Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
2.
Nat Commun ; 15(1): 5110, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877018

RESUMO

Tyrosine kinase (TK) fusions are frequently found in cancers, either as initiating events or as a mechanism of resistance to targeted therapy. Partner genes and exons in most TK fusions are followed typical recurrent patterns, but the underlying mechanisms and clinical implications of these patterns are poorly understood. By developing Functionally Active Chromosomal Translocation Sequencing (FACTS), we discover that typical TK fusions involving ALK, ROS1, RET and NTRK1 are selected from pools of chromosomal rearrangements by two major determinants: active transcription of the fusion partner genes and protein stability. In contrast, atypical TK fusions that are rarely seen in patients showed reduced protein stability, decreased downstream oncogenic signaling, and were less responsive to inhibition. Consistently, patients with atypical TK fusions were associated with a reduced response to TKI therapies. Our findings highlight the principles of oncogenic TK fusion formation and selection in cancers, with clinical implications for guiding targeted therapy.


Assuntos
Neoplasias , Proteínas de Fusão Oncogênica , Proteínas Tirosina Quinases , Proteínas Proto-Oncogênicas c-ret , Translocação Genética , Humanos , Neoplasias/genética , Neoplasias/tratamento farmacológico , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-ret/genética , Proteínas Proto-Oncogênicas c-ret/metabolismo , Quinase do Linfoma Anaplásico/genética , Quinase do Linfoma Anaplásico/metabolismo , Receptor trkA/genética , Receptor trkA/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais/genética , Linhagem Celular Tumoral
3.
bioRxiv ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38659938

RESUMO

Chimeric antigen receptor (CAR) T cell therapy targeting CD19 elicits remarkable clinical efficacy in B-cell malignancies, but many patients relapse due to failed expansion and/or progressive loss of CAR-T cells. We recently reported a strategy to potently restimulate CAR-T cells in vivo, enhancing their functionality by administration of a vaccine-like stimulus comprised of surrogate peptide ligands for a CAR linked to a lymph node-targeting amphiphilic PEG-lipid (termed CAR-T-vax). Here, we demonstrate a general strategy to generate and optimize peptide mimotopes enabling CAR-T-vax generation for any CAR. Using the clinical CD19 CAR FMC63 as a test case, we employed yeast surface display to identify peptide binders to soluble IgG versions of FMC63, which were subsequently affinity matured by directed evolution. CAR-T vaccines using these optimized mimotopes triggered marked expansion of both murine CD19 CAR-T cells in a syngeneic model and human CAR-T cells in a humanized mouse model of B cell acute lymphoblastic leukemia (B-ALL), and enhanced control of leukemia progression. This approach thus enables vaccine boosting to be applied to any clinically-relevant CAR-T cell product.

5.
Res Sq ; 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38313284

RESUMO

Tyrosine kinase (TK) fusions are frequently found in cancers, either as initiating events or as a mechanism of resistance to targeted therapy. Partner genes and exons in most TK fusions are typical and recurrent, but the underlying mechanisms and clinical implications of these patterns are poorly understood. Here, we investigated structures of > 8,000 kinase fusions and explore their generative mechanisms by applying newly developed experimental framework integrating high-throughput genome-wide gene fusion sequencing and clonal selection called Functionally Active Chromosomal Translocation Sequencing (FACTS). We discovered that typical oncogenic TK fusions recurrently seen in patients are selected from large pools of chromosomal rearrangements spontaneously occurring in cells based on two major determinants: active transcription of the fusion partner genes and protein stability. In contrast, atypical TK fusions that are rarely seen in patients showed reduced protein stability, decreased downstream oncogenic signaling, and were less responsive to inhibition. Consistently, patients with atypical TK fusions were associated with a reduced response to TKI therapies, as well as a shorter progression-free survival (PFS) and overall survival (OS) compared to patients with typical TK fusions. These findings highlight the principles of oncogenic TK fusion formation and their selection in cancers, with clinical implications for guiding targeted therapy.

6.
Blood ; 143(14): 1399-1413, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38194688

RESUMO

ABSTRACT: SETBP1 mutations are found in various clonal myeloid disorders. However, it is unclear whether they can initiate leukemia, because SETBP1 mutations typically appear as later events during oncogenesis. To answer this question, we generated a mouse model expressing mutated SETBP1 in hematopoietic tissue: this model showed profound alterations in the differentiation program of hematopoietic progenitors and developed a myeloid neoplasm with megakaryocytic dysplasia, splenomegaly, and bone marrow fibrosis, prompting us to investigate SETBP1 mutations in a cohort of 36 triple-negative primary myelofibrosis (TN-PMF) cases. We identified 2 distinct subgroups, one carrying SETBP1 mutations and the other completely devoid of somatic variants. Clinically, a striking difference in disease aggressiveness was noted, with patients with SETBP1 mutation showing a much worse clinical course. In contrast to myelodysplastic/myeloproliferative neoplasms, in which SETBP1 mutations are mostly found as a late clonal event, single-cell clonal hierarchy reconstruction in 3 patients with TN-PMF from our cohort revealed SETBP1 to be a very early event, suggesting that the phenotype of the different SETBP1+ disorders may be shaped by the opposite hierarchy of the same clonal SETBP1 variants.


Assuntos
Sistema Hematopoético , Doenças Mieloproliferativas-Mielodisplásicas , Transtornos Mieloproliferativos , Mielofibrose Primária , Animais , Camundongos , Humanos , Mielofibrose Primária/genética , Transtornos Mieloproliferativos/genética , Mutação , Proteínas de Transporte/genética , Proteínas Nucleares/genética
7.
Cancer Cell ; 41(12): 2100-2116.e10, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38039964

RESUMO

Selection of the best tumor antigen is critical for the therapeutic success of chimeric antigen receptor (CAR) T cells in hematologic malignancies and solid tumors. The anaplastic lymphoma kinase (ALK) receptor is expressed by most neuroblastomas while virtually absent in most normal tissues. ALK is an oncogenic driver in neuroblastoma and ALK inhibitors show promising clinical activity. Here, we describe the development of ALK.CAR-T cells that show potent efficacy in monotherapy against neuroblastoma with high ALK expression without toxicity. For neuroblastoma with low ALK expression, combination with ALK inhibitors specifically potentiates ALK.CAR-T cells but not GD2.CAR-T cells. Mechanistically, ALK inhibitors impair tumor growth and upregulate the expression of ALK, thereby facilitating the activity of ALK.CAR-T cells against neuroblastoma. Thus, while neither ALK inhibitors nor ALK.CAR-T cells will likely be sufficient as monotherapy in neuroblastoma with low ALK density, their combination specifically enhances therapeutic efficacy.


Assuntos
Neuroblastoma , Humanos , Quinase do Linfoma Anaplásico/genética , Quinase do Linfoma Anaplásico/metabolismo , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Antígenos de Neoplasias , Linfócitos T , Linhagem Celular Tumoral
8.
Mol Oncol ; 17(11): 2215-2217, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37872865

RESUMO

The development of tailored therapies designed to specifically target driver oncogenes has initiated a revolutionary era in cancer biology. The availability of a growing number of selective inhibitors has generated novel experimental and clinical paradigms. These represent an opportunity and a challenge for researchers and clinicians to delve deeper into the intricate dynamics of cancer development and response to treatment. By directly inhibiting key driver oncogenes involved in tumor initiation and progression, scientists have an unprecedented opportunity to conduct longitudinal and clonal evolutionary studies of how cancer cells adapt, rewire, and exploit conflictive or overlapping signaling dependencies in response to treatment in vitro and in vivo. This challenge has to be progressively resolved to discover more effective and personalized cancer therapies.


Assuntos
Neoplasias , Oncogenes , Humanos , Neoplasias/genética , Transformação Celular Neoplásica/genética , Transdução de Sinais , Mutação
10.
J Cell Mol Med ; 27(20): 3053-3064, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37654003

RESUMO

Mantle-cell lymphoma (MCL) is a B-cell non-Hodgkin Lymphoma (NHL) with a poor prognosis, at high risk of relapse after conventional treatment. MCL-associated tumour microenvironment (TME) is characterized by M2-like tumour-associated macrophages (TAMs), able to interact with cancer cells, providing tumour survival and resistance to immuno-chemotherapy. Likewise, monocyte-derived nurse-like cells (NLCs) present M2-like profile and provide proliferation signals to chronic lymphocytic leukaemia (CLL), a B-cell malignancy sharing with MCL some biological and phenotypic features. Antibodies against TAMs targeted CD47, a 'don't eat me' signal (DEMs) able to quench phagocytosis by TAMs within TME, with clinical effectiveness when combined with Rituximab in pretreated NHL. Recently, CD24 was found as valid DEMs in solid cancer. Since CD24 is expressed during B-cell differentiation, we investigated and identified consistent CD24 in MCL, CLL and primary human samples. Phagocytosis increased when M2-like macrophages were co-cultured with cancer cells, particularly in the case of paired DEMs blockade (i.e. anti-CD24 + anti-CD47) combined with Rituximab. Similarly, unstimulated CLL patients-derived NLCs provided increased phagocytosis when DEMs blockade occurred. Since high levels of CD24 were associated with worse survival in both MCL and CLL, anti-CD24-induced phagocytosis could be considered for future clinical use, particularly in association with other agents such as Rituximab.


Assuntos
Leucemia Linfocítica Crônica de Células B , Linfoma de Célula do Manto , Adulto , Humanos , Rituximab/farmacologia , Rituximab/uso terapêutico , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/patologia , Linfoma de Célula do Manto/tratamento farmacológico , Antígeno CD47 , Recidiva Local de Neoplasia , Fagocitose , Microambiente Tumoral , Antígeno CD24
11.
Cancer Discov ; 13(11): 2339-2355, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37682219

RESUMO

The protein phosphatase SHP2/PTPN11 has been reported to be a key modulator of proliferative pathways in a wide range of malignancies. Intriguingly, SHP2 has also been described as a critical regulator of the tumor microenvironment. Based on this evidence SHP2 is considered a multifaceted target in cancer, spurring the notion that the development of direct inhibitors of SHP2 would provide the twofold benefit of tumor intrinsic and extrinsic inhibition. In this review, we will discuss the role of SHP2 in cancer and the tumor microenvironment, and the clinical strategies in which SHP2 inhibitors are leveraged as combination agents to improve therapeutic response. SIGNIFICANCE: The SHP2 phosphatase functions as a pleiotropic factor, and its inhibition not only hinders tumor growth but also reshapes the tumor microenvironment. Although their single-agent activity may be limited, SHP2 inhibitors hold the potential of being key combination agents to enhance the depth and the durability of tumor response to therapy.


Assuntos
Neoplasias , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Microambiente Tumoral
12.
Nat Cancer ; 4(7): 1016-1035, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37430060

RESUMO

Anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC) is treated with ALK tyrosine kinase inhibitors (TKIs), but the lack of activity of immune checkpoint inhibitors (ICIs) is poorly understood. Here, we identified immunogenic ALK peptides to show that ICIs induced rejection of ALK+ tumors in the flank but not in the lung. A single-peptide vaccination restored priming of ALK-specific CD8+ T cells, eradicated lung tumors in combination with ALK TKIs and prevented metastatic dissemination of tumors to the brain. The poor response of ALK+ NSCLC to ICIs was due to ineffective CD8+ T cell priming against ALK antigens and is circumvented through specific vaccination. Finally, we identified human ALK peptides displayed by HLA-A*02:01 and HLA-B*07:02 molecules. These peptides were immunogenic in HLA-transgenic mice and were recognized by CD8+ T cells from individuals with NSCLC, paving the way for the development of a clinical vaccine to treat ALK+ NSCLC.


Assuntos
Vacinas Anticâncer , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Camundongos , Animais , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Quinase do Linfoma Anaplásico/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Vacinas Anticâncer/uso terapêutico , Receptores Proteína Tirosina Quinases/uso terapêutico , Linfócitos T CD8-Positivos/patologia , Vacinas de Subunidades Antigênicas/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/uso terapêutico , Camundongos Transgênicos , Vacinação
13.
Sci Transl Med ; 15(702): eabo3826, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37379367

RESUMO

Anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitors (TKIs) show potent efficacy in several ALK-driven tumors, but the development of resistance limits their long-term clinical impact. Although resistance mechanisms have been studied extensively in ALK-driven non-small cell lung cancer, they are poorly understood in ALK-driven anaplastic large cell lymphoma (ALCL). Here, we identify a survival pathway supported by the tumor microenvironment that activates phosphatidylinositol 3-kinase γ (PI3K-γ) signaling through the C-C motif chemokine receptor 7 (CCR7). We found increased PI3K signaling in patients and ALCL cell lines resistant to ALK TKIs. PI3Kγ expression was predictive of a lack of response to ALK TKI in patients with ALCL. Expression of CCR7, PI3Kγ, and PI3Kδ were up-regulated during ALK or STAT3 inhibition or degradation and a constitutively active PI3Kγ isoform cooperated with oncogenic ALK to accelerate lymphomagenesis in mice. In a three-dimensional microfluidic chip, endothelial cells that produce the CCR7 ligands CCL19/CCL21 protected ALCL cells from apoptosis induced by crizotinib. The PI3Kγ/δ inhibitor duvelisib potentiated crizotinib activity against ALCL lines and patient-derived xenografts. Furthermore, genetic deletion of CCR7 blocked the central nervous system dissemination and perivascular growth of ALCL in mice treated with crizotinib. Thus, blockade of PI3Kγ or CCR7 signaling together with ALK TKI treatment reduces primary resistance and the survival of persister lymphoma cells in ALCL.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Linfoma Anaplásico de Células Grandes , Humanos , Animais , Camundongos , Crizotinibe/farmacologia , Crizotinibe/uso terapêutico , Receptores Proteína Tirosina Quinases/metabolismo , Quinase do Linfoma Anaplásico , Receptores CCR7/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Células Endoteliais/metabolismo , Fosfatidilinositol 3-Quinases , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Tirosina Quinases , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Linfoma Anaplásico de Células Grandes/tratamento farmacológico , Linfoma Anaplásico de Células Grandes/genética , Linfoma Anaplásico de Células Grandes/patologia , Linhagem Celular Tumoral , Microambiente Tumoral
14.
Nature ; 618(7967): 1024-1032, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37198482

RESUMO

Focal copy-number amplification is an oncogenic event. Although recent studies have revealed the complex structure1-3 and the evolutionary trajectories4 of oncogene amplicons, their origin remains poorly understood. Here we show that focal amplifications in breast cancer frequently derive from a mechanism-which we term translocation-bridge amplification-involving inter-chromosomal translocations that lead to dicentric chromosome bridge formation and breakage. In 780 breast cancer genomes, we observe that focal amplifications are frequently connected to each other by inter-chromosomal translocations at their boundaries. Subsequent analysis indicates the following model: the oncogene neighbourhood is translocated in G1 creating a dicentric chromosome, the dicentric chromosome is replicated, and as dicentric sister chromosomes segregate during mitosis, a chromosome bridge is formed and then broken, with fragments often being circularized in extrachromosomal DNAs. This model explains the amplifications of key oncogenes, including ERBB2 and CCND1. Recurrent amplification boundaries and rearrangement hotspots correlate with oestrogen receptor binding in breast cancer cells. Experimentally, oestrogen treatment induces DNA double-strand breaks in the oestrogen receptor target regions that are repaired by translocations, suggesting a role of oestrogen in generating the initial translocations. A pan-cancer analysis reveals tissue-specific biases in mechanisms initiating focal amplifications, with the breakage-fusion-bridge cycle prevalent in some and the translocation-bridge amplification in others, probably owing to the different timing of DNA break repair. Our results identify a common mode of oncogene amplification and propose oestrogen as its mechanistic origin in breast cancer.


Assuntos
Neoplasias da Mama , Receptor alfa de Estrogênio , Amplificação de Genes , Oncogenes , Translocação Genética , Feminino , Humanos , Neoplasias da Mama/genética , Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , Oncogenes/genética , Translocação Genética/genética , Genoma Humano/genética , Quebras de DNA de Cadeia Dupla , Especificidade de Órgãos
16.
Sci Immunol ; 8(81): eade1167, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-36961908

RESUMO

Insertions and deletions (indels) are low-frequency deleterious genomic DNA alterations. Despite their rarity, indels are common, and insertions leading to long complementarity-determining region 3 (CDR3) are vital for antigen-binding functions in broadly neutralizing and polyreactive antibodies targeting viruses. Because of challenges in detecting indels, the mechanism that generates indels during immunoglobulin diversification processes remains poorly understood. We carried out ultra-deep profiling of indels and systematically dissected the underlying mechanisms using passenger-immunoglobulin mouse models. We found that activation-induced cytidine deaminase-dependent ±1-base pair (bp) indels are the most prevalent indel events, biasing deleterious outcomes, whereas longer in-frame indels, especially insertions that can extend the CDR3 length, are rare outcomes. The ±1-bp indels are channeled by base excision repair, but longer indels require additional DNA-processing factors. Ectopic expression of a DNA exonuclease or perturbation of the balance of DNA polymerases can increase the frequency of longer indels, thus paving the way for models that can generate antibodies with long CDR3. Our study reveals the mechanisms that generate beneficial and deleterious indels during the process of antibody somatic hypermutation and has implications in understanding the detrimental genomic alterations in various conditions, including tumorigenesis.


Assuntos
Genes de Imunoglobulinas , Mutação INDEL , Animais , Camundongos , Mutação , Reparo do DNA/genética , DNA/genética
17.
Nat Commun ; 14(1): 212, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639728

RESUMO

CRISPR-Cas gene editing has revolutionized experimental molecular biology over the past decade and holds great promise for the treatment of human genetic diseases. Here we review the development of CRISPR-Cas9/Cas12/Cas13 nucleases, DNA base editors, prime editors, and RNA base editors, focusing on the assessment and improvement of their editing precision and safety, pushing the limit of editing specificity and efficiency. We summarize the capabilities and limitations of each CRISPR tool from DNA editing to RNA editing, and highlight the opportunities for future improvements and applications in basic research, as well as the therapeutic and clinical considerations for their use in patients.


Assuntos
Sistemas CRISPR-Cas , Edição de RNA , Humanos , Sistemas CRISPR-Cas/genética , Edição de RNA/genética , Edição de Genes , DNA/genética , Endonucleases/metabolismo
19.
JTO Clin Res Rep ; 3(12): 100435, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36561283

RESUMO

Introduction: Brain metastases (BM) severely affect the prognosis and quality of life of patients with NSCLC. Recently, molecularly targeted agents were found to have promising activity against BM in patients with NSCLC whose primary tumors carry "druggable" mutations. Nevertheless, it remains critical to identify specific pathogenic alterations that drive NSCLC-BM and that can provide novel and more effective therapeutic targets. Methods: To identify potentially targetable pathogenic alterations in NSCLC-BM, we profiled somatic copy number alterations (SCNAs) in 51 matched pairs of primary NSCLC and BM samples from 33 patients with lung adenocarcinoma and 18 patients with lung squamous cell carcinoma. In addition, we performed multiregion copy number profiling on 15 BM samples and whole-exome sequencing on 40 of 51 NSCLC-BM pairs. Results: BM consistently had a higher burden of SCNAs compared with the matched primary tumors, and SCNAs were typically homogeneously distributed within BM, suggesting BM do not undergo extensive evolution once formed. By comparing focal SCNAs in matched NSCLC-BM pairs, we identified putative BM-driving alterations affecting multiple cancer genes, including several potentially targetable alterations in genes such as CDK12, DDR2, ERBB2, and NTRK1, which we validated in an independent cohort of 84 BM samples. Finally, we identified putative pathogenic alterations in multiple cancer genes, including genes involved in epigenome editing and 3D genome organization, such as EP300, CTCF, and STAG2, which we validated by targeted sequencing of an independent cohort of 115 BM samples. Conclusions: Our study represents the most comprehensive genomic characterization of NSCLC-BM available to date, paving the way to functional studies aimed at assessing the potential of the identified pathogenic alterations as clinical biomarkers and targets.

20.
Nat Commun ; 13(1): 5614, 2022 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-36153311

RESUMO

The clinical significance of gene fusions detected by DNA-based next generation sequencing remains unclear as resistance mechanisms to EGFR tyrosine kinase inhibitors in EGFR mutant non-small cell lung cancer. By studying EGFR inhibitor-resistant patients treated with a combination of an EGFR inhibitor and a drug targeting the putative resistance-causing fusion oncogene, we identify patients who benefit and those who do not from this treatment approach. Through evaluation including RNA-seq of potential drug resistance-imparting fusion oncogenes in 504 patients with EGFR mutant lung cancer, we identify only a minority of them as functional, potentially capable of imparting EGFR inhibitor resistance. We further functionally validate fusion oncogenes in vitro using CRISPR-based editing of EGFR mutant cell lines and use these models to identify known and unknown drug resistance mechanisms to combination therapies. Collectively, our results partially reveal the complex nature of fusion oncogenes as potential drug resistance mechanisms and highlight approaches that can be undertaken to determine their functional significance.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Receptores ErbB , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/antagonistas & inibidores , Genômica , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...