Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Pediatr Hematol Oncol ; : 1-9, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647418

RESUMO

Juvenile myelomonocytic leukemia (JMML) is an aggressive pediatric leukemia with few effective treatments and poor outcomes even after stem cell transplantation, the only current curative treatment. We developed a JMML patient-derived xenograft (PDX) mouse model and demonstrated the in vivo therapeutic efficacy and confirmed the target of trametinib, a RAS-RAF-MEK-ERK pathway inhibitor, in this model. A PDX model was created through transplantation of patient JMML cells into mice, up to the second generation, and successful engraftment was confirmed using flow cytometry. JMML PDX mice were treated with trametinib versus vehicle control, with a median survival of 194 days in the treatment group versus 124 days in the control group (p = 0.02). Trametinib's target as a RAS pathway inhibitor was verified by showing inhibition of ERK phosphorylation using immunoblot assays. In conclusion, trametinib monotherapy significantly prolongs survival in our JMML PDX model by inhibiting the RAS pathway. Our model can be effectively used for assessment of novel targeted treatments, including potential combination therapies, to improve JMML outcomes.

2.
Gynecol Oncol ; 178: 69-79, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37806229

RESUMO

OBJECTIVE: Assess if MEK inhibitor blockade of RAS-ERK pathway adaptive response in high grade serous ovarian cancers (HGSOC) improves platinum sensitivity. METHODS: Three HGSOC cell lines and three patient derived organoid (PDOs) samples from ascites of platinum resistant HGSOC patients were collected. Cell lines and PDOs were exposed to carboplatin and MEK inhibitors cobimetinib or trametinib. Cytotoxic effects of MEK inhibitors alone or combined with carboplatin were established. Western blots demonstrated RAS-ERK pathway blockage after MEK inhibitor treatment. RNA sequencing assessed gene expression after MEK inhibitor treatment. Cell line NF1 gene knockdown was performed with corresponding chemosensitivity levels. RESULTS: High carboplatin IC50 levels indicated platinum resistance in cell lines and PDOs. Cobimetinib induced cytotoxicity in cell lines and PDOs, while trametinib was less effective. Western blot confirmed MEK-ERK pathway blockage at minimal concentrations of MEK inhibitors in cell lines and PDOs. Phosphorylated-ERK levels of untreated cells indicated higher levels of RAS-ERK pathway activation in OVSAHO and OVCAR7 compared to OVCAR3. OVSAHO harbors a NF1 mutation and had highest levels of RAS-ERK activation. Cotreatment with carboplatin and MEK inhibitors showed varying synergistic cytotoxic effects at different combinations. Synergistic effect was most prominent in the OVSAHO carboplatin and cobimetinib combination. RNA sequencing identified downregulation of c-MYC and FOXM1 gene expression after MEK inhibitor treatment. NF1 gene knockdown showed an acquired increased IC50 compared to parental cells. CONCLUSION: MEK inhibitors block RAS-ERK pathways in platinum resistant HGSOC cells and PDOs. MEK inhibitors with carboplatin have select synergistic effects which may indicate a strategy to improve platinum sensitivity.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Humanos , Feminino , Sistema de Sinalização das MAP Quinases/fisiologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Carboplatina/farmacologia , Carboplatina/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Antineoplásicos/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Carcinoma Epitelial do Ovário/tratamento farmacológico , Quinases de Proteína Quinase Ativadas por Mitógeno
3.
Front Immunol ; 14: 1206631, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37638022

RESUMO

Introduction: Immune checkpoint inhibitors (ICIs) only benefit a subset of cancer patients, underlining the need for predictive biomarkers for patient selection. Given the limitations of tumor tissue availability, flow cytometry of peripheral blood mononuclear cells (PBMCs) is considered a noninvasive method for immune monitoring. This study explores the use of spectrum flow cytometry, which allows a more comprehensive analysis of a greater number of markers using fewer immune cells, to identify potential blood immune biomarkers and monitor ICI treatment in non-small-cell lung cancer (NSCLC) patients. Methods: PBMCs were collected from 14 non-small-cell lung cancer (NSCLC) patients before and after ICI treatment and 4 healthy human donors. Using spectrum flow cytometry, 24 immune cell markers were simultaneously monitored using only 1 million PBMCs. The results were also compared with those from clinical flow cytometry and bulk RNA sequencing analysis. Results: Our findings showed that the measurement of CD4+ and CD8+ T cells by spectrum flow cytometry matched well with those by clinical flow cytometry (Pearson R ranging from 0.75 to 0.95) and bulk RNA sequencing analysis (R=0.80, P=1.3 x 10-4). A lower frequency of CD4+ central memory cells before treatment was associated with a longer median progression-free survival (PFS) [Not reached (NR) vs. 5 months; hazard ratio (HR)=8.1, 95% confidence interval (CI) 1.5-42, P=0.01]. A higher frequency of CD4-CD8- double-negative (DN) T cells was associated with a longer PFS (NR vs. 4.45 months; HR=11.1, 95% CI 2.2-55.0, P=0.003). ICIs significantly changed the frequency of cytotoxic CD8+PD1+ T cells, DN T cells, CD16+CD56dim and CD16+CD56- natural killer (NK) cells, and CD14+HLDRhigh and CD11c+HLADR + monocytes. Of these immune cell subtypes, an increase in the frequency of CD16+CD56dim NK cells and CD14+HLADRhigh monocytes after treatment compared to before treatment were associated with a longer PFS (NR vs. 5 months, HR=5.4, 95% CI 1.1-25.7, P=0.03; 7.8 vs. 3.8 months, HR=5.7, 95% CI 169 1.0-31.7, P=0.04), respectively. Conclusion: Our preliminary findings suggest that the use of multicolor spectrum flow cytometry helps identify potential blood immune biomarkers for ICI treatment, which warrants further validation.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Inibidores de Checkpoint Imunológico/uso terapêutico , Citometria de Fluxo , Leucócitos Mononucleares , Neoplasias Pulmonares/tratamento farmacológico
4.
Exp Hematol ; 119-120: 8-13.e1, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36621746

RESUMO

B-cell acute lymphoblastic leukemia (B-ALL) is the most common type of cancer found in children. Although the overall survival rates are now >80%, 15%-20% of pediatric patients relapse, with survival rates subsequently dropping to 5%-10%. Cmpd10357, 3-amino-5-arylamino-6-chloro-N- (diaminomethylene) pyrazine-2-carboximide, is a highly potent, cell-permeant compound recently shown to have cytotoxic effects on solid tumors, including human breast cancer and high-grade gliomas, independent of their proliferative status. Cmpd10357 demonstrated concentration-dependent cytotoxicity in two human B-ALL cell lines, JM1 and Reh, at half-maximal inhibitory concentrations (IC50) of 3.2 and 3.3 µM, respectively. Cmpd10357, at a dose of 5 mg/kg, significantly prolonged survival in our B-ALL xenograft mouse model, with a median survival time of 49.0 days compared with 45.5 days in the control group (p < 0.05). The cytotoxicity of Cmpd10357 demonstrated caspase-independent, nonapoptotic cancer cell demise associated with the nuclear translocation of apoptosis-inducing factor (AIF). The cytotoxicity of Cmpd10357 in B-ALL cells was inhibited by Necrostatin-1 but not by Necrosulfonamide. These studies suggest that an AIF-mediated, caspase-independent necrosis mechanism of Cmpd10357 in B-ALL could be used in combination with traditional apoptotic chemotherapeutic agents.


Assuntos
Antineoplásicos , Linfoma de Burkitt , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Humanos , Camundongos , Animais , Criança , Apoptose , Antineoplásicos/farmacologia , Caspases/metabolismo , Caspases/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Linfoma de Burkitt/tratamento farmacológico , Linhagem Celular Tumoral
5.
Cancers (Basel) ; 14(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35740614

RESUMO

Protein quality control mechanisms play an important role in cancer progression by providing adaptive responses and morphologic stability against genome-wide copy number alterations, aneuploidy, and conformation-altering somatic mutations. This dependency on protein quality control mechanisms creates a vulnerability that may be exploited for therapeutic benefits by targeting components of the protein quality control mechanism. Recently, valosin-containing protein (VCP), also known at p97 AAA-ATPase, has emerged as a druggable target in cancer cells to affect their dependency on protein quality control. Here, we show that VCP inhibitors induce cytotoxicity in several ovarian cancer cell lines and these compounds act synergistically with mifepristone, a drug previously shown to induce an atypical unfolded protein response. Although mifepristone at a clinically achievable dose induces a weak unfolded protein response, it enhances the cytotoxic effects of VCP inhibitor CB-5083. Mechanistically, mifepristone blocks the cytoprotective effect of ATF6 in response to endoplasmic reticulum (ER) stress while activating the cytotoxic effects of ATF4 and CHOP through the HRI (EIF2AK1)-mediated signal transduction pathway. In contrast, CB-5083 activates ATF4 and CHOP through the PERK (EIF2AK3)-mediated signaling pathway. This combination activates ATF4 and CHOP while blocking the adaptive response provided by ATF6, resulting in increased cytotoxic effects and synergistic drug interaction.

6.
Cells ; 11(9)2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35563709

RESUMO

Tumor heterogeneity poses one of the greatest challenges to a successful treatment of cancer. Tumor cell populations consist of different subpopulations that have distinct phenotypic and genotypic profiles. Such variability poses a challenge in successfully targeting all tumor subpopulations at the same time. Relapse after treatment has been previously explained using the cancer stem cell model and the clonal evolution model. Cancer stem cells are an important subpopulation of tumor cells that regulate tumor plasticity and determine therapeutic resistance. Tumor plasticity is controlled by genetic and epigenetic changes of crucial genes involved in cancer cell survival, growth and metastasis. Targeting epigenetic modulators associated with cancer stem cell survival can unlock a promising therapeutic approach in completely eradicating cancer. Here, we review various factors governing epigenetic dysregulation of cancer stem cells ranging from the role of epigenetic mediators such as histone and DNA methyltransferases, histone deacetylases, histone methyltransferases to various signaling pathways associated with cancer stem cell regulation. We also discuss current treatment regimens targeting these factors and other promising inhibitors in clinical trials.


Assuntos
Neoplasias , Células-Tronco Neoplásicas , Metilação de DNA , Epigênese Genética , Epigenômica , Humanos , Neoplasias/patologia , Células-Tronco Neoplásicas/patologia
7.
In Vivo ; 36(1): 251-257, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34972722

RESUMO

BACKGROUND/AIM: It is estimated that nonmelanoma skin cancer (NMSC), including basal cell carcinoma (BCC) and squamous cell carcinoma (SCC), affects more than 3 million Americans each year. Translation of next-generation sequencing (NGS) data into identification of new potential targets for therapeutic applications may be helpful. Whole-exome sequencing (WES) is a widely used NGS method that involves sequencing the protein-coding regions of the genome. CASE REPORT: We report a case of a 65-year-old female smoker who was found to have two 6 mm lesions in her left nasal vestibule. Biopsies demonstrated synchronous BCC and SCC. The patient underwent surgical excision of both cancers with safe margins followed by plastic reconstruction. WES was performed on both cancers and 16 alterations including BRCA2 (p.P389S), FAM5C (S420L), KMT2A (P855L), and SMO (L412F), as unique for BCC, and 4 alterations including TP53 (p.H179Q) and CDKN2A (p.P114L), as unique for SCC, were identified. CONCLUSION: We report the first documented case with unique genetic alterations in two distinct and synchronous skin BCC and SCC arising from the same nasal vestibule of a patient. This adds to the growing field of data regarding genetic variants in characterizing malignancies and potentially for targeted therapies.


Assuntos
Carcinoma Basocelular , Carcinoma de Células Escamosas , Neoplasias Cutâneas , Idoso , Carcinoma Basocelular/genética , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/cirurgia , Feminino , Humanos , Mutação , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/genética , Estados Unidos , Sequenciamento do Exoma
8.
Front Pharmacol ; 12: 750352, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621176

RESUMO

Mesothelioma is a rare cancer with disproportionately higher death rates for shipping and mining populations. These patients have few treatment options, which can be partially attributed to limited chemotherapy responses for tumors. We initially hypothesized that quinacrine could be combined with cisplatin or pemetrexed to synergistically eliminate mesothelioma cells. The combination with cisplatin resulted in synergistic cell death and the combination with pemetrexed was not synergistic, although novel artificially-generated pemetrexed-resistant cells were more sensitive to quinacrine. Unexpectedly, we discovered cells with NF2 mutations were very sensitive to quinacrine. This change of quinacrine sensitivity was confirmed by NF2 ectopic expression and knockdown in NF2 mutant and wildtype cell lines, respectively. There are few common mutations in mesothelioma and inactivating NF2 mutations are present in up to 60% of these tumors. We found quinacrine alters the expression of over 3000 genes in NF2-mutated cells that were significantly different than quinacrine-induced changes in NF2 wildtype cells. Changes to NF2/hippo pathway biomarkers were validated at the mRNA and protein levels. Additionally, quinacrine induces a G1 phase cell cycle arrest in NF2-mutated cells versus the S phase arrest in NF2-wildtype cells. This study suggests quinacrine may have repurposing potential for a large subset of mesothelioma patients.

9.
Cancers (Basel) ; 13(18)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34572872

RESUMO

A considerable subset of gynecologic cancer patients experience disease recurrence or acquired resistance, which contributes to high mortality rates in ovarian cancer (OC). Our prior studies showed that quinacrine (QC), an antimalarial drug, enhanced chemotherapy sensitivity in treatment-refractory OC cells, including artificially generated chemoresistant and high-grade serous OC cells. In this study, we investigated QC-induced transcriptomic changes to uncover its cytotoxic mechanisms of action. Isogenic pairs of OC cells generated to be chemoresistant and their chemosensitive counterparts were treated with QC followed by RNA-seq analysis. Validation of selected expression results and database comparison analyses indicated the ribosomal biogenesis (RBG) pathway is inhibited by QC. RBG is commonly upregulated in cancer cells and is emerging as a drug target. We found that QC attenuates the in vitro and in vivo expression of nucleostemin (NS/GNL3), a nucleolar RBG and DNA repair protein, and the RPA194 catalytic subunit of Pol I that results in RBG inhibition and nucleolar stress. QC promotes the redistribution of fibrillarin in the form of extranuclear foci and nucleolar caps, an indicator of nucleolar stress conditions. In addition, we found that QC-induced downregulation of NS disrupted homologous recombination repair both by reducing NS protein levels and PARylation resulting in reduced RAD51 recruitment to DNA damage. Our data suggest that QC inhibits RBG and this inhibition promotes DNA damage by directly downregulating the NS-RAD51 interaction. Additionally, QC showed strong synergy with PARP inhibitors in OC cells. Overall, we found that QC downregulates the RBG pathway, induces nucleolar stress, supports the increase of DNA damage, and sensitizes cells to PARP inhibition, which supports new therapeutic stratagems for treatment-refractory OC. Our work offers support for targeting RBG in OC and determines NS to be a novel target for QC.

10.
Anticancer Res ; 41(9): 4417-4422, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34475063

RESUMO

BACKGROUND/AIM: Ovarian carcinoma is the fifth leading cause of cancer-related deaths in women in the United States. Serous papillary carcinoma is the most common histological type of ovarian carcinoma that often goes undetected until it has spread within the pelvis and abdomen leading to poor prognosis. Translation of next-generation sequencing (NGS) technology into personalized medicine and identification of new potential targets for therapeutic applications may be helpful. CASE REPORT: We report a case of a 59-year-old female who initially presented in the emergency department with increasing abdominal girth, and bloating. Computed tomography showed ascites and omental and pelvic masses. Fine needle biopsy of the omental mass showed high-grade papillary adenocarcinoma consistent with high-grade ovarian serous carcinoma. She was treated with chemotherapy followed by debulking surgery. Primary ovarian serous carcinoma and synchronous primary fallopian tube serous carcinoma with multiple leiomyomas were identified in the surgical specimen. Pleural biopsy was also positive for carcinoma. NGS and programmed death-ligand 1 (PD-L1) expression testing were performed in the ovarian serous carcinoma. The results showed mutations of breast cancer type 1 (BRCA1) and type 2 (BRCA2), tumor protein p53 (TP53) (c.524G>A at pR175H), and heat shock protein 90 alpha family class B member 1 (HSP90AB1) (p.R456C), as well as low RNA expression score of PD-L1. CONCLUSION: Identification of these mutations and PD-L1 abnormality at the diagnosis of ovarian carcinoma may shed light for clinicians to provide targeted therapy with poly (ADP-ribose) polymerase (PARP) inhibitors and immune checkpoint inhibitors for ovarian serous carcinoma. This is the first documented case of ovarian serous carcinoma to have found a HSP90AB1 (p.R456C) mutation.


Assuntos
Cistadenocarcinoma Seroso/genética , Neoplasias das Tubas Uterinas/genética , Proteínas de Choque Térmico HSP90/genética , Leiomiomatose/genética , Neoplasias Primárias Múltiplas/genética , Neoplasias Ovarianas/genética , Biópsia por Agulha Fina , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/cirurgia , Procedimentos Cirúrgicos de Citorredução , Tratamento Farmacológico , Neoplasias das Tubas Uterinas/tratamento farmacológico , Neoplasias das Tubas Uterinas/cirurgia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Leiomiomatose/tratamento farmacológico , Leiomiomatose/patologia , Leiomiomatose/cirurgia , Pessoa de Meia-Idade , Mutação , Neoplasias Primárias Múltiplas/tratamento farmacológico , Neoplasias Primárias Múltiplas/cirurgia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/cirurgia , Análise de Sequência de DNA , Tomografia Computadorizada por Raios X , Estados Unidos
11.
J Am Soc Nephrol ; 32(7): 1666-1681, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33952630

RESUMO

BACKGROUND: Identification of target antigens PLA2R, THSD7A, NELL1, or Semaphorin-3B can explain the majority of cases of primary membranous nephropathy (MN). However, target antigens remain unidentified in 15%-20% of patients. METHODS: A multipronged approach, using traditional and modern technologies, converged on a novel target antigen, and capitalized on the temporal variation in autoantibody titer for biomarker discovery. Immunoblotting of human glomerular proteins followed by differential immunoprecipitation and mass spectrometric analysis was complemented by laser-capture microdissection followed by mass spectrometry, elution of immune complexes from renal biopsy specimen tissue, and autoimmune profiling on a protein fragment microarray. RESULTS: These approaches identified serine protease HTRA1 as a novel podocyte antigen in a subset of patients with primary MN. Sera from two patients reacted by immunoblotting with a 51-kD protein within glomerular extract and with recombinant human HTRA1, under reducing and nonreducing conditions. Longitudinal serum samples from these patients seemed to correlate with clinical disease activity. As in PLA2R- and THSD7A- associated MN, anti-HTRA1 antibodies were predominantly IgG4, suggesting a primary etiology. Analysis of sera collected during active disease versus remission on protein fragment microarrays detected significantly higher titers of anti-HTRA1 antibody in active disease. HTRA1 was specifically detected within immune deposits of HTRA1-associated MN in 14 patients identified among three cohorts. Screening of 118 "quadruple-negative" (PLA2R-, THSD7A-, NELL1-, EXT2-negative) patients in a large repository of MN biopsy specimens revealed a prevalence of 4.2%. CONCLUSIONS: Conventional and more modern techniques converged to identify serine protease HTRA1 as a target antigen in MN.

12.
J Phys Chem A ; 125(20): 4267-4275, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-33792328

RESUMO

Current theory and measurements establish the age of the universe as ca. 13.8 billion years. For the first several hundred million years of its existence, it was a dark, opaque void. After that, the hydrogen atoms comprising most of the "ordinary" matter began to condense and ionize, eventually forming the first stars that would illuminate the sky. Details of how these "primordial" stars formed have been widely debated, but remain elusive. A central issue in this process is the mechanism by which the primordial gas (mainly hydrogen and helium atoms) collected via the action of dark matter cooled and further accreted to fusion densities. Current models invoke collisional excitation of H2 molecular rotations and subsequent radiative rotational transitions allowed by the weak molecular quadrupole moment. In this work, we review the salient considerations and present some new ideas, based on recent spectroscopic observations of neutral H3 Rydberg electronic state emission in the mid-infrared region.

13.
J Natl Cancer Inst ; 113(9): 1246-1257, 2021 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-33555293

RESUMO

BACKGROUND: TP53 mutations occur in more than 50% of cancers. We sought to determine the effect of the intragenic P72R single nucleotide polymorphism (SNP; rs1042522) on the oncogenic properties of mutant p53. METHODS: P72R allelic selection in tumors was determined from genotype calls and a Gaussian distributed mixture model. The SNP effect on mutant p53 was determined in p53-negative cancer cell lines. RNA-sequencing, chromatin immunoprecipitation, and survival analysis were performed to describe the SNP effect. All statistical tests were 2-sided. RESULTS: Among 409 patients with germline heterozygous P72R SNP who harbored somatic mutations in TP53, we observed a selection bias against missense TP53 mutants encoding the P72 SNP (P = 1.64 x 10-13). Exogenously expressed hotspot p53 mutants with the P72 SNP were negatively selected in cancer cells. Gene expression analyses showed the enrichment of p53 pathway genes and inflammatory genes in cancer cells transduced with mutants encoding P72 SNP. Immune gene signature is enriched in patients harboring missense TP53 mutations with homozygous P72 SNP. These patients have improved overall survival as compared with those with the R72 SNP (P = .04). CONCLUSION: This is the largest study demonstrating a selection against the P72 SNP. Missense p53 mutants with the P72 SNP retain partial wild-type tumor-suppressive functions, which may explain the selection bias against P72 SNP across cancer types. Ovarian cancer patients with the P72 SNP have a better prognosis than with the R72 SNP. Our study describes a previously unknown role through which the rs1042522 SNP modifies tumor suppressor activities of mutant p53 in patients.


Assuntos
Neoplasias Ovarianas , Proteína Supressora de Tumor p53 , Alelos , Feminino , Genes p53 , Humanos , Neoplasias Ovarianas/genética , Polimorfismo de Nucleotídeo Único , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
14.
Int J Mol Sci ; 21(21)2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33126568

RESUMO

High-grade serous carcinoma (HGSC), the most lethal subtype of epithelial ovarian cancer (EOC), is characterized by widespread TP53 mutations (>90%), most of which are missense mutations (>70%). The objective of this study was to investigate differential transcriptional targets affected by a common germline P72R SNP (rs1042522) in two p53 hotspot mutants, R248Q and R248W, and identify the mechanism through which the P72R SNP affects the neomorphic properties of these mutants. Using isogenic cell line models, transcriptomic analysis, xenografts, and patient data, we found that the P72R SNP modifies the effect of p53 hotspot mutants on cellular morphology and invasion properties. Most importantly, RNA sequencing studies identified CXCL1 a critical factor that is differentially affected by P72R SNP in R248Q and R248W mutants and is responsible for differences in cellular morphology and functional properties observed in these p53 mutants. We show that the mutants with the P72 SNP promote a reversion of the EMT phenotype to epithelial characteristics, whereas its R72 counterpart promotes a mesenchymal transition via the chemokine CXCL1. These studies reveal a new role of the P72R SNP in modulating the neomorphic properties of p53 mutants via CXCL1, which has significant implications for tumor invasion and metastasis.


Assuntos
Biomarcadores Tumorais/metabolismo , Quimiocina CXCL1/metabolismo , Transição Epitelial-Mesenquimal , Mutação , Neoplasias Ovarianas/patologia , Polimorfismo Genético , Proteína Supressora de Tumor p53/genética , Animais , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Quimiocina CXCL1/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Invasividade Neoplásica , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Fenótipo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
15.
PLoS Genet ; 16(6): e1008808, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32497036

RESUMO

Metastasis is responsible for 90% of human cancer mortality, yet it remains a challenge to model human cancer metastasis in vivo. Here we describe mouse models of high-grade serous ovarian cancer, also known as high-grade serous carcinoma (HGSC), the most common and deadliest human ovarian cancer type. Mice genetically engineered to harbor Dicer1 and Pten inactivation and mutant p53 robustly replicate the peritoneal metastases of human HGSC with complete penetrance. Arising from the fallopian tube, tumors spread to the ovary and metastasize throughout the pelvic and peritoneal cavities, invariably inducing hemorrhagic ascites. Widespread and abundant peritoneal metastases ultimately cause mouse deaths (100%). Besides the phenotypic and histopathological similarities, mouse HGSCs also display marked chromosomal instability, impaired DNA repair, and chemosensitivity. Faithfully recapitulating the clinical metastases as well as molecular and genomic features of human HGSC, this murine model will be valuable for elucidating the mechanisms underlying the development and progression of metastatic ovarian cancer and also for evaluating potential therapies.


Assuntos
Antineoplásicos/farmacologia , Cistadenocarcinoma Seroso/genética , Neoplasias Ovarianas/patologia , Neoplasias Peritoneais/genética , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Instabilidade Cromossômica , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/secundário , RNA Helicases DEAD-box/genética , Reparo do DNA , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Estudos de Viabilidade , Feminino , Humanos , Camundongos , Camundongos Knockout , Mutação , Gradação de Tumores , Metástase Neoplásica/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , PTEN Fosfo-Hidrolase/genética , Neoplasias Peritoneais/tratamento farmacológico , Neoplasias Peritoneais/secundário , Cultura Primária de Células , Ribonuclease III/genética , Proteína Supressora de Tumor p53/genética
16.
Gynecol Oncol ; 157(3): 783-792, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32253045

RESUMO

OBJECTIVE: Cancer patient-derived organoids (PDOs) grow as three dimensional (3D) structures in the presence of extracellular matrix and have been found to represent the original tumor's genetic complexity. In addition, PDOs can be grown and subjected to drug sensitivity testing in a shorter time course and with lesser expense than patient-derived xenograft models. Many patients with recurrent ovarian cancer develop malignant effusions that become refractory to chemotherapy. Since these same patients often present for palliative aspiration of ascites or pleural effusions, there is a potential opportunity to obtain tumor specimens in the form of multicellular spheroids (MCS) present in malignant effusion fluids. Our objective was to develop a short duration culture of MCS from ovarian cancer malignant effusions in conditions selected to support organoid growth and use them as a platform for empirical drug sensitivity testing. METHODS: In this study, malignant effusion specimens were collected from patients with high-grade serous ovarian carcinoma (HGSOC). MCS were recovered and subjected to culture conditions designed to support organoid growth. In a subset of specimens, RNA-sequencing was performed at two time points during the short-term culture to determine changes in transcriptome in response to culture conditions. Organoid induction was also characterized in these specimens using Ki67 staining and histologic analysis. Drug sensitivity testing was performed on all specimens. RESULTS: Our model describes organoids formed within days of primary culture, which can recapitulate the histological features of malignant ascites fluid and can be expanded for at least 6 days. RNA-seq analysis of four patient specimens showed that within 6 days of culture, there was significant up-regulation of genes related to cellular proliferation, epithelial-mesenchymal transition, and KRAS signaling pathways. Drug sensitivity testing identified several agents with therapeutic potential. CONCLUSIONS: Short duration organoid culture of MCS from HGSOC malignant effusions can be used as a platform for empiric drug sensitivity testing. These ex vivo models may be helpful in screening new or existing therapeutic agents prior to individualized treatment options.


Assuntos
Cistadenoma Seroso/patologia , Técnicas de Cultura de Órgãos/métodos , Organoides/fisiopatologia , Idoso , Cistadenoma Seroso/tratamento farmacológico , Feminino , Humanos , Pessoa de Meia-Idade , Gradação de Tumores , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia
17.
BMC Genomics ; 21(1): 272, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32228441

RESUMO

BACKGROUND: Most eukaryotic genes produce different transcripts of multiple isoforms by inclusion or exclusion of particular exons. The isoforms of a gene often play diverse functional roles, and thus it is necessary to accurately measure isoform expressions as well as gene expressions. While previous studies have demonstrated the strong agreement between mRNA sequencing (RNA-seq) and array-based gene and/or isoform quantification platforms (Microarray gene expression and Exon-array), the more recently developed NanoString platform has not been systematically evaluated and compared, especially in large-scale studies across different cancer domains. RESULTS: In this paper, we present a large-scale comparative study among RNA-seq, NanoString, array-based, and RT-qPCR platforms using 46 cancer cell lines across different cancer types. The goal is to understand and evaluate the calibers of the platforms for measuring gene and isoform expressions in cancer studies. We first performed NanoString experiments on 59 cancer cell lines with 404 custom-designed probes for measuring the expressions of 478 isoforms in 155 genes, and additional RT-qPCR experiments for a subset of the measured isoforms in 13 cell lines. We then combined the data with the matched RNA-seq, Exon-array, and Microarray data of 46 of the 59 cell lines for the comparative analysis. CONCLUSION: In the comparisons of the platforms for measuring the expressions at both isoform and gene levels, we found that (1) the agreement on isoform expressions is lower than the agreement on gene expressions across the four platforms; (2) NanoString and Exon-array are not consistent on isoform quantification even though both techniques are based on hybridization reactions; (3) RT-qPCR experiments are more consistent with RNA-seq and Exon-array than NanoString in isoform quantification; (4) different RNA-seq isoform quantification methods show varying estimation results, and among the methods, Net-RSTQ and eXpress are more consistent across the platforms; and (5) RNA-seq has the best overall consistency with the other platforms on gene expression quantification.


Assuntos
Perfilação da Expressão Gênica/métodos , Algoritmos , Éxons/genética , Éxons/fisiologia , Humanos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Análise de Sequência de RNA/métodos , Software
18.
Brief Bioinform ; 21(4): 1479-1486, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31588509

RESUMO

Somatic mutation and gene expression dysregulation are considered two major tumorigenesis factors. While independent investigations of either factor pervade, studies of associations between somatic mutations and gene expression changes have been sporadic and nonsystematic. Utilizing genomic data collected from 11 315 subjects of 33 distinct cancer types, we constructed MutEx, a pan-cancer integrative genomic database. This database records the relationships among gene expression, somatic mutation and survival data for cancer patients. MutEx can be used to swiftly explore the relationship between these genomic/clinic features within and across cancer types and, more importantly, search for corroborating evidence for hypothesis inception. Our database also incorporated Gene Ontology and several pathway databases to enhance functional annotation, and elastic net and a gene expression composite score to aid in survival analysis. To demonstrate the usability of MutEx, we provide several application examples, including top somatic mutations associated with the most extensive expression dysregulation in breast cancer, differential mutational burden downstream of DNA mismatch repair gene mutations and composite gene expression score-based survival difference in breast cancer. MutEx can be accessed at http://www.innovebioinfo.com/Databases/Mutationdb_About.php.


Assuntos
Biologia Computacional/métodos , Genômica , Neoplasias/genética , Bases de Dados Genéticas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mutação , Neoplasias/patologia , Linguagens de Programação , Análise de Sobrevida
19.
Front Oncol ; 9: 986, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632917

RESUMO

Recurrence within 6 months of the last round of chemotherapy is clinically defined as platinum-resistant ovarian cancer. Gene expression associated with early recurrence may provide insights into platinum resistant recurrence. Prior studies identified a 14-gene model that accurately predicted early or late recurrence in 86% of patients. One of the genes identified was CC2D1A (encoding coiled-coil and C2 domain containing 1A), which showed higher expression in tumors from patients with early recurrence. Here, we show that CC2D1A protein expression was higher in cisplatin-resistant ovarian cancer cell lines compared to cisplatin-sensitive cell lines. In addition, immunohistochemical analysis of patient tumors on a tissue microarray (n = 146) showed that high levels of CC2D1A were associated with a significantly worse overall and progression-free survival (p = 0.0002 and p = 0.006, respectively). To understand the contribution of CC2D1A in chemoresistance, we generated shRNA-mediated knockdown of CC2D1A in SKOV3ip and PEO4 cell lines. Cell death and clonogenic assays of these isogenic clonal lines clearly showed that downregulation of CC2D1A resulted in increased sensitivity to cisplatin and paclitaxel in ovarian cancer cells. Moreover, nude mice bearing SKOV3ip xenografts with stably downregulated CC2D1A were more sensitive to chemotherapy as evidenced by a significantly longer survival time compared to xenografts derived from cells stably transduced with non-targeting shRNA. These results suggest CC2D1A promotes chemotherapy resistance in ovarian cancer.

20.
Commun Biol ; 2: 335, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31508509

RESUMO

Treatment of cancer with poly (ADP-ribose) polymerase (PARP) inhibitors is currently limited to cells defective in the homologous recombination (HR) pathway. Identification of genetic targets that induce or mimic HR deficiencies will extend the clinical utility of PARP inhibitors. Here we perform a CRISPR/Cas9-based genome-scale loss-of-function screen, using the sensitivity of PARP inhibitor olaparib as a surrogate. We identify C12orf5, encoding TP53 induced glycolysis and apoptosis regulator (TIGAR), as a modifier of PARP inhibitor response. We show that TIGAR is amplified in several cancer types, and higher expression of TIGAR associates with poor overall survival in ovarian cancer. TIGAR knockdown enhances sensitivity to olaparib in cancer cells via downregulation of BRCA1 and the Fanconi anemia pathway and increases senescence of these cells by affecting metabolic pathways and increasing the cytotoxic effects of olaparib. Our results indicate TIGAR should be explored as a therapeutic target for treating cancer and extending the use of PARP inhibitors.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Sistemas CRISPR-Cas , Resistencia a Medicamentos Antineoplásicos/genética , Monoéster Fosfórico Hidrolases/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Antineoplásicos/farmacologia , Biomarcadores , Senescência Celular , Dano ao DNA , Técnicas de Silenciamento de Genes , Estudo de Associação Genômica Ampla , Humanos , Ftalazinas/farmacologia , Piperazinas/farmacologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...