Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Int J Bipolar Disord ; 12(1): 20, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38865039

RESUMO

BACKGROUND: Lithium (Li) remains the treatment of choice for bipolar disorders (BP). Its mood-stabilizing effects help reduce the long-term burden of mania, depression and suicide risk in patients with BP. It also has been shown to have beneficial effects on disease-associated conditions, including sleep and cardiovascular disorders. However, the individual responses to Li treatment vary within and between diagnostic subtypes of BP (e.g. BP-I and BP-II) according to the clinical presentation. Moreover, long-term Li treatment has been linked to adverse side-effects that are a cause of concern and non-adherence, including the risk of developing chronic medical conditions such as thyroid and renal disease. In recent years, studies by the Consortium on Lithium Genetics (ConLiGen) have uncovered a number of genetic factors that contribute to the variability in Li treatment response in patients with BP. Here, we leveraged the ConLiGen cohort (N = 2064) to investigate the genetic basis of Li effects in BP. For this, we studied how Li response and linked genes associate with the psychiatric symptoms and polygenic load for medical comorbidities, placing particular emphasis on identifying differences between BP-I and BP-II. RESULTS: We found that clinical response to Li treatment, measured with the Alda scale, was associated with a diminished burden of mania, depression, substance and alcohol abuse, psychosis and suicidal ideation in patients with BP-I and, in patients with BP-II, of depression only. Our genetic analyses showed that a stronger clinical response to Li was modestly related to lower polygenic load for diabetes and hypertension in BP-I but not BP-II. Moreover, our results suggested that a number of genes that have been previously linked to Li response variability in BP differentially relate to the psychiatric symptomatology, particularly to the numbers of manic and depressive episodes, and to the polygenic load for comorbid conditions, including diabetes, hypertension and hypothyroidism. CONCLUSIONS: Taken together, our findings suggest that the effects of Li on symptomatology and comorbidity in BP are partially modulated by common genetic factors, with differential effects between BP-I and BP-II.

2.
Neuropsychopharmacology ; 49(6): 1033-1041, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38402365

RESUMO

Patients with severe mental disorders such as bipolar disorder (BD), schizophrenia (SCZ) and major depressive disorder (MDD) show a substantial reduction in life expectancy, increased incidence of comorbid medical conditions commonly observed with advanced age and alterations of aging hallmarks. While severe mental disorders are heritable, the extent to which genetic predisposition might contribute to accelerated cellular aging is not known. We used bivariate causal mixture models to quantify the trait-specific and shared architecture of mental disorders and 2 aging hallmarks (leukocyte telomere length [LTL] and mitochondrial DNA copy number), and the conjunctional false discovery rate method to detect shared genetic loci. We integrated gene expression data from brain regions from GTEx and used different tools to functionally annotate identified loci and investigate their druggability. Aging hallmarks showed low polygenicity compared with severe mental disorders. We observed a significant negative global genetic correlation between MDD and LTL (rg = -0.14, p = 6.5E-10), and no significant results for other severe mental disorders or for mtDNA-cn. However, conditional QQ plots and bivariate causal mixture models pointed to significant pleiotropy among all severe mental disorders and aging hallmarks. We identified genetic variants significantly shared between LTL and BD (n = 17), SCZ (n = 55) or MDD (n = 19), or mtDNA-cn and BD (n = 4), SCZ (n = 12) or MDD (n = 1), with mixed direction of effects. The exonic rs7909129 variant in the SORCS3 gene, encoding a member of the retromer complex involved in protein trafficking and intracellular/intercellular signaling, was associated with shorter LTL and increased predisposition to all severe mental disorders. Genetic variants underlying risk of SCZ or MDD and shorter LTL modulate expression of several druggable genes in different brain regions. Genistein, a phytoestrogen with anti-inflammatory and antioxidant effects, was an upstream regulator of 2 genes modulated by variants associated with risk of MDD and shorter LTL. While our results suggest that shared heritability might play a limited role in contributing to accelerated cellular aging in severe mental disorders, we identified shared genetic determinants and prioritized different druggable targets and compounds.


Assuntos
Senescência Celular , Transtorno Depressivo Maior , Pleiotropia Genética , Humanos , Senescência Celular/genética , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Bipolar/genética , Transtornos Mentais/genética , Esquizofrenia/genética , DNA Mitocondrial/genética , Predisposição Genética para Doença/genética , Variações do Número de Cópias de DNA/genética
3.
Transl Psychiatry ; 14(1): 109, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395906

RESUMO

Lithium is the gold standard treatment for bipolar disorder (BD). However, its mechanism of action is incompletely understood, and prediction of treatment outcomes is limited. In our previous multi-omics study of the Pharmacogenomics of Bipolar Disorder (PGBD) sample combining transcriptomic and genomic data, we found that focal adhesion, the extracellular matrix (ECM), and PI3K-Akt signaling networks were associated with response to lithium. In this study, we replicated the results of our previous study using network propagation methods in a genome-wide association study of an independent sample of 2039 patients from the International Consortium on Lithium Genetics (ConLiGen) study. We identified functional enrichment in focal adhesion and PI3K-Akt pathways, but we did not find an association with the ECM pathway. Our results suggest that deficits in the neuronal growth cone and PI3K-Akt signaling, but not in ECM proteins, may influence response to lithium in BD.


Assuntos
Transtorno Bipolar , Lítio , Humanos , Lítio/farmacologia , Lítio/uso terapêutico , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/genética , Proteínas Proto-Oncogênicas c-akt/genética , Fosfatidilinositol 3-Quinases/genética , Estudo de Associação Genômica Ampla , Multiômica , Adesões Focais
4.
Res Sq ; 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38077040

RESUMO

Background: Lithium (Li) remains the treatment of choice for bipolar disorders (BP). Its mood-stabilizing effects help reduce the long-term burden of mania, depression and suicide risk in patients with BP. It also has been shown to have beneficial effects on disease-associated conditions, including sleep and cardiovascular disorders. However, the individual responses to Li treatment vary within and between diagnostic subtypes of BP (e.g. BP-I and BP-II) according to the clinical presentation. Moreover, long-term Li treatment has been linked to adverse side-effects that are a cause of concern and non-adherence, including the risk of developing chronic medical conditions such as thyroid and renal disease. In recent years, studies by the Consortium on Lithium Genetics (ConLiGen) have uncovered a number of genetic factors that contribute to the variability in Li treatment response in patients with BP. Here, we leveraged the ConLiGen cohort (N=2,064) to investigate the genetic basis of Li effects in BP. For this, we studied how Li response and linked genes associate with the psychiatric symptoms and polygenic load for medical comorbidities, placing particular emphasis on identifying differences between BP-I and BP-II. Results: We found that clinical response to Li treatment, measured with the Alda scale, was associated with a diminished burden of mania, depression, substance and alcohol abuse, psychosis and suicidal ideation in patients with BP-I and, in patients with BP-II, of depression only. Our genetic analyses showed that a stronger clinical response to Li was modestly related to lower polygenic load for diabetes and hypertension in BP-I but not BP-II. Moreover, our results suggested that a number of genes that have been previously linked to Li response variability in BP differentially relate to the psychiatric symptomatology, particularly to the numbers of manic and depressive episodes, and to the polygenic load for comorbid conditions, including diabetes, hypertension and hypothyroidism. Conclusions: Taken together, our findings suggest that the effects of Li on symptomatology and comorbidity in BP are partially modulated by common genetic factors, with differential effects between BP-I and BP-II.

5.
Res Sq ; 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37886563

RESUMO

Lithium is the gold standard treatment for bipolar disorder (BD). However, its mechanism of action is incompletely understood, and prediction of treatment outcomes is limited. In our previous multi-omics study of the Pharmacogenomics of Bipolar Disorder (PGBD) sample combining transcriptomic and genomic data, we found that focal adhesion, the extracellular matrix (ECM), and PI3K-Akt signaling networks were associated with response to lithium. In this study, we replicated the results of our previous study using network propagation methods in a genome-wide association study of an independent sample of 2,039 patients from the International Consortium on Lithium Genetics (ConLiGen) study. We identified functional enrichment in focal adhesion and PI3K-Akt pathways, but we did not find an association with the ECM pathway. Our results suggest that deficits in the neuronal growth cone and PI3K-Akt signaling, but not in ECM proteins, may influence response to lithium in BD.

6.
Mol Psychiatry ; 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37433967

RESUMO

Lithium is regarded as the first-line treatment for bipolar disorder (BD), a severe and disabling mental health disorder that affects about 1% of the population worldwide. Nevertheless, lithium is not consistently effective, with only 30% of patients showing a favorable response to treatment. To provide personalized treatment options for bipolar patients, it is essential to identify prediction biomarkers such as polygenic scores. In this study, we developed a polygenic score for lithium treatment response (Li+PGS) in patients with BD. To gain further insights into lithium's possible molecular mechanism of action, we performed a genome-wide gene-based analysis. Using polygenic score modeling, via methods incorporating Bayesian regression and continuous shrinkage priors, Li+PGS was developed in the International Consortium of Lithium Genetics cohort (ConLi+Gen: N = 2367) and replicated in the combined PsyCourse (N = 89) and BipoLife (N = 102) studies. The associations of Li+PGS and lithium treatment response - defined in a continuous ALDA scale and a categorical outcome (good response vs. poor response) were tested using regression models, each adjusted for the covariates: age, sex, and the first four genetic principal components. Statistical significance was determined at P < 0.05. Li+PGS was positively associated with lithium treatment response in the ConLi+Gen cohort, in both the categorical (P = 9.8 × 10-12, R2 = 1.9%) and continuous (P = 6.4 × 10-9, R2 = 2.6%) outcomes. Compared to bipolar patients in the 1st decile of the risk distribution, individuals in the 10th decile had 3.47-fold (95%CI: 2.22-5.47) higher odds of responding favorably to lithium. The results were replicated in the independent cohorts for the categorical treatment outcome (P = 3.9 × 10-4, R2 = 0.9%), but not for the continuous outcome (P = 0.13). Gene-based analyses revealed 36 candidate genes that are enriched in biological pathways controlled by glutamate and acetylcholine. Li+PGS may be useful in the development of pharmacogenomic testing strategies by enabling a classification of bipolar patients according to their response to treatment.

7.
Res Sq ; 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37461719

RESUMO

The link between bipolar disorder (BP) and immune dysfunction remains controversial. While epidemiological studies have long suggested an association, recent research has found only limited evidence of such a relationship. To clarify this, we investigated the contributions of immune-relevant genetic factors to the response to lithium (Li) treatment and the clinical presentation of BP. First, we assessed the association of a large collection of immune-related genes (4,925) with Li response, defined by the Retrospective Assessment of the Lithium Response Phenotype Scale (Alda scale), and clinical characteristics in patients with BP from the International Consortium on Lithium Genetics (ConLi+Gen, N = 2,374). Second, we calculated here previously published polygenic scores (PGSs) for immune-related traits and evaluated their associations with Li response and clinical features. We found several genes associated with Li response at p < 1×10- 4 values, including HAS3, CNTNAP5 and NFIB. Network and functional enrichment analyses uncovered an overrepresentation of pathways involved in cell adhesion and intercellular communication, which appear to converge on the well-known Li-induced inhibition of GSK-3ß. We also found various genes associated with BP's age-at-onset, number of mood episodes, and presence of psychosis, substance abuse and/or suicidal ideation at the exploratory threshold. These included RTN4, XKR4, NRXN1, NRG1/3 and GRK5. Additionally, PGS analyses suggested serum FAS, ECP, TRANCE and cytokine ligands, amongst others, might represent potential circulating biomarkers of Li response and clinical presentation. Taken together, our results support the notion of a relatively weak association between immunity and clinically relevant features of BP at the genetic level.

8.
Res Sq ; 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36824922

RESUMO

Lithium is regarded as the first-line treatment for bipolar disorder (BD), a severe and disabling mental disorder that affects about 1% of the population worldwide. Nevertheless, lithium is not consistently effective, with only 30% of patients showing a favorable response to treatment. To provide personalized treatment options for bipolar patients, it is essential to identify prediction biomarkers such as polygenic scores. In this study, we developed a polygenic score for lithium treatment response (Li+PGS) in patients with BD. To gain further insights into lithium's possible molecular mechanism of action, we performed a genome-wide gene-based analysis. Using polygenic score modeling, via methods incorporating Bayesian regression and continuous shrinkage priors, Li+PGS was developed in the International Consortium of Lithium Genetics cohort (ConLi+Gen: N=2,367) and replicated in the combined PsyCourse (N=89) and BipoLife (N=102) studies. The associations of Li+PGS and lithium treatment response - defined in a continuous ALDA scale and a categorical outcome (good response vs. poor response) were tested using regression models, each adjusted for the covariates: age, sex, and the first four genetic principal components. Statistical significance was determined at P<����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������.

10.
Hum Genomics ; 16(1): 45, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36253798

RESUMO

BACKGROUND: It has been suggested that bipolar disorder (BD) is associated with clinical and biological features of accelerated aging. In our previous studies, we showed that long-term lithium treatment was correlated with longer leukocyte telomere length (LTL) in BD patients. A recent study explored the role of TL in BD using patients-derived lymphoblastoid cell lines (LCLs), showing that baseline TL was shorter in BD compared to controls and that lithium in vitro increased TL but only in BD. Here, we used the same cell system (LCLs) to explore if a 7-day treatment protocol with lithium chloride (LiCl) 1 mM was able to highlight differences in TL between BD patients clinically responders (Li-R; n = 15) or non-responders (Li-NR; n = 15) to lithium, and if BD differed from non-psychiatric controls (HC; n = 15). RESULTS: There was no difference in TL between BD patients and HC. Moreover, LiCl did not influence TL in the overall sample, and there was no difference between diagnostic or clinical response groups. Likewise, LiCl did not affect TL in neural precursor cells from healthy donors. CONCLUSIONS: Our findings suggest that a 7-day lithium treatment protocol and the use of LCLs might not represent a suitable approach to deepen our understanding on the role of altered telomere dynamics in BD as previously suggested by studies in vivo.


Assuntos
Transtorno Bipolar , Células-Tronco Neurais , Transtorno Bipolar/diagnóstico , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/genética , Linhagem Celular , Humanos , Lítio/farmacologia , Lítio/uso terapêutico , Cloreto de Lítio/farmacologia , Cloreto de Lítio/uso terapêutico , Compostos de Lítio/farmacologia , Compostos de Lítio/uso terapêutico , Células-Tronco Neurais/metabolismo , Telômero/genética
13.
Artigo em Inglês | MEDLINE | ID: mdl-35328999

RESUMO

Despite impressive progress, nearly two billion people worldwide have no access to essential medicines. The COVID-19 pandemic revealed Africa's vulnerability due to its reliance on imports for most vaccines, medicines, and other health product needs. The vaccine manufacturing is complex and requires massive financial investments, with global, regional, and national regulatory structures introducing consistent and urgent reforms to assure the quality and safety of medicines. In 2020, there were approximately 600 pharmaceutical manufacturers in Africa, 80% of which were concentrated in eight countries: Egypt, Algeria, Morocco, Tunisia, Nigeria, Ghana, Kenya, and South Africa. Only 4 countries had more than 50 manufacturers, while 22 countries had no local production. Out of the 600, around 25% were multinational companies. Africa is equally affected by modest scaled capacities substantially engaging in packaging and labelling, and occasionally fill and finish steps, facing criticalities in terms of solvent domestic markets. This article discusses the challenges in the development of a local pharmaceutical manufacturing in Africa and reflects on the importance of the momentum for strengthening the local medical production capacity in the continent as a critical opportunity for advancing universal health coverage (UHC).


Assuntos
COVID-19 , Medicamentos Essenciais , COVID-19/epidemiologia , COVID-19/prevenção & controle , Humanos , Nigéria , Pandemias , Cobertura Universal do Seguro de Saúde
14.
Br J Psychiatry ; : 1-10, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35225756

RESUMO

BACKGROUND: Response to lithium in patients with bipolar disorder is associated with clinical and transdiagnostic genetic factors. The predictive combination of these variables might help clinicians better predict which patients will respond to lithium treatment. AIMS: To use a combination of transdiagnostic genetic and clinical factors to predict lithium response in patients with bipolar disorder. METHOD: This study utilised genetic and clinical data (n = 1034) collected as part of the International Consortium on Lithium Genetics (ConLi+Gen) project. Polygenic risk scores (PRS) were computed for schizophrenia and major depressive disorder, and then combined with clinical variables using a cross-validated machine-learning regression approach. Unimodal, multimodal and genetically stratified models were trained and validated using ridge, elastic net and random forest regression on 692 patients with bipolar disorder from ten study sites using leave-site-out cross-validation. All models were then tested on an independent test set of 342 patients. The best performing models were then tested in a classification framework. RESULTS: The best performing linear model explained 5.1% (P = 0.0001) of variance in lithium response and was composed of clinical variables, PRS variables and interaction terms between them. The best performing non-linear model used only clinical variables and explained 8.1% (P = 0.0001) of variance in lithium response. A priori genomic stratification improved non-linear model performance to 13.7% (P = 0.0001) and improved the binary classification of lithium response. This model stratified patients based on their meta-polygenic loadings for major depressive disorder and schizophrenia and was then trained using clinical data. CONCLUSIONS: Using PRS to first stratify patients genetically and then train machine-learning models with clinical predictors led to large improvements in lithium response prediction. When used with other PRS and biological markers in the future this approach may help inform which patients are most likely to respond to lithium treatment.

15.
Eur Arch Psychiatry Clin Neurosci ; 272(8): 1611-1620, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35146571

RESUMO

Personality traits influence risk for suicidal behavior. We examined phenotype- and genotype-level associations between the Big Five personality traits and suicidal ideation and attempt in major depressive, bipolar and schizoaffective disorder, and schizophrenia patients (N = 3012) using fixed- and random-effects inverse variance-weighted meta-analyses. Suicidal ideations were more likely to be reported by patients with higher neuroticism and lower extraversion phenotypic scores, but showed no significant association with polygenic load for these personality traits. Our findings provide new insights into the association between personality and suicidal behavior across mental illnesses and suggest that the genetic component of personality traits is unlikely to have strong causal effects on suicidal behavior.


Assuntos
Transtorno Depressivo Maior , Ideação Suicida , Humanos , Transtorno Depressivo Maior/psicologia , Saúde Mental , Personalidade/genética , Fenótipo
16.
Cell Rep ; 38(3): 110282, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35045295

RESUMO

Although circular RNAs (circRNAs) are enriched in the brain, their relevance for brain function and psychiatric disorders is poorly understood. Here, we show that circHomer1 is inversely associated with relative HOMER1B mRNA isoform levels in both the orbitofrontal cortex (OFC) and stem-cell-derived neuronal cultures of subjects with psychiatric disorders. We further demonstrate that in vivo circHomer1 knockdown (KD) within the OFC can inhibit the synaptic expression of Homer1b mRNA. Furthermore, we show that circHomer1 directly binds to Homer1b mRNA and that Homer1b-specific KD increases synaptic circHomer1 levels and improves OFC-mediated behavioral flexibility. Importantly, double circHomer1 and Homer1b in vivo co-KD results in a complete rescue in circHomer1-associated alterations in both chance reversal learning and synaptic gene expression. Lastly, we uncover an RNA-binding protein that can directly bind to circHomer1 and promote its biogenesis. Taken together, our data provide mechanistic insights into the importance of circRNAs in brain function and disease.


Assuntos
Regulação da Expressão Gênica/fisiologia , Proteínas de Arcabouço Homer/metabolismo , Córtex Pré-Frontal/metabolismo , RNA Circular/metabolismo , Reversão de Aprendizagem/fisiologia , Animais , Transtorno Bipolar/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
17.
Transl Psychiatry ; 11(1): 629, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34893581

RESUMO

Gene expression dysregulation in the brain has been associated with bipolar disorder, but little is known about the role of non-coding RNAs. Circular RNAs are a novel class of long noncoding RNAs that have recently been shown to be important in brain development and function. However, their potential role in psychiatric disorders, including bipolar disorder, has not been well investigated. In this study, we profiled circular RNAs in the brain tissue of individuals with bipolar disorder. Total RNA sequencing was initially performed in samples from the anterior cingulate cortex of a cohort comprised of individuals with bipolar disorder (N = 13) and neurotypical controls (N = 13) and circular RNAs were identified and analyzed using "circtools". Significant circular RNAs were validated by RT-qPCR and replicated in the anterior cingulate cortex in an independent cohort (24 bipolar disorder cases and 27 controls). In addition, we conducted in vitro studies using B-lymphoblastoid cells collected from bipolar cases (N = 19) and healthy controls (N = 12) to investigate how circular RNAs respond following lithium treatment. In the discovery RNA sequencing analysis, 26 circular RNAs were significantly differentially expressed between bipolar disorder cases and controls (FDR < 0.1). Of these, circCCNT2 was RT-qPCR validated showing significant upregulation in bipolar disorder (p = 0.03). This upregulation in bipolar disorder was replicated in an independent post-mortem human anterior cingulate cortex cohort and in B-lymphoblastoid cell culture. Furthermore, circCCNT2 expression was reduced in response to lithium treatment in vitro. Together, our study is the first to associate circCCNT2 to bipolar disorder and lithium treatment.


Assuntos
Transtorno Bipolar , RNA Longo não Codificante , Transtorno Bipolar/genética , Encéfalo , Giro do Cíngulo , Humanos , RNA Circular
18.
Artigo em Inglês | MEDLINE | ID: mdl-34733347

RESUMO

BACKGROUND: Potential interactions between mood disorders and microcytic anaemias have been suggested by case reports, surveys of haematological parameters in psychiatric populations, and surveys of psychiatric morbidity in thalassaemic carriers. OBJECTIVES: a) To review published studies.b) To study the prevalence of microcytic anaemia in a sample of Sardinian outpatients with recurrent mood disorders.c) To check whether mood disorders and microcytic anaemia co-segregate within families. METHODS: We extracted data on blood count and serum iron concentrations from the records of patients admitted between January 1st, 2001 and December 31st, 2016, to our clinic for mood disorders. Moreover, we studied siblings of subjects with both major mood disorders (according to Research Diagnostic Criteria) and heterozygous thalassaemia (according to Mean Corpuscular Volume, serum iron, and haemoglobin A2 concentrations). Siblings affected with a major mood disorder were examined for haematological concordance with the proband (reduced MCV and/or increased HbA2 in case of heterozygous ß-thalassaemia, or presence of gene deletions in case of α-thalassaemia). RESULTS: Microcytic anaemia was highly prevalent (81/337 = 24.0%) among outpatients with mood disorders. Starting from 30 probands with heterozygous ß-thalassaemia, concordance for reduced MCV and/or increased HbA2 was found in 78% (35/45) of affected siblings. Starting from 3 probands with heterozygous α-thalassaemia, only one of the 5 affected siblings carried four α-globin functional genes. CONCLUSION: Based on the review of the literature, the high prevalence of microcytic anaemia in outpatients, and the concordance between affected siblings, we can conclude that a role of heterozygous thalassaemias is highly probable. Future studies are required to establish the relevance of heterozygous thalassaemias and evaluate the magnitude of the effect, possibly using a molecular diagnosis also in the case of heterozygous ß-thalassaemia.

19.
J Pers Med ; 11(11)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34834452

RESUMO

Psychiatric disorders seem to be characterized by premature cell senescence. However, controversial results have also been reported. In addition, the relationship between accelerated aging and treatment-resistance has scarcely been investigated. In the current study, we measured leukocyte telomere length (LTL) in 148 patients with treatment-resistant depression (TRD, 125 with major depressive disorder, MDD, and 23 with bipolar disorder, BD) treated with electroconvulsive therapy (ECT) and analyzed whether LTL was associated with different response profiles. We also compared LTL between patients with TRD and 335 non-psychiatric controls. For 107 patients for which genome-wide association data were available, we evaluated whether a significant overlap among genetic variants or genes associated with LTL and with response to ECT could be observed. LTL was negatively correlated with age (Spearman's correlation coefficient = -0.25, p < 0.0001) and significantly shorter in patients with treatment-resistant MDD (Quade's F = 35.18, p < 0.0001) or BD (Quade's F = 20.84, p < 0.0001) compared to controls. Conversely, baseline LTL was not associated with response to ECT or remission. We did not detect any significant overlap between genetic variants or genes associated with LTL and response to ECT. Our results support previous findings suggesting premature cell senescence in patients with severe psychiatric disorders and suggest that LTL could not be a predictive biomarker of response to ECT.

20.
Transl Psychiatry ; 11(1): 606, 2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34845190

RESUMO

Lithium is the gold standard therapy for Bipolar Disorder (BD) but its effectiveness differs widely between individuals. The molecular mechanisms underlying treatment response heterogeneity are not well understood, and personalized treatment in BD remains elusive. Genetic analyses of the lithium treatment response phenotype may generate novel molecular insights into lithium's therapeutic mechanisms and lead to testable hypotheses to improve BD management and outcomes. We used fixed effect meta-analysis techniques to develop meta-analytic polygenic risk scores (MET-PRS) from combinations of highly correlated psychiatric traits, namely schizophrenia (SCZ), major depression (MD) and bipolar disorder (BD). We compared the effects of cross-disorder MET-PRS and single genetic trait PRS on lithium response. For the PRS analyses, we included clinical data on lithium treatment response and genetic information for n = 2283 BD cases from the International Consortium on Lithium Genetics (ConLi+Gen; www.ConLiGen.org ). Higher SCZ and MD PRSs were associated with poorer lithium treatment response whereas BD-PRS had no association with treatment outcome. The combined MET2-PRS comprising of SCZ and MD variants (MET2-PRS) and a model using SCZ and MD-PRS sequentially improved response prediction, compared to single-disorder PRS or to a combined score using all three traits (MET3-PRS). Patients in the highest decile for MET2-PRS loading had 2.5 times higher odds of being classified as poor responders than patients with the lowest decile MET2-PRS scores. An exploratory functional pathway analysis of top MET2-PRS variants was conducted. Findings may inform the development of future testing strategies for personalized lithium prescribing in BD.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Esquizofrenia , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/genética , Depressão , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/genética , Predisposição Genética para Doença , Humanos , Lítio/uso terapêutico , Herança Multifatorial , Fatores de Risco , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...