Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
1.
medRxiv ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38496479

RESUMO

Inflammatory syndromes, including those caused by infection, are a major cause of hospital admissions among children and are often misdiagnosed because of a lack of advanced molecular diagnostic tools. In this study, we explored the utility of circulating cell-free RNA (cfRNA) in plasma as an analyte for the differential diagnosis and characterization of pediatric inflammatory syndromes. We profiled cfRNA in 370 plasma samples from pediatric patients with a range of inflammatory conditions, including Kawasaki disease (KD), Multisystem Inflammatory Syndrome in Children (MIS-C), viral infections and bacterial infections. We developed machine learning models based on these cfRNA profiles, which effectively differentiated KD from MIS-C - two conditions presenting with overlapping symptoms - with high performance (Test Area Under the Curve (AUC) = 0.97). We further extended this methodology into a multiclass machine learning framework that achieved 81% accuracy in distinguishing among KD, MIS-C, viral, and bacterial infections. We further demonstrated that cfRNA profiles can be used to quantify injury to specific tissues and organs, including the liver, heart, endothelium, nervous system, and the upper respiratory tract. Overall, this study identified cfRNA as a versatile analyte for the differential diagnosis and characterization of a wide range of pediatric inflammatory syndromes.

2.
Emerg Microbes Infect ; 12(2): 2270071, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37869789

RESUMO

The emergence of SARS-CoV-2 recombinants is of particular concern as they can result in a sudden increase in immune evasion due to antigenic shift. Recent recombinants XBB and XBB.1.5 have higher transmissibility than previous recombinants such as "Deltacron." We hypothesized that immunity to a SARS-CoV-2 recombinant depends on prior exposure to its parental strains. To test this hypothesis, we examined whether Delta or Omicron (BA.1 or BA.2) immunity conferred through infection, vaccination, or breakthrough infection could neutralize Deltacron and XBB/XBB.1.5 recombinants. We found that Delta, BA.1, or BA.2 breakthrough infections provided better immune protection against Deltacron and its parental strains than did the vaccine booster. None of the sera were effective at neutralizing the XBB lineage or its parent BA.2.75.2, except for the sera from the BA.2 breakthrough group. These results support our hypothesis. In turn, our findings underscore the importance of multivalent vaccines that correspond to the antigenic profile of circulating variants of concern and of variant-specific diagnostics that may guide public health and individual decisions in response to emerging SARS-CoV-2 recombinants.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/prevenção & controle , Vacinação , Deriva e Deslocamento Antigênicos , Infecções Irruptivas , Anticorpos Neutralizantes , Anticorpos Antivirais
3.
Lancet Microbe ; 4(9): e711-e721, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37544313

RESUMO

BACKGROUND: In 2021, four patients who had received solid organ transplants in the USA developed encephalitis beginning 2-6 weeks after transplantation from a common organ donor. We describe an investigation into the cause of encephalitis in these patients. METHODS: From Nov 7, 2021, to Feb 24, 2022, we conducted a public health investigation involving 15 agencies and medical centres in the USA. We tested various specimens (blood, cerebrospinal fluid, intraocular fluid, serum, and tissues) from the organ donor and recipients by serology, RT-PCR, immunohistochemistry, metagenomic next-generation sequencing, and host gene expression, and conducted a traceback of blood transfusions received by the organ donor. FINDINGS: We identified one read from yellow fever virus in cerebrospinal fluid from the recipient of a kidney using metagenomic next-generation sequencing. Recent infection with yellow fever virus was confirmed in all four organ recipients by identification of yellow fever virus RNA consistent with the 17D vaccine strain in brain tissue from one recipient and seroconversion after transplantation in three recipients. Two patients recovered and two patients had no neurological recovery and died. 3 days before organ procurement, the organ donor received a blood transfusion from a donor who had received a yellow fever vaccine 6 days before blood donation. INTERPRETATION: This investigation substantiates the use of metagenomic next-generation sequencing for the broad-based detection of rare or unexpected pathogens. Health-care workers providing vaccinations should inform patients of the need to defer blood donation for at least 2 weeks after receiving a yellow fever vaccine. Despite mitigation strategies and safety interventions, a low risk of transfusion-transmitted infections remains. FUNDING: US Centers for Disease Control and Prevention (CDC), the Biomedical Advanced Research and Development Authority, and the CDC Epidemiology and Laboratory Capacity Cooperative Agreement for Infectious Diseases.


Assuntos
Encefalite , Transplante de Órgãos , Vacina contra Febre Amarela , Humanos , Transfusão de Sangue , Encefalite/induzido quimicamente , Transplante de Órgãos/efeitos adversos , Estados Unidos/epidemiologia , Vírus da Febre Amarela/genética
4.
Artigo em Inglês | MEDLINE | ID: mdl-37562975

RESUMO

OBJECTIVES: The objective of this study was to report on the development of neuroinvasive West Nile virus (WNV) infection in the context of anti-CD20 monotherapy for multiple sclerosis (MS). METHODS: This is a case series study. RESULTS: In 2021-2022, we observed 4 cases of neuroinvasive WNV infection in our patient population of 2009 patients with MS on ocrelizumab, compared with a total of 46 cases of neuroinvasive WNV infection reported in Pennsylvania and 40 in New Jersey. Odds were 258 times that of the general population (95% confidence interval 97-691), χ2 p < 0.0001). All were women aged 41-61 years with variable disease duration, level of disability, and duration of anti-CD20 therapy. All presented in summer/early fall with fever, headache, and encephalopathy consistent with meningoencephalitis. Three patients had acute cerebellitis. Two had anterior nerve root involvement progressing to quadriparesis, and 1 developed refractory nonconvulsive status epilepticus. All required intubation and experienced significant morbidity. All had CSF pleocytosis. Two patients were WNV IgM positive in both the serum and CSF, 1 patient had positive serum IgM and CSF metagenomic next-generation sequencing (mNGS), while 1 had positive CSF mNGS with negative serum and CSF antibodies. DISCUSSION: Neuroinvasive WNV infection can develop with anti-CD20 monotherapy in the absence of additional immunosuppression. WNV serologies may be negative in the setting of anti-CD20 treatment; in the appropriate clinical context, one should consider direct detection methods such as PCR or mNGS-based testing.


Assuntos
Esclerose Múltipla , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Humanos , Feminino , Masculino , Febre do Nilo Ocidental/complicações , Febre do Nilo Ocidental/tratamento farmacológico , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/complicações , Anticorpos Antivirais , Imunoglobulina M
5.
Lab Chip ; 23(15): 3479-3486, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37431299

RESUMO

Viral load quantitation is useful in clinical point-of-care settings to assess the status of patients with infectious disease, track response to treatment, and estimate infectiousness. However, existing methods for quantitating viral loads are complex and difficult to integrate into these settings. Here, we describe a simple, instrument-free approach for viral load quantitation suitable for point-of-care use. We develop a shaken digital droplet assay that can quantitate SARS-CoV2 with sensitivity comparable to gold standard qPCR.


Assuntos
COVID-19 , Sistemas Automatizados de Assistência Junto ao Leito , Humanos , SARS-CoV-2 , Carga Viral/métodos , RNA Viral/análise , Sensibilidade e Especificidade
6.
Nat Microbiol ; 8(8): 1495-1507, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37308590

RESUMO

Bacteriophages, viruses that infect bacteria, have great specificity for their bacterial hosts at the strain and species level. However, the relationship between the phageome and associated bacterial population dynamics is unclear. Here we generated a computational pipeline to identify sequences associated with bacteriophages and their bacterial hosts in cell-free DNA from plasma samples. Analysis of two independent cohorts, including a Stanford Cohort of 61 septic patients and 10 controls and the SeqStudy cohort of 224 septic patients and 167 controls, reveals a circulating phageome in the plasma of all sampled individuals. Moreover, infection is associated with overrepresentation of pathogen-specific phages, allowing for identification of bacterial pathogens. We find that information on phage diversity enables identification of the bacteria that produced these phages, including pathovariant strains of Escherichia coli. Phage sequences can likewise be used to distinguish between closely related bacterial species such as Staphylococcus aureus, a frequent pathogen, and coagulase-negative Staphylococcus, a frequent contaminant. Phage cell-free DNA may have utility in studying bacterial infections.


Assuntos
Bacteriófagos , Sepse , Humanos , Bacteriófagos/genética , Bactérias/genética , Escherichia coli/genética
7.
Cell Rep Med ; 4(6): 101034, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37279751

RESUMO

Differential host responses in coronavirus disease 2019 (COVID-19) and multisystem inflammatory syndrome in children (MIS-C) remain poorly characterized. Here, we use next-generation sequencing to longitudinally analyze blood samples from pediatric patients with COVID-19 or MIS-C across three hospitals. Profiling of plasma cell-free nucleic acids uncovers distinct signatures of cell injury and death between COVID-19 and MIS-C, with increased multiorgan involvement in MIS-C encompassing diverse cell types, including endothelial and neuronal cells, and an enrichment of pyroptosis-related genes. Whole-blood RNA profiling reveals upregulation of similar pro-inflammatory pathways in COVID-19 and MIS-C but also MIS-C-specific downregulation of T cell-associated pathways. Profiling of plasma cell-free RNA and whole-blood RNA in paired samples yields different but complementary signatures for each disease state. Our work provides a systems-level view of immune responses and tissue damage in COVID-19 and MIS-C and informs future development of new disease biomarkers.


Assuntos
COVID-19 , Ácidos Nucleicos Livres , Ácidos Nucleicos , Humanos , Criança , COVID-19/genética , RNA , Biomarcadores
8.
Artigo em Inglês | MEDLINE | ID: mdl-37339889

RESUMO

Mutations in the complement factor I (CFI) gene have previously been identified as causes of recurrent CNS inflammation. We present a case of a 26-year-old man with 18 episodes of recurrent meningitis, who had a variant in CFI(c.859G>A,p.Gly287Arg) not previously associated with neurologic manifestations. He achieved remission with canakinumab, a human monoclonal antibody targeted at interleukin-1 beta.


Assuntos
Fator I do Complemento , Meningite Asséptica , Masculino , Humanos , Adulto , Meningite Asséptica/tratamento farmacológico , Meningite Asséptica/complicações , Anticorpos Monoclonais , Inflamação/complicações , Mutação
9.
Viruses ; 15(4)2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37113001

RESUMO

Metagenomic next-generation sequencing (mNGS) has enabled the high-throughput multiplexed identification of sequences from microbes of potential medical relevance. This approach has become indispensable for viral pathogen discovery and broad-based surveillance of emerging or re-emerging pathogens. From 2015 to 2019, plasma was collected from 9586 individuals in Cameroon and the Democratic Republic of the Congo enrolled in a combined hepatitis virus and retrovirus surveillance program. A subset (n = 726) of the patient specimens was analyzed by mNGS to identify viral co-infections. While co-infections from known blood-borne viruses were detected, divergent sequences from nine poorly characterized or previously uncharacterized viruses were also identified in two individuals. These were assigned to the following groups by genomic and phylogenetic analyses: densovirus, nodavirus, jingmenvirus, bastrovirus, dicistrovirus, picornavirus, and cyclovirus. Although of unclear pathogenicity, these viruses were found circulating at high enough concentrations in plasma for genomes to be assembled and were most closely related to those previously associated with bird or bat excrement. Phylogenetic analyses and in silico host predictions suggested that these are invertebrate viruses likely transmitted through feces containing consumed insects or through contaminated shellfish. This study highlights the power of metagenomics and in silico host prediction in characterizing novel viral infections in susceptible individuals, including those who are immunocompromised from hepatitis viruses and retroviruses, or potentially exposed to zoonotic viruses from animal reservoir species.


Assuntos
Quirópteros , Coinfecção , Viroses , Vírus , Animais , Vírus Satélites/genética , Metagenômica , Filogenia , Vírus/genética , Retroviridae/genética , Vírus de Hepatite/genética , Insetos/genética , Sequenciamento de Nucleotídeos em Larga Escala
10.
Virus Evol ; 9(1): vead018, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025159

RESUMO

Pathogens carried by insects, such as bunyaviruses, are frequently transmitted into human populations and cause diseases. Knowing which spillover events represent a public health threat remains a challenge. Metagenomic next-generation sequencing (mNGS) can support infectious disease diagnostics by enabling the detection of any pathogen from clinical specimens. mNGS was performed on blood samples to identify potential viral coinfections in human immunodeficiency virus (HIV)-positive individuals from Kinshasa, the Democratic Republic of the Congo (DRC), participating in an HIV diversity cohort study. Time-resolved phylogenetics and molecular assay development assisted in viral characterization. The nearly complete genome of a novel orthobunyavirus related to Nyangole virus, a virus previously identified in neighboring Uganda, was assembled from a hepatitis B virus-positive patient. A quantitative polymerase chain reaction assay was designed and used to screen >2,500 plasma samples from Cameroon, the DRC, and Uganda, failing to identify any additional cases. The recent sequencing of a US Center for Disease Control Arbovirus Reference Collection revealed that this same virus, now named Bangui virus, was first isolated in 1970 from an individual in the Central African Republic. Time-scaled phylogenetic analyses of Bangui with the related Anopheles and Tanga serogroup complexes indicate that this virus emerged nearly 10,000 years ago. Pervasive and episodic models further suggest that this virus is under purifying selection and that only distant common ancestors were subject to positive selection events. This study represents only the second identification of a Bangui virus infection in over 50 years. The presumed rarity of Bangui virus infections in humans can be explained by its constraint to an avian host and insect vector, precluding efficient transmission into the human population. Our results demonstrate that molecular phylogenetic analyses can provide insights into the threat posed by novel or re-emergent viruses identified by mNGS.

11.
Nature ; 617(7961): 574-580, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36996871

RESUMO

As of August 2022, clusters of acute severe hepatitis of unknown aetiology in children have been reported from 35 countries, including the USA1,2. Previous studies have found human adenoviruses (HAdVs) in the blood from patients in Europe and the USA3-7, although it is unclear whether this virus is causative. Here we used PCR testing, viral enrichment-based sequencing and agnostic metagenomic sequencing to analyse samples from 16 HAdV-positive cases from 1 October 2021 to 22 May 2022, in parallel with 113 controls. In blood from 14 cases, adeno-associated virus type 2 (AAV2) sequences were detected in 93% (13 of 14), compared to 4 (3.5%) of 113 controls (P < 0.001) and to 0 of 30 patients with hepatitis of defined aetiology (P < 0.001). In controls, HAdV type 41 was detected in blood from 9 (39.1%) of the 23 patients with acute gastroenteritis (without hepatitis), including 8 of 9 patients with positive stool HAdV testing, but co-infection with AAV2 was observed in only 3 (13.0%) of these 23 patients versus 93% of cases (P < 0.001). Co-infections by Epstein-Barr virus, human herpesvirus 6 and/or enterovirus A71 were also detected in 12 (85.7%) of 14 cases, with higher herpesvirus detection in cases versus controls (P < 0.001). Our findings suggest that the severity of the disease is related to co-infections involving AAV2 and one or more helper viruses.


Assuntos
Infecções por Adenovirus Humanos , Coinfecção , Dependovirus , Hepatite , Criança , Humanos , Doença Aguda , Infecções por Adenovirus Humanos/epidemiologia , Infecções por Adenovirus Humanos/virologia , Coinfecção/epidemiologia , Coinfecção/virologia , Dependovirus/genética , Dependovirus/isolamento & purificação , Infecções por Vírus Epstein-Barr/epidemiologia , Infecções por Vírus Epstein-Barr/virologia , Hepatite/epidemiologia , Hepatite/virologia , Herpesvirus Humano 4/isolamento & purificação , Herpesvirus Humano 6/isolamento & purificação , Enterovirus Humano A/isolamento & purificação , Vírus Auxiliares/isolamento & purificação
12.
Emerg Infect Dis ; 29(4): 838-841, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36958034

RESUMO

We describe a 4-year-old male patient in Ohio, USA, who had encephalitis caused by Powassan virus lineage 2. Virus was detected by using metagenomic next-generation sequencing and confirmed with IgM and plaque reduction neutralization assays. Clinicians should recognize changing epidemiology of tickborne viruses to enhance encephalitis diagnosis and management.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Encefalite , Masculino , Humanos , Pré-Escolar , Encefalite Transmitida por Carrapatos/epidemiologia , Ohio/epidemiologia , Sequenciamento de Nucleotídeos em Larga Escala
13.
Cell Host Microbe ; 31(2): 187-198.e3, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36758519

RESUMO

The human gut virome and its early life development are poorly understood. Prior studies have captured single-point assessments with the evolution of the infant virome remaining largely unexplored. We performed viral metagenomic sequencing on stool samples collected longitudinally from a cohort of 53 infants from age 2 weeks to 3 years (80.7 billion reads), and from their mothers (9.8 billion reads) to examine and compare viromes. The asymptomatic infant virome consisted of bacteriophages, nonhuman dietary/environmental viruses, and human-host viruses, predominantly picornaviruses. In contrast, human-host viruses were largely absent from the maternal virome. Previously undescribed, sequence-divergent vertebrate viruses were detected in the maternal but not infant virome. As infants aged, the phage component evolved to resemble the maternal virome, but by age 3, the human-host component remained dissimilar from the maternal virome. Thus, early life virome development is determined predominantly by dietary, infectious, and environmental factors rather than direct maternal acquisition.


Assuntos
Bacteriófagos , Vírus , Feminino , Humanos , Viroma/genética , Vírus/genética , Bacteriófagos/genética , Mães , Metagenoma , Metagenômica
14.
J Infect Dis ; 227(12): 1343-1347, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36705269

RESUMO

From 2 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) household transmission studies (enrolling April 2020 to January 2022) with rapid enrollment and specimen collection for 14 days, 61% (43/70) of primary cases had culturable virus detected ≥6 days post-onset. Risk of secondary infection among household contacts tended to be greater when primary cases had culturable virus detected after onset. Regardless of duration of culturable virus, most secondary infections (70%, 28/40) had serial intervals <6 days, suggesting early transmission. These data examine viral culture as a proxy for infectiousness, reaffirm the need for rapid control measures after infection, and highlight the potential for prolonged infectiousness (≥6 days) in many individuals.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , Tennessee/epidemiologia , Características da Família , California/epidemiologia
15.
Emerg Infect Dis ; 29(1): 197-201, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36573629

RESUMO

A patient in California, USA, with rare and usually fatal Balamuthia mandrillaris granulomatous amebic encephalitis survived after receiving treatment with a regimen that included the repurposed drug nitroxoline. Nitroxoline, which is a quinolone typically used to treat urinary tract infections, was identified in a screen for drugs with amebicidal activity against Balamuthia.


Assuntos
Amebíase , Balamuthia mandrillaris , Encefalite Infecciosa , Humanos , Amebíase/tratamento farmacológico , Granuloma , Encéfalo
16.
Clin Infect Dis ; 76(3): e1320-e1327, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35883256

RESUMO

BACKGROUND: Cache Valley virus (CVV) is a mosquito-borne virus that is a rare cause of disease in humans. In the fall of 2020, a patient developed encephalitis 6 weeks following kidney transplantation and receipt of multiple blood transfusions. METHODS: After ruling out more common etiologies, metagenomic next-generation sequencing (mNGS) of cerebrospinal fluid (CSF) was performed. We reviewed the medical histories of the index kidney recipient, organ donor, and recipients of other organs from the same donor and conducted a blood traceback investigation to evaluate blood transfusion as a possible source of infection in the kidney recipient. We tested patient specimens using reverse-transcription polymerase chain reaction (RT-PCR), the plaque reduction neutralization test, cell culture, and whole-genome sequencing. RESULTS: CVV was detected in CSF from the index patient by mNGS, and this result was confirmed by RT-PCR, viral culture, and additional whole-genome sequencing. The organ donor and other organ recipients had no evidence of infection with CVV by molecular or serologic testing. Neutralizing antibodies against CVV were detected in serum from a donor of red blood cells received by the index patient immediately prior to transplant. CVV neutralizing antibodies were also detected in serum from a patient who received the co-component plasma from the same blood donation. CONCLUSIONS: Our investigation demonstrates probable CVV transmission through blood transfusion. Clinicians should consider arboviral infections in unexplained meningoencephalitis after blood transfusion or organ transplantation. The use of mNGS might facilitate detection of rare, unexpected infections, particularly in immunocompromised patients.


Assuntos
Vírus Bunyamwera , Transplante de Rim , Meningoencefalite , Humanos , Anticorpos Neutralizantes , Transfusão de Sangue , Transplante de Rim/efeitos adversos , Meningoencefalite/diagnóstico
17.
Nat Commun ; 13(1): 7630, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494335

RESUMO

Severe COVID-19 is associated with epithelial and endothelial barrier dysfunction within the lung as well as in distal organs. While it is appreciated that an exaggerated inflammatory response is associated with barrier dysfunction, the triggers of vascular leak are unclear. Here, we report that cell-intrinsic interactions between the Spike (S) glycoprotein of SARS-CoV-2 and epithelial/endothelial cells are sufficient to induce barrier dysfunction in vitro and vascular leak in vivo, independently of viral replication and the ACE2 receptor. We identify an S-triggered transcriptional response associated with extracellular matrix reorganization and TGF-ß signaling. Using genetic knockouts and specific inhibitors, we demonstrate that glycosaminoglycans, integrins, and the TGF-ß signaling axis are required for S-mediated barrier dysfunction. Notably, we show that SARS-CoV-2 infection caused leak in vivo, which was reduced by inhibiting integrins. Our findings offer mechanistic insight into SARS-CoV-2-triggered vascular leak, providing a starting point for development of therapies targeting COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2 , Glicoproteína da Espícula de Coronavírus/genética , Células Endoteliais , Integrinas , Peptidil Dipeptidase A/genética , Fator de Crescimento Transformador beta
18.
PLoS Pathog ; 18(9): e1010802, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36095030

RESUMO

The impact of vaccination on SARS-CoV-2 infectiousness is not well understood. We compared longitudinal viral shedding dynamics in unvaccinated and fully vaccinated adults. SARS-CoV-2-infected adults were enrolled within 5 days of symptom onset and nasal specimens were self-collected daily for two weeks and intermittently for an additional two weeks. SARS-CoV-2 RNA load and infectious virus were analyzed relative to symptom onset stratified by vaccination status. We tested 1080 nasal specimens from 52 unvaccinated adults enrolled in the pre-Delta period and 32 fully vaccinated adults with predominantly Delta infections. While we observed no differences by vaccination status in maximum RNA levels, maximum infectious titers and the median duration of viral RNA shedding, the rate of decay from the maximum RNA load was faster among vaccinated; maximum infectious titers and maximum RNA levels were highly correlated. Furthermore, amongst participants with infectious virus, median duration of infectious virus detection was reduced from 7.5 days (IQR: 6.0-9.0) in unvaccinated participants to 6 days (IQR: 5.0-8.0) in those vaccinated (P = 0.02). Accordingly, the odds of shedding infectious virus from days 6 to 12 post-onset were lower among vaccinated participants than unvaccinated participants (OR 0.42 95% CI 0.19-0.89). These results indicate that vaccination had reduced the probability of shedding infectious virus after 5 days from symptom onset.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , COVID-19/prevenção & controle , Humanos , Estudos Longitudinais , RNA Viral/genética , Vacinação , Eliminação de Partículas Virais
19.
J Infect Dis ; 226(10): 1688-1698, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36134603

RESUMO

BACKGROUND: As of early 2022, the Omicron variants are the predominant circulating lineages globally. Understanding neutralizing antibody responses against Omicron BA.1 and BA.2 after vaccine breakthrough infections will provide insights into BA.2 infectivity and susceptibility to subsequent reinfection. METHODS: Live virus neutralization assays were used to study immunity against Delta and Omicron BA.1 and BA.2 variants in samples from 86 individuals, 24 unvaccinated (27.9%) and 62 vaccinated (72.1%), who were infected with Delta (n = 42, 48.8%) or BA.1 (n = 44, 51.2%). Among the 62 vaccinated individuals, 39 were unboosted (62.9%), whereas 23 were boosted (37.1%). RESULTS: In unvaccinated infections, neutralizing antibodies (nAbs) against the three variants were weak or undetectable, except against Delta for Delta-infected individuals. Both Delta and BA.1 breakthrough infections resulted in strong nAb responses against ancestral wild-type and Delta lineages, but moderate nAb responses against BA.1 and BA.2, with similar titers between unboosted and boosted individuals. Antibody titers against BA.2 were generally higher than those against BA.1 in breakthrough infections. CONCLUSIONS: These results underscore the decreased immunogenicity of BA.1 compared to BA.2, insufficient neutralizing immunity against BA.2 in unvaccinated individuals, and moderate to strong neutralizing immunity induced against BA.2 in Delta and BA.1 breakthrough infections.


Assuntos
Anticorpos Neutralizantes , Vacinas , Humanos , Anticorpos Antivirais
20.
Nat Commun ; 13(1): 4503, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35922434

RESUMO

The COVID-19 pandemic is exacting an increasing toll worldwide, with new SARS-CoV-2 variants emerging that exhibit higher infectivity rates and that may partially evade vaccine and antibody immunity. Rapid deployment of non-invasive therapeutic avenues capable of preventing infection by all SARS-CoV-2 variants could complement current vaccination efforts and help turn the tide on the COVID-19 pandemic. Here, we describe a novel therapeutic strategy targeting the SARS-CoV-2 RNA using locked nucleic acid antisense oligonucleotides (LNA ASOs). We identify an LNA ASO binding to the 5' leader sequence of SARS-CoV-2 that disrupts a highly conserved stem-loop structure with nanomolar efficacy in preventing viral replication in human cells. Daily intranasal administration of this LNA ASO in the COVID-19 mouse model potently suppresses viral replication (>80-fold) in the lungs of infected mice. We find that the LNA ASO is efficacious in countering all SARS-CoV-2 "variants of concern" tested both in vitro and in vivo. Hence, inhaled LNA ASOs targeting SARS-CoV-2 represents a promising therapeutic approach to reduce or prevent transmission and decrease severity of COVID-19 in infected individuals. LNA ASOs are chemically stable and can be flexibly modified to target different viral RNA sequences and could be stockpiled for future coronavirus pandemics.


Assuntos
COVID-19 , SARS-CoV-2 , Administração Intranasal , Animais , Humanos , Camundongos , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Pandemias/prevenção & controle , RNA Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...