Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38891944

RESUMO

Gilles de la Tourette syndrome (GTS) is a neurodevelopmental psychiatric disorder with complex and elusive etiology with a significant role of genetic factors. The aim of this study was to identify structural variants that could be associated with familial GTS. The study group comprised 17 multiplex families with 80 patients. Structural variants were identified from whole-genome sequencing data and followed by co-segregation and bioinformatic analyses. The localization of these variants was used to select candidate genes and create gene sets, which were subsequently processed in gene ontology and pathway enrichment analysis. Seventy putative pathogenic variants shared among affected individuals within one family but not present in the control group were identified. Only four private or rare deletions were exonic in LDLRAD4, B2M, USH2A, and ZNF765 genes. Notably, the USH2A gene is involved in cochlear development and sensory perception of sound, a process that was associated previously with familial GTS. In addition, two rare variants and three not present in the control group were co-segregating with the disease in two families, and uncommon insertions in GOLM1 and DISC1 were co-segregating in three families each. Enrichment analysis showed that identified structural variants affected synaptic vesicle endocytosis, cell leading-edge organization, and signaling for neurite outgrowth. The results further support the involvement of the regulation of neurotransmission, neuronal migration, and sound-sensing in GTS.


Assuntos
Linhagem , Síndrome de Tourette , Humanos , Síndrome de Tourette/genética , Masculino , Feminino , Predisposição Genética para Doença , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Adulto , Sequenciamento Completo do Genoma
2.
Methods ; 226: 54-60, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636797

RESUMO

The challenge of modelling the spatial conformation of chromatin remains an open problem. While multiple data-driven approaches have been proposed, each has limitations. This work introduces two image-driven modelling methods based on the Molecular Dynamics Flexible Fitting (MDFF) approach: the force method and the correlational method. Both methods have already been used successfully in protein modelling. We propose a novel way to employ them for building chromatin models directly from 3D images. This approach is termed image-driven modelling. Additionally, we introduce the initial structure generator, a tool designed to generate optimal starting structures for the proposed algorithms. The methods are versatile and can be applied to various data types, with minor modifications to accommodate new generation imaging techniques.


Assuntos
Algoritmos , Cromatina , Simulação de Dinâmica Molecular , Cromatina/química , Cromatina/metabolismo , Imageamento Tridimensional/métodos , Humanos
3.
EMBO J ; 42(23): e113527, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37846891

RESUMO

Emergency granulopoiesis is the enhanced and accelerated production of granulocytes that occurs during acute infection. The contribution of hematopoietic stem cells (HSCs) to this process was reported; however, how HSCs participate in emergency granulopoiesis remains elusive. Here, using a mouse model of emergency granulopoiesis we observe transcriptional changes in HSCs as early as 4 h after lipopolysaccharide (LPS) administration. We observe that the HSC identity is changed towards a myeloid-biased HSC and show that CD201 is enriched in lymphoid-biased HSCs. While CD201 expression under steady-state conditions reveals a lymphoid bias, under emergency granulopoiesis loss of CD201 marks the lymphoid-to-myeloid transcriptional switch. Mechanistically, we determine that lymphoid-biased CD201+ HSCs act as a first response during emergency granulopoiesis due to direct sensing of LPS by TLR4 and downstream activation of NF-κΒ signaling. The myeloid-biased CD201- HSC population responds indirectly during an acute infection by sensing G-CSF, increasing STAT3 phosphorylation, and upregulating LAP/LAP* C/EBPß isoforms. In conclusion, HSC subpopulations support early phases of emergency granulopoiesis due to their transcriptional rewiring from a lymphoid-biased to myeloid-biased population and thus establishing alternative paths to supply elevated numbers of granulocytes.


Assuntos
Células-Tronco Hematopoéticas , Lipopolissacarídeos , Lipopolissacarídeos/metabolismo , Hematopoese , Granulócitos/metabolismo
4.
Sci Rep ; 13(1): 11693, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474564

RESUMO

There have been multiple attempts to predict the expression of the genes based on the sequence, epigenetics, and various other factors. To improve those predictions, we have decided to investigate adding protein-specific 3D interactions that play a significant role in the condensation of the chromatin structure in the cell nucleus. To achieve this, we have used the architecture of one of the state-of-the-art algorithms, ExPecto, and investigated the changes in the model metrics upon adding the spatially relevant data. We have used ChIA-PET interactions that are mediated by cohesin (24 cell lines), CTCF (4 cell lines), and RNAPOL2 (4 cell lines). As the output of the study, we have developed the Spatial Gene Expression (SpEx) algorithm that shows statistically significant improvements in most cell lines. We have compared ourselves to the baseline ExPecto model, which obtained a 0.82 Spearman's rank correlation coefficient (SCC) score, and 0.85, which is reported by newer Enformer were able to obtain the average correlation score of 0.83. However, in some cases (e.g. RNAPOL2 on GM12878), our improvement reached 0.04, and in some cases (e.g. RNAPOL2 on H1), we reached an SCC of 0.86.


Assuntos
Cromatina , Cromossomos , Cromatina/genética , Fator de Ligação a CCCTC/genética , Cromossomos/metabolismo , Núcleo Celular/metabolismo , Proteínas de Ciclo Celular/metabolismo , Expressão Gênica
5.
bioRxiv ; 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37066361

RESUMO

There have been multiple attempts to predict the expression of the genes based on the sequence, epigenetics, and various other factors. To improve those predictions, we have decided to investigate adding protein-specific 3D interactions that play a major role in the compensation of the chromatin structure in the cell nucleus. To achieve this, we have used the architecture of one of the state-of-the-art algorithms, ExPecto (J. Zhou et al., 2018), and investigated the changes in the model metrics upon adding the spatially relevant data. We have used ChIA-PET interactions that are mediated by cohesin (24 cell lines), CTCF (4 cell lines), and RNAPOL2 (4 cell lines). As the output of the study, we have developed the Spatial Gene Expression (SpEx) algorithm that shows statistically significant improvements in most cell lines.

6.
Bioinformatics ; 38(24): 5440-5442, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36315072

RESUMO

SUMMARY: The detection of the structural variants (SVs) using Illumina sequencing of human DNA is not an easy task. Multiple approaches have been proposed; however, all the methods have their limitations. In this article, we present ConsensuSV pipeline that aids the research in complex variant detection. By using consensus meta-approach, eight independent SV callers are being used to identify a uniform set of high-quality SVs. The pipeline works using raw sequencing data and performs all the necessary steps automatically, significantly reducing the researchers' time required for processing the data. The output files contain SVs, single nucleotide polymorphisms and Indels. The pipeline uses luigi framework, allowing the software to be run efficiently and parallelly using the high-performance computing infrastructure. We strongly believe that the software is useful to the scientific community interested in the germline variant detection. AVAILABILITY AND IMPLEMENTATION: https://github.com/SFGLab/ConsensuSV-pipeline. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Software , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento Completo do Genoma , Mutação INDEL , Polimorfismo de Nucleotídeo Único
7.
Comput Struct Biotechnol J ; 20: 3591-3603, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860407

RESUMO

The 2 m-long human DNA is tightly intertwined into the cell nucleus of the size of 10 µm. The DNA packing is explained by folding of chromatin fiber. This folding leads to the formation of such hierarchical structures as: chromosomal territories, compartments; densely-packed genomic regions known as Topologically Associating Domains (TADs), or Chromatin Contact Domains (CCDs), and loops. We propose models of dynamical human genome folding into hierarchical components in human lymphoblastoid, stem cell, and fibroblast cell lines. Our models are based on explosive percolation theory. The chromosomes are modeled as graphs where CTCF chromatin loops are represented as edges. The folding trajectory is simulated by gradually introducing loops to the graph following various edge addition strategies that are based on topological network properties, chromatin loop frequencies, compartmentalization, or epigenomic features. Finally, we propose the genome folding model - a biophysical pseudo-time process guided by a single scalar order parameter. The parameter is calculated by Linear Discriminant Analysis of chromatin features. We also include dynamics of loop formation by using Loop Extrusion Model (LEM) while adding them to the system. The chromatin phase separation, where fiber folds in 3D space into topological domains and compartments, is observed when the critical number of contacts is reached. We also observe that at least 80% of the loops are needed for chromatin fiber to condense in 3D space, and this is constant through various cell lines. Overall, our in-silico model integrates the high-throughput 3D genome interaction experimental data with the novel theoretical concept of phase separation, which allows us to model event-based time dynamics of chromatin loop formation and folding trajectories.

8.
Semin Cell Dev Biol ; 121: 171-185, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34429265

RESUMO

The three-dimensional structure of the human genome has been proven to have a significant functional impact on gene expression. The high-order spatial chromatin is organised first by looping mediated by multiple protein factors, and then it is further formed into larger structures of topologically associated domains (TADs) or chromatin contact domains (CCDs), followed by A/B compartments and finally the chromosomal territories (CTs). The genetic variation observed in human population influences the multi-scale structures, posing a question regarding the functional impact of structural variants reflected by the variability of the genes expression patterns. The current methods of evaluating the functional effect include eQTLs analysis which uses statistical testing of influence of variants on spatially close genes. Rarely, non-coding DNA sequence changes are evaluated by their impact on the biomolecular interaction network (BIN) reflecting the cellular interactome that can be analysed by the classical graph-theoretic algorithms. Therefore, in the second part of the review, we introduce the concept of BIN, i.e. a meta-network model of the complete molecular interactome developed by integrating various biological networks. The BIN meta-network model includes DNA-protein binding by the plethora of protein factors as well as chromatin interactions, therefore allowing connection of genomics with the downstream biomolecular processes present in a cell. As an illustration, we scrutinise the chromatin interactions mediated by the CTCF protein detected in a ChIA-PET experiment in the human lymphoblastoid cell line GM12878. In the corresponding BIN meta-network the DNA spatial proximity is represented as a graph model, combined with the Proteins-Interaction Network (PIN) of human proteome using the Gene Association Network (GAN). Furthermore, we enriched the BIN with the signalling and metabolic pathways and Gene Ontology (GO) terms to assert its functional context. Finally, we mapped the Single Nucleotide Polymorphisms (SNPs) from the GWAS studies and identified the chromatin mutational hot-spots associated with a significant enrichment of SNPs related to autoimmune diseases. Afterwards, we mapped Structural Variants (SVs) from healthy individuals of 1000 Genomes Project and identified an interesting example of the missing protein complex associated with protein Q6GYQ0 due to a deletion on chromosome 14. Such an analysis using the meta-network BIN model is therefore helpful in evaluating the influence of genetic variation on spatial organisation of the genome and its functional effect in a cell.


Assuntos
Cromatina/metabolismo , Genoma Humano/genética , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mapas de Interação de Proteínas/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...