulting multi-parameter data were statistically transformed for exploration and visualisation through a tailored principal component analysis (PCA) to evaluate the difference between them. The analysis provided no evidence of meaningful differences between vt and wt strains in terms of the measured pathological parameters. The study also contributes a novel methodology for analysing the progression of infection in the placenta for other abortifacient pathogens.
RESUMO
In most of the world Toxoplasma gondii is comprised of archetypal types (types I, II and III); however, South America displays several non-archetypal strains. This study used an experimental mouse model to characterize the immune response and parasite kinetics following infection with different parasite genotypes. An oral inoculation of 50 oocysts per mouse from T. gondii M4 type II (archetypal, avirulent), BrI or BrIII (non-archetypal, virulent and intermediate virulent, respectively) for groups (G)2, G3 and G4, respectively was used. The levels of mRNA expression of cytokines, immune compounds, cell surface markers and receptor adapters [interferon gamma (IFNγ), interleukin (IL)-12, CD8, CD4, CD25, CXCR3 and MyD88] were quantified by SYBR green reverse transcription-quantitative polymerase chain reaction. Lesions were characterized by histology and detection by immunohistochemistry established distribution of parasites. Infection in G2 mice was mild and characterized by an early MyD88-dependent pathway. In G3, there were high levels of expression of pro-inflammatory cytokines IFNγ and IL-12 in the mice showing severe clinical symptoms at 811 days post infection (dpi), combined with the upregulation of CD25, abundant tachyzoites and tissue lesions in livers, lungs and intestines. Significant longer expression of IFNγ and IL-12 genes, with other Th1-balanced immune responses, such as increased levels of CXCR3 and MyD88 in G4, resulted in survival of mice and chronic toxoplasmosis, with the occurrence of tissue cysts in brain and lungs, at 14 and 21 dpi. Different immune responses and kinetics of gene expression appear to be elicited by the different strains and non-archetypal parasites demonstrated higher virulence.
Assuntos
Toxoplasma/fisiologia , Toxoplasmose Animal/parasitologia , Animais , Antígenos CD/metabolismo , Gatos , Citocinas/metabolismo , DNA Complementar/biossíntese , DNA de Protozoário/isolamento & purificação , Feminino , Genótipo , Imuno-Histoquímica , Linfonodos/parasitologia , Linfonodos/patologia , Mesentério , Camundongos , Fator 88 de Diferenciação Mieloide/metabolismo , RNA de Protozoário/genética , RNA de Protozoário/isolamento & purificação , Distribuição Aleatória , Reação em Cadeia da Polimerase em Tempo Real , Receptores CXCR3/metabolismo , Baço/parasitologia , Baço/patologia , Toxoplasma/classificação , Toxoplasma/genética , Toxoplasma/imunologia , Toxoplasmose Animal/imunologia , Toxoplasmose Animal/patologiaRESUMO
Chlamydia abortus is one of the most commonly diagnosed causes of infectious abortion in small ruminants worldwide. Control of the disease (Enzootic Abortion of Ewes or EAE) is achieved using the commercial live, attenuated C. abortus 1B vaccine strain, which can be distinguished from virulent wild-type (wt) strains by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. Published studies applying this typing method and whole-genome sequence analyses to cases of EAE in vaccinated and non-vaccinated animals have provided strong evidence that the 1B strain is not attenuated and can infect the placenta causing disease in some ewes. Therefore, the objective of this study was to characterise the lesions found in the placentas of ewes vaccinated with the 1B strain and to compare these to those resulting from a wt infection. A C. abortus-free flock of multiparous adult ewes was vaccinated twice, over three breeding seasons, each before mating, with the commercial C. abortus 1B vaccine strain (Cevac® Chlamydia, Ceva Animal Health Ltd.). In the second lambing season following vaccination, placentas (n = 117) were collected at parturition and analysed by C. abortus-specific real-time quantitative PCR (qPCR). Two placentas, from a single ewe, which gave birth to live twin lambs, were found to be positive by qPCR and viable organisms were recovered and identified as vaccine type (vt) by PCR-RFLP, with no evidence of any wt strain being present. All cotyledons from the vt-infected placentas were analysed by histopathology and immunohistochemistry and compared to those from wt-infected placentas. Both vt-infected placentas showed lesions typical of those found in a wt infection in terms of their severity, distribution, and associated intensity of antigen labelling. These results conclusively demonstrate that the 1B strain can infect the placenta, producing typical EAE placental lesions that are indistinguishable from those found in wt infected animals.
Assuntos
Chlamydia/genética , Infecções por Chlamydophila/genética , Vacinação/efeitos adversos , Feto Abortado/imunologia , Aborto Animal , Animais , Vacinas Bacterianas/imunologia , Chlamydia/patogenicidade , Infecções por Chlamydia/imunologia , Chlamydophila/imunologia , Chlamydophila/patogenicidade , Infecções por Chlamydophila/imunologia , Infecções por Chlamydophila/microbiologia , Feminino , Placenta/imunologia , Polimorfismo de Fragmento de Restrição , Gravidez , Reação em Cadeia da Polimerase em Tempo Real , Ovinos/imunologia , Doenças dos Ovinos/imunologia , Vacinação/métodos , Vacinas Atenuadas/imunologiaRESUMO
Previous work carried out to characterise different immune cells in ruminant placentas found strong CD79αcy nuclear labelling in cells histologically resembling trophoblast cells. In the attempt to characterize this cell population, placentomes collected from cattle, sheep and water buffaloes were examined by immunohistochemistry with single and double labelling using monoclonal antibodies (mAb) against B lymphocytes and trophoblast cells. Most CD79αcy + cells co-expressed placental lactogen or cytokeratin and were CD21 and MHC class II negative strongly suggesting they do not have a B cell origin. However, a potential immunological role of these cells cannot be ruled out and it is currently unknown if the findings described may have an impact on physiological knowledge, health, and or diseases pathogenesis in ruminants.
Assuntos
Antígenos CD79/imunologia , Placenta/citologia , Placenta/imunologia , Animais , Anticorpos , Anticorpos Monoclonais , Linfócitos B/imunologia , Bovinos , Feminino , Imuno-Histoquímica , Inclusão em Parafina , Gravidez , Ruminantes , Ovinos , Trofoblastos/imunologiaRESUMO
BACKGROUND: Toxoplasma gondii is a zoonotic parasite of global importance. The outcome of infection in humans can depend on a number of factors including the infecting stage of the parasite, inoculating dose and virulence of the infecting strain. Molecular epidemiological studies have demonstrated an abundance of atypical strains of T. gondii in South America, many of which have been associated with more severe sequelae of infection. The aim of this study was to compare the virulence of T. gondii strains isolated in the Caribbean to a virulent Brazilian strain and an avirulent European strain. METHODS: One hundred and twenty Swiss CD-1 mice were split into 8 groups of 15 mice and each group was inoculated with 200 tachyzoites of one of 8 isolates, comprising ToxoDB genotypes #1, #141, #265, #13, #3 and #6. Five mice per group were euthanized at day 8 post-inoculation (p.i.) and parasite burden was determined in heart, lungs and eyes using quantitative PCR. Lungs and brain were also examined by histopathology and immunohistochemistry. The remaining 10 mice per group were part of a survival experiment to assess virulence. DNA was extracted from tachyzoites of each of the 8 T. gondii isolates and genotyped at four ROP gene loci, including ROP5, ROP16, ROP17 and ROP18 to look for association with markers of virulence. RESULTS: Infection with ToxoDB genotype #13 from the Caribbean resulted in 100% of mice being euthanized which was comparative to infection with the virulent Brazilian strain (ToxoDB genotype #6). Significantly higher parasite burdens were recorded in the lungs and eyes of mice infected with ToxoDB genotypes #13 and #6. Genotyping of ROP loci revealed that the virulent Caribbean isolates had a different ROP18/ROP5 allelic profile (3/1) to the virulent Brazilian isolate (1/3); however, the avirulent Caribbean isolate (ToxoDB genotype #1) had the same ROP18/ROP5 profile as the avirulent European isolate (ToxoDB #3) (both 2/2). Caribbean isolates of intermediate virulence (ToxoDB #141 and #265) all had the same ROP18/ROP5 allelic profile (2/2). CONCLUSIONS: Isolates from the Caribbean with ToxoDB genotype #13 were acutely virulent for mice and comparable to a known virulent Brazilian isolate. The ROP protein allelic profile of the virulent Caribbean and Brazilian isolates differed indicating that perhaps other factors are involved in predicting virulence. Understanding virulence is important for predicting disease outcome in humans and may also aid vaccine design as well as drug discovery.
Assuntos
Proteínas de Protozoários/genética , Toxoplasma/patogenicidade , Toxoplasmose/parasitologia , Alelos , Animais , Brasil , Região do Caribe , Europa (Continente) , Feminino , Genótipo , Humanos , Camundongos , Proteínas Serina-Treonina Quinases/genética , Toxoplasma/genética , VirulênciaRESUMO
BACKGROUND: Although the detection of Toxoplasma gondii in bovine tissues is rare, beef might be an important source of human infection. The use of molecular techniques, such as magnetic capture qPCR (MC-qPCR), in combination with the gold standard method for isolating the parasite (mouse bioassay), may increase the sensitivity of T. gondii detection in infected cattle. The risk of transmission of the parasite to humans from undercooked/raw beef is not fully known and further knowledge about the predilection sites of T. gondii within cattle is needed. In the current study, six Holstein Friesian calves (Bos taurus) were experimentally infected with 106 T. gondii oocysts of the M4 strain and, following euthanasia (42 dpi), pooled tissues were tested for presence of the parasite by mouse bioassay and MC-qPCR. RESULTS: Toxoplasma gondii was detected by both MC-qPCR and mouse bioassay from distinct pools (100 g) of tissues comprising: liver, tongue, heart, diaphragm, semitendinosus (hindlimb), longissimus dorsi muscle (sirloin) and psoas major muscle (fillet). When a selection of individual tissues which had been used for mouse bioassay were examined by MC-qPCR, parasite DNA could only be detected from two animals, despite all calves showing seroconversion after infection. CONCLUSIONS: It is apparent that one individual test will not provide an answer as to whether a calf harbours T. gondii tissue cysts. Although the calves received a known number of infectious oocysts and highly sensitive methods for the detection of the parasite within bovine tissues were applied (mouse bioassay and MC-qPCR), the results confirm previous studies which report low presence of viable T. gondii in cattle and no clear predilection site within bovine tissues.
Assuntos
Bioensaio/métodos , Doenças dos Bovinos/diagnóstico , Inocuidade dos Alimentos/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Toxoplasma/isolamento & purificação , Toxoplasmose Animal/diagnóstico , Estruturas Animais/parasitologia , Animais , Bovinos , Doenças dos Bovinos/parasitologia , Camundongos , Sensibilidade e Especificidade , Toxoplasmose Animal/parasitologiaRESUMO
The aim of the present study was to investigate the occurrence of N. caninum associated with abortions of dairy cattle from Santa Catarina state, southern Brazil by using enzyme-linked immunosorbent assay (ELISA), immunohistochemistry (IHC), and polymerase chain reaction (PCR). Blood from dairy cows that aborted along with intrathoracic fluid and tissue samples (brain, heart, liver, and lung) from their fetuses were collected and used for serology; PCR, histopathological, and immunohistochemistry (IHC) evaluations were also conducted. Twenty-one cows (51.2%) out of 41, and eight fetuses (26.7%) out of 30 were ELISA (HerdCheck, IDEXX) positive for N. caninum. Dams > 36 months of age had a higher risk of being serum positive than younger animals. PCR and IHC revealed that 38.8% (14/36) and 25.0% (9/36) of the fetuses were positive for N. caninum, respectively for each of the tests. Seropositive cows had a higher frequency of fetuses that were also positive by either intrathoracic fluid, PCR, or IHC. In summary, the present study observed a high frequency of N. caninum in abortions from dairy cows from southern Brazil, with a higher N. caninum prevalence found in cows that were older than 36 months. In addition, serology, PCR, and IHC should be used all together for better diagnosis of neosporosis in cattle.
Assuntos
Aborto Animal/parasitologia , Doenças dos Bovinos/parasitologia , Coccidiose/veterinária , Animais , Bovinos , Indústria de Laticínios , Feminino , GravidezRESUMO
Prion diseases, or transmissible spongiform encephalopathies (TSEs), are a group of rare progressive neurodegenerative disorders caused by an abnormally folded prion protein (PrPSc). This is capable of transforming the normal cellular prion protein (PrPC) into new infectious PrPSc Interspecies prion transmissibility studies performed by experimental challenge and the outbreak of bovine spongiform encephalopathy that occurred in the late 1980s and 1990s showed that while some species (sheep, mice, and cats) are readily susceptible to TSEs, others are apparently resistant (rabbits, dogs, and horses) to the same agent. To study the mechanisms of low susceptibility to TSEs of certain species, the mouse-rabbit transmission barrier was used as a model. To identify which specific amino acid residues determine high or low susceptibility to PrPSc propagation, protein misfolding cyclic amplification (PMCA), which mimics PrPC-to-PrPSc conversion with accelerated kinetics, was used. This allowed amino acid substitutions in rabbit PrP and accurate analysis of misfolding propensities. Wild-type rabbit recombinant PrP could not be misfolded into a protease-resistant self-propagating isoform in vitro despite seeding with at least 12 different infectious prions from diverse origins. Therefore, rabbit recombinant PrP mutants were designed to contain every single amino acid substitution that distinguishes rabbit recombinant PrP from mouse recombinant PrP. Key amino acid residue substitutions were identified that make rabbit recombinant PrP susceptible to misfolding, and using these, protease-resistant misfolded recombinant rabbit PrP was generated. Additional studies characterized the mechanisms by which these critical amino acid residue substitutions increased the misfolding susceptibility of rabbit PrP.IMPORTANCE Prion disorders are invariably fatal, untreatable diseases typically associated with long incubation periods and characteristic spongiform changes associated with neuronal loss in the brain. Development of any treatment or preventative measure is dependent upon a detailed understanding of the pathogenesis of these diseases, and understanding the mechanism by which certain species appear to be resistant to TSEs is critical. Rabbits are highly resistant to naturally acquired TSEs, and even under experimental conditions, induction of clinical disease is not easy. Using recombinant rabbit PrP as a model, this study describes critical molecular determinants that confer this high resistance to transmissible spongiform encephalopathies.
Assuntos
Aminoácidos/química , Proteínas Priônicas/química , Dobramento de Proteína , Substituição de Aminoácidos , Aminoácidos/isolamento & purificação , Animais , Bovinos , Suscetibilidade a Doenças , Camundongos , Mutação , Doenças Priônicas/metabolismo , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Coelhos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismoRESUMO
Abstract The aim of the present study was to investigate the occurrence of N. caninum associated with abortions of dairy cattle from Santa Catarina state, southern Brazil by using enzyme-linked immunosorbent assay (ELISA), immunohistochemistry (IHC), and polymerase chain reaction (PCR). Blood from dairy cows that aborted along with intrathoracic fluid and tissue samples (brain, heart, liver, and lung) from their fetuses were collected and used for serology; PCR, histopathological, and immunohistochemistry (IHC) evaluations were also conducted. Twenty-one cows (51.2%) out of 41, and eight fetuses (26.7%) out of 30 were ELISA (HerdCheck, IDEXX) positive for N. caninum. Dams > 36 months of age had a higher risk of being serum positive than younger animals. PCR and IHC revealed that 38.8% (14/36) and 25.0% (9/36) of the fetuses were positive for N. caninum, respectively for each of the tests. Seropositive cows had a higher frequency of fetuses that were also positive by either intrathoracic fluid, PCR, or IHC. In summary, the present study observed a high frequency of N. caninum in abortions from dairy cows from southern Brazil, with a higher N. caninum prevalence found in cows that were older than 36 months. In addition, serology, PCR, and IHC should be used all together for better diagnosis of neosporosis in cattle.
Resumo O objetivo deste estudo foi avaliar a ocorrência de N. caninum associado a abortamentos em vacas de leite do estado de Santa Catarina, sul do Brasil pelo uso das técnicas de ELISA (HerdCheck, IDEXX), reação em cadeia pela polimerase (PCR) e imunohistoquímica (IHC). O sangue das vacas leiteiras que abortaram, bem como, o líquido intratorácico e amostras de tecidos (cérebro, coração, fígado e pulmão) de seus fetos foram coletados e usados para sorologia, PCR (Np21+ e Np6+), e IHC. Vinte e uma vacas (51,2%) de um total de 41, bem como, oito fetos (26,7%) de um total de 30 foram positivos no ELISA (IDEXX) para N. caninum. As vacas > 36 meses de idade tiveram um maior risco de serem soropositivas do que os animais mais jovens. PCR e IHC revelaram que 38,8% e 25,0% dos fetos foram positivos para N. caninum, respectivamente para cada um dos testes. As vacas soropositivas tiveram uma maior frequência de fetos que também foram positivos no fluído intratorácico, na PCR ou na IHC. Em resumo, o presente estudo observou uma alta frequência de N. caninum em abortos de vacas leiteiras na região estudada, com maior prevalência de N. caninum em vacas com mais de 36 meses de idade. Além disso, sorologia, PCR e IHC deveriam ser utilizadas conjuntamente para melhor diagnóstico de neosporose em bovinos.
Assuntos
Animais , Feminino , Gravidez , Bovinos , Doenças dos Bovinos/parasitologia , Coccidiose/veterinária , Aborto Animal/parasitologia , Indústria de LaticíniosRESUMO
Multibacillary and paucibacillary paratuberculosis are both caused by Mycobacterium avium subspecies paratuberculosis. Multibacillary lesions are composed largely of infected epithelioid macrophages and paucibacillary lesions contain T cells but few bacteria. Multibacillary disease is similar to human lepromatous leprosy, with variable/high levels of antibody and a dysfunctional immune response. Animals with paucibacillary disease have high cell-mediated immunity and variable levels of antibody. This study aims to characterize the immunological dysfunction using TruSeq analysis of the ileocaecal lymph node that drains disease lesions. Immune dysfunction is highlighted by repression of TCR/CD3 genes, T cell co-receptors/co-stimulators, T cell activation and signal-transduction genes. Inflammation was an acute phase response and chronic inflammation, with little evidence of acute inflammation. The high levels of immunoglobulin and plasma cell transcripts is consistent with the anti-MAP antibody responses in paratuberculosis sheep. Also notable was the overwhelming reduction in mast cell transcripts, potentially affecting DC activation of the immune response. This study also shows that there were no fundamental differences in the gene expression patterns in multibacillary and paucibacillary disease, no shift in T cell genes from Th1 to Th2 pattern but rather an incremental decline into immune dysfunction leading to multibacillary pathology.
Assuntos
Imunidade Celular/genética , Mycobacterium avium subsp. paratuberculosis/imunologia , Paratuberculose/genética , Doenças dos Ovinos/genética , Transdução de Sinais/genética , Animais , Perfilação da Expressão Gênica/métodos , Interações Hospedeiro-Patógeno/imunologia , Imunidade Celular/imunologia , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Mycobacterium avium subsp. paratuberculosis/fisiologia , Paratuberculose/microbiologia , Ovinos , Doenças dos Ovinos/microbiologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/microbiologia , Transcriptoma/genética , Transcriptoma/imunologiaRESUMO
The immunopathology of paucibacillary and multibacillary sheep paratuberculosis is characterized by inflammatory T cell and macrophage responses respectively. IL-23 and IL-25 are key to the development of these responses by interaction with their complex receptors, IL-23R/IL-12RB1 and IL-17RA/IL-17RB. In humans, variations in structure, sequence and/or expression of these genes have been implicated in the different pathological forms of tuberculosis and leprosy, and in gastrointestinal inflammatory disorders such as Crohn's disease. Sequencing has identified multiple transcript variants of sheep IL23R, IL12RB1 and IL17RB and a single IL17RA transcript. RT-qPCR assays were developed for all the identified variants and used to compare expression in the ileo-caecal lymph node of sheep with paucibacillary or multibacillary paratuberculosis and uninfected animals. With IL-23 receptor, only the IL12RB1v3 variant, which lacks the receptor activation motif was differentially expressed and was significantly increased in multibacillary disease; this may contribute to high Th2 responses. Of the IL17RB variants only full length IL17RB was differentially expressed and was significantly increased in multibacillary pathology; which may also contribute to Th2 polarization. IL17RA expression was significantly increased in paucibacillary disease. The contrast between the IL17RA and IL17RB results may indicate that, in addition to Th1 cells, Th17 T cells are also involved in paucibacillary pathology.
Assuntos
Regulação da Expressão Gênica , Paratuberculose/genética , Receptores de Interleucina/genética , Doenças dos Ovinos/genética , Animais , Feminino , Linfonodos/imunologia , Linfonodos/microbiologia , Dados de Sequência Molecular , Paratuberculose/imunologia , Paratuberculose/microbiologia , Receptores de Interleucina/metabolismo , Análise de Sequência de DNA/veterinária , Ovinos , Doenças dos Ovinos/imunologia , Doenças dos Ovinos/mortalidade , Células Th1/imunologia , Células Th17/imunologia , Células Th2/imunologiaRESUMO
Breed- and prion protein (PRNP) genotype-related disease phenotype variability has been observed in sheep infected with the 87V murine scrapie strain. Therefore, the stability of this strain was tested by inoculating sheep-derived 87V brain material back into VM mice. As some sheep-adapted 87V disease phenotypes were reminiscent of CH1641 scrapie, transgenic mice (Tg338) expressing ovine prion protein (PrP) were inoculated with the same sheep-derived 87V sources and with CH1641. Although at first passage in VM mice the sheep-derived 87V sources showed some divergence from the murine 87V control, all the characteristics of murine 87V infection were recovered at second passage from all sheep sources. These included 100 % attack rates and indistinguishable survival times, lesion profiles, immunohistochemical features of disease-associated PrP accumulation in the brain and PrP biochemical properties. All sheep-derived 87V sources, as well as CH1641, were transmitted to Tg338 mice with identical clinical, pathological, immunohistochemical and biochemical features. While this might potentially indicate that sheep-adapted 87V and CH1641 are the same strain, profound divergences were evident, as murine 87V was unable to infect Tg338 mice but was lethal for VM mice, while the reverse was true for CH1641. These combined data suggest that: (i) murine 87V is stable and retains its properties after passage in sheep; (ii) it can be isolated from sheep showing a CH1641-like or a more conventional scrapie phenotype; and (iii) sheep-adapted 87V scrapie, with conventional or CH1641-like phenotype, is biologically distinct from experimental CH1641 scrapie, despite the fact that they behave identically in a single transgenic mouse line.
Assuntos
Scrapie/patologia , Animais , Encéfalo/patologia , Camundongos , Camundongos Transgênicos , Proteínas PrPSc/genética , Proteínas PrPSc/metabolismo , Ovinos , Especificidade da EspécieRESUMO
Interspecies transmission of prions is a well-established phenomenon, both experimentally and under field conditions. Upon passage through new hosts, prion strains have proven their capacity to change their properties and this is a source of strain diversity which needs to be considered when assessing the potential risks associated with consumption of prion contaminated protein sources. Rabbits were considered for decades to be a prion resistant species until proven otherwise recently. To determine the extent of rabbit susceptibility to prions and to assess the effects of passage of different prion strains through this species a transgenic mouse model overexpressing rabbit PrPC was developed (TgRab). Intracerebral challenges with prion strains originating from a variety of species including field isolates (ovine SSBP/1 scrapie, Nor98- scrapie; cattle BSE, BSE-L and cervid CWD), experimental murine strains (ME7 and RML) and experimentally obtained ruminant (sheepBSE) and rabbit (de novo NZW) strains were performed. On first passage TgRab were susceptible to the majority of prions (Cattle BSE, SheepBSE, BSE-L, de novo NZW, ME7 and RML) tested with the exception of SSBP/1 scrapie, CWD and Nor98 scrapie. Furthermore, TgRab were capable of propagating strain-specific features such as differences in incubation periods, histological brain lesions, abnormal prion (PrPd) deposition profiles and proteinase-K (PK) resistant western blotting band patterns. Our results confirm previous studies proving that rabbits are not resistant to prion infection and show for the first time that rabbits are susceptible to PrPd originating in a number of other species. This should be taken into account when choosing protein sources to feed rabbits.
Assuntos
Modelos Animais de Doenças , Suscetibilidade a Doenças , Doenças Priônicas/transmissão , Príons , Animais , Transmissão de Doença Infecciosa , Camundongos , Camundongos Transgênicos , CoelhosRESUMO
As clinical toxoplasmosis is not considered a problem in pigs, the main reason to implement a control strategy against Toxoplasma gondii (T. gondii) in this species is to reduce the establishment of T. gondii tissue cysts in pork, consequently reducing the risk of the parasite entering the human food chain. Consumption of T. gondii tissue cysts from raw or undercooked meat is one of the main sources of human infection, with infected pork being considered a high risk. This study incorporates a mouse bioassay with molecular detection of T. gondii DNA to study the effectiveness of vaccination (incomplete S48 strain) in its ability to reduce tissue cyst burden in pigs, following oocyst (M4 strain) challenge. Results from the mouse bioassay show that 100% of mice which had received porcine tissues from vaccinated and challenged pigs survived compared with 51.1% of mice which received tissues from non-vaccinated and challenged pigs. The presence (or absence) of T. gondii DNA from individual mouse brains also confirmed these results. This indicates a reduction in viable T. gondii tissue cysts within tissues from pigs which have been previously vaccinated with the S48 strain. In addition, the study demonstrated that the main predilection sites for the parasite were found to be brain and highly vascular muscles (such as tongue, diaphragm, heart and masseter) of pigs, while meat cuts used as human food such as chop, loin, left tricep and left semitendinosus, had a lower burden of T. gondii tissue cysts. These promising results highlight the potential of S48 strain tachyzoites for reducing the number of T. gondii tissues cysts in pork and thus improving food safety.
Assuntos
Carne/parasitologia , Vacinas Protozoárias/farmacologia , Doenças dos Suínos/prevenção & controle , Toxoplasma/imunologia , Toxoplasmose Animal/prevenção & controle , Animais , Feminino , Humanos , Masculino , Suínos , Doenças dos Suínos/parasitologia , Toxoplasmose Animal/parasitologia , Vacinas Atenuadas/farmacologiaRESUMO
The transmissible spongiform encephalopathies (TSEs) or prion diseases are a group of fatal neurodegenerative disorders characterised by the accumulation of a pathological form of a host protein known as prion protein (PrP). The validation of abnormal PrP detection techniques is fundamental to allow the use of high-throughput laboratory based tests, avoiding the limitations of bioassays. We used scrapie, a prototype TSE, to examine the relationship between infectivity and laboratory based diagnostic tools. The data may help to optimise strategies to prevent exposure of humans to small ruminant TSE material via the food chain. Abnormal PrP distribution/accumulation was assessed by immunohistochemistry (IHC), Western blot (WB) and ELISA in samples from four animals. In addition, infectivity was detected using a sensitive bank vole bioassay with selected samples from two of the four sheep and protein misfolding cyclic amplification using bank vole brain as substrate (vPMCA) was also carried out in selected samples from one animal. Lymph nodes, oculomotor muscles, sciatic nerve and kidney were positive by IHC, WB and ELISA, although at levels 100-1000 fold lower than the brain, and contained detectable infectivity by bioassay. Tissues not infectious by bioassay were also negative by all laboratory tests including PMCA. Although discrepancies were observed in tissues with very low levels of abnormal PrP, there was an overall good correlation between IHC, WB, ELISA and bioassay results. Most importantly, there was a good correlation between the detection of abnormal PrP in tissues using laboratory tests and the levels of infectivity even when the titre was low. These findings provide useful information for risk modellers and represent a first step toward the validation of laboratory tests used to quantify prion infectivity, which would greatly aid TSE risk assessment policies.