Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39124041

RESUMO

In this paper, artificial intelligence (AI) technology is applied to the electromagnetic imaging of anisotropic objects. Advances in magnetic anomaly sensing systems and electromagnetic imaging use electromagnetic principles to detect and characterize subsurface or hidden objects. We use measured multifrequency scattered fields to calculate the initial dielectric constant distribution of anisotropic objects through the backpropagation scheme (BPS). Later, the estimated multifrequency permittivity distribution is input to a convolutional neural network (CNN) for the adaptive moment estimation (ADAM) method to reconstruct a more accurate image. In the meantime, we also improve the definition of loss function in the CNN. Numerical results show that the improved loss function unifying the structural similarity index measure (SSIM) and root mean square error (RMSE) can effectively enhance image quality. In our simulation environment, noise interference is considered for both TE (transverse electric) and TM (transverse magnetic) waves to reconstruct anisotropic scatterers. Lastly, we conclude that multifrequency reconstructions are more stable and precise than single-frequency reconstructions.

2.
Sensors (Basel) ; 24(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38610533

RESUMO

In this paper, we introduce a novel artificial intelligence technique with an attention mechanism for half-space electromagnetic imaging. A dielectric object in half-space is illuminated by TM (transverse magnetic) waves. Since measurements can only be made in the upper space, the measurement angle will be limited. As a result, we apply a back-propagation scheme (BPS) to generate an initial guessed image from the measured scattered fields for scatterer buried in the lower half-space. This process can effectively reduce the high nonlinearity of the inverse scattering problem. We further input the guessed images into the generative adversarial network (GAN) and the self-attention generative adversarial network (SAGAN), respectively, to compare the reconstruction performance. Numerical results prove that both SAGAN and GAN can reconstruct dielectric objects and the MNIST dataset under same measurement conditions. Our analysis also reveals that SAGAN is able to reconstruct electromagnetic images more accurately and efficiently than GAN.

3.
Sensors (Basel) ; 23(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37960481

RESUMO

In this paper, we present the microwave imaging of anisotropic objects by artificial intelligence technology. Since the biaxial anisotropic scatterers have different dielectric constant components in different transverse directions, the problems faced by transverse electronic (TE) polarization waves are more complex than those of transverse magnetic (TM) polarization waves. In other words, measured scattered field information can scarcely reconstruct microwave images due to the high nonlinearity characteristic of TE polarization. Therefore, we first use the dominant current scheme (DCS) and the back-propagation scheme (BPS) to compute the initial guess image. We then apply a trained convolution neural network (CNN) to regenerate the microwave image. Numerical results show that the CNN possesses a good generalization ability under limited training data, which could be favorable to deploy in image processing. Finally, we compare DCS and BPS reconstruction images for anisotropic objects by the CNN and prove that DCS is better than BPS. In brief, successfully reconstructing biaxial anisotropic objects with a CNN is the contribution of this proposal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...