RESUMO
Antimicrobials reserved for human medicines are permitted for companion animals and it is important to understand multidrug-resistant pathogens recovered from companion animals in terms of epidemiological correlation with human pathogens and possibility of transmission to human-beings. Seventeen of each CTX-M-type extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-EC) and Klebsiella pneumoniae (ESBL-KP) canine isolates were assessed. Entire genomes of the 34 isolates were sequenced. Plasmid transfer and relative growth rates were assessed at differed temperature conditions indicating the body temperature of dogs, that of human-beings, and environment. ESBL-ECs were clonally diverse, while ESBL-KPs were not. The ESBL-ECs carried the blaCTX-M-15 gene in plasmids and the blaCTX-M-14-like gene either in chromosomes or in plasmids. The ESBL-KPs possessed the blaCTX-M-15 gene in plasmids (n = 15). One of the isolates carried another blaCTX-M-15 gene in a chromosome simultaneously and the other isolate had an additional blaCTX-M-9 gene-harbouring plasmid, together. Two ESBL-KP isolates carried the blaCTX-M-14 gene in plasmids. Plasmid transfer ESBL-EC to K. pneumoniae was efficient and the differed biological costs by temperature was much more in ESBL-EC than in ESBL-KP. Intersectoral dissemination of ESBL-ECs occurred mainly by horizontal gene transfer, while that of ESBL-KPs occurred by clonal dissemination.
Assuntos
Escherichia coli , Infecções por Klebsiella , Klebsiella pneumoniae , Plasmídeos , beta-Lactamases , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , beta-Lactamases/genética , Humanos , Animais , Cães , Plasmídeos/genética , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Infecções por Klebsiella/microbiologia , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Genoma Bacteriano , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterináriaAssuntos
Rearranjo Gênico , Leucemia Mieloide Aguda , Complexo de Proteínas Formadoras de Poros Nucleares , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , População do Leste Asiático , Leucemia Mieloide Aguda/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genéticaRESUMO
BACKGROUND: Risk stratification in multiple myeloma (MM) patients is crucial, and molecular genetic studies play a significant role in achieving this objective. Enrichment of plasma cells for next-generation sequencing (NGS) analysis has been employed to enhance detection sensitivity. However, these methods often come with limitations, such as high costs and low throughput. In this study, we explore the use of an error-corrected ultrasensitive NGS assay called positional indexing sequencing (PiSeq-MM). This assay can detect somatic mutations in MM patients without relying on plasma cell enrichment. METHOD: Diagnostic bone marrow aspirates (BMAs) and blood samples from 14 MM patients were used for exploratory and validation sets. RESULTS: PiSeq-MM successfully detected somatic mutations in all BMAs, outperforming conventional NGS using plasma cells. It also identified 38 low-frequency mutations that were missed by conventional NGS, enhancing detection sensitivity below the 5% analytical threshold. When tested in an actual clinical environment, plasma cell enrichment failed in most BMAs (14/16), but the PiSeq-MM enabled mutation detection in all BMAs. There was concordance between PiSeq-MM using BMAs and ctDNA analysis in paired blood samples. CONCLUSION: This research provides valuable insights into the genetic landscape of MM and highlights the advantages of error-corrected NGS for detecting low-frequency mutations. Although the current standard method for mutation analysis is plasma cell-enriched BMAs, total BMA or ctDNA testing with error correction is a viable alternative when plasma cell enrichment is not feasible.
RESUMO
BACKGROUND/AIMS: Autoimmune hepatitis (AIH) is characterized by the presence of auto-antibodies and high blood immunoglobulin G (IgG) levels. In this study, the line immunoassay (LIA) was designed to assess various autoantibodies. METHODS: In total, 1371 patients who underwent autoimmune liver disease antibody testing between July 2019 and November 2022 were enrolled. Autoantibodies including antinuclear antibody (ANA) and anti-mitochondrial antibody (AMA) were tested, and clinical data were collected. Statistical analyses were performed by categorizing the data based on diagnosis and IgG quantification separately. A scoring system was applied to identify individuals with AIH. Patients were also classified into the AIH and non-AIH groups. RESULTS: The positivity rate for ANA was 80.2% in the AIH group. The IgG-high group had a high likelihood of the presence of detectable autoantibodies, with anti-Ro-52 being the most frequently detected antibody using LIA. The "Consider AIH" and "AMA" groups had 3-4 times more patients in the IgG-high group than in the "Not Considered" group. CONCLUSIONS: Among autoantibodies, the prevalence of ANA was the highest. As per LIA results, anti-Ro-52 was the most prevalent. AIH cannot be diagnosed based on IgG levels alone and must be distinguished via autoantibody testing. Therefore, extensive testing, including autoantibodies, IgG, ANA, and liver enzyme levels, will help accurately diagnose AIH.
Assuntos
Anticorpos Antinucleares , Autoanticorpos , Hepatite Autoimune , Imunoglobulina G , Humanos , Hepatite Autoimune/imunologia , Hepatite Autoimune/sangue , Hepatite Autoimune/diagnóstico , Masculino , Feminino , Pessoa de Meia-Idade , Autoanticorpos/sangue , Autoanticorpos/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Anticorpos Antinucleares/sangue , Anticorpos Antinucleares/imunologia , Adulto , IdosoRESUMO
Gene fusions are key drivers in acute leukemia, impacting diagnosis and treatment decisions. We analyzed 264 leukemia patients using targeted RNA sequencing with conventional karyotyping and reverse transcription polymerase chain reaction (RT-PCR). Leukemic fusions were detected in 127 patients (48.1%). The new guidelines introduced additional diagnostic criteria, expanding the spectrum of gene fusions. We discovered three novel fusions (RUNX1::DOPEY2, RUNX1::MACROD2, and ZCCHC7::LRP1B). We analyzed recurrent breakpoints for the KMT2A and NUP98 rearrangements. Targeted RNA sequencing showed consistent results with RT-PCR in all tested samples. However, when compared to conventional karyotyping, we observed an 83.3% concordance rate, with 29 cases found only in targeted RNA sequencing, 7 cases with discordant results, and 5 cases found only in conventional karyotyping. For the five cases where known leukemic gene rearrangements were suspected only in conventional karyotyping, we conducted additional messenger RNA sequencing in four cases and proved no pathogenic gene rearrangements. Targeted RNA sequencing proved advantageous for the rapid and accurate interpretation of gene rearrangements. The concurrent use of multiple methods was essential for a comprehensive evaluation. Comprehensive molecular analysis enhances our understanding of leukemia's genetic basis, aiding diagnosis and classification. Advanced molecular techniques improve clinical decision-making, offering potential benefits.
RESUMO
BACKGROUND: Assessment of measurable residual disease (MRD) is an essential prognostic tool for B-lymphoblastic leukaemia (B-ALL). In this study, we evaluated the utility of next-generation sequencing (NGS)-based MRD assessment in real-world clinical practice. METHOD: The study included 93 paediatric patients with B-ALL treated at our institution between January 2017 and June 2022. Clonality for IGH or IGK rearrangements was identified in most bone marrow samples (91/93, 97.8%) obtained at diagnosis. RESULTS: In 421 monitoring samples, concordance was 74.8% between NGS and multiparameter flow cytometry and 70.7% between NGS and reverse transcription-PCR. Elevated quantities of clones of IGH alone (P < 0.001; hazard ratio [HR], 22.2; 95% confidence interval [CI], 7.1-69.1), IGK alone (P = 0.011; HR, 5.8; 95% CI, 1.5-22.5), and IGH or IGK (P < 0.001; HR, 7.2; 95% CI, 2.6-20.0) were associated with an increased risk of relapse. Detection of new clone(s) in NGS was also associated with inferior relapse-free survival (P < 0.001; HR, 18.1; 95% CI, 3.0-108.6). Multivariable analysis confirmed age at diagnosis, BCR::ABL1-like mutation, TCF3::PBX1 mutation, and increased quantity of IGH or IGK clones during monitoring as unfavourable factors. CONCLUSION: In conclusion, this study highlights the usefulness of NGS-based MRD as a routine assessment tool for prognostication of paediatric patients with B-ALL.
RESUMO
INTRODUCTION: Acute myeloid leukemia (AML) is a complex hematologic malignancy characterized by uncontrolled proliferation of myeloid precursor cells within bone marrow. Despite advances in understanding of its molecular underpinnings, AML remains a therapeutic challenge due to its high relapse rate and clonal evolution. METHODS: In this retrospective study, we analyzed data from 24 AML patients diagnosed at a single institution between January 2017 and August 2023. Comprehensive genetic analyses, including chromosomal karyotyping, next-generation sequencing, and gene fusion assays, were performed on bone marrow samples obtained at initial diagnosis and relapse. Clinical data, treatment regimens, and patient outcomes were also documented. RESULTS: Mutations in core genes of FLT3, NPM1, DNMT3A, and IDH2 were frequently discovered in diagnostic sample and remained in relapse sample. FLT3-ITD, TP53, KIT, RUNX1, and WT1 mutation were acquired at relapse in one patient each. Gene fusion assays revealed stable patterns, while chromosomal karyotype analyses indicated a greater diversity of mutations in relapsed patients. Clonal evolution patterns varied, with some cases showing linear or branching evolution and others exhibiting no substantial change in core mutations between diagnosis and relapse. CONCLUSIONS: Our study integrates karyotype, gene rearrangements, and gene mutation results to provide a further understanding of AML heterogeneity and evolution. We demonstrate the clinical relevance of specific mutations and clonal evolution patterns, emphasizing the need for personalized therapies and measurable residual disease monitoring in AML management. By bridging the gap between genetics and clinical outcome, we move closer to tailored AML therapies and improved patient prognoses.
RESUMO
Background: Facioscapulohumeral muscular dystrophy (FSHD) is a common form of muscular dystrophy that mainly affects skeletal muscle. FSHD1 accounts for 95% of all FSHD cases and can be diagnosed based on the pathogenic contraction of the D4Z4-repeat array on chromosome 4q35. Genetic diagnosis of FSHD1 is challenging because of the large size and repetitive nature of the D4Z4 region. We evaluated the clinical applicability of optical genome mapping (OGM) for the genetic diagnosis of FSHD1. Methods: We included 25 individuals with clinically confirmed or suspected/probable FSHD and their families. Ultra-high-molecular-weight DNA from peripheral blood was labeled, stained, and imaged using a single-molecule OGM platform (Bionano Genomics Saphyr system). D4Z4 repeat size and haplotype information were analyzed using the manufacturer's dedicated pipeline. We also compared the workflow and test time between Southern blot analysis and OGM. Results: We obtained concordant OGM and Southern blot results with 10 samples from patients with clinically confirmed FSHD. The D4Z4 repeat size differed within 1 unit between the Southern blot analysis and OGM. Among nine patients with clinically suspected or probable FSHD, six patients were confirmed to have pathogenic contractions by OGM. In our cohort, one de novo mosaic FSHD1 patient was successfully diagnosed with OGM. Moreover, OGM has a more straightforward and less time-consuming workflow than Southern blot analysis. Conclusions: OGM enables accurate and reliable detection of pathogenic contraction of the D4Z4-repeat array and is a valuable tool for the genetic diagnosis of FSHD1.
Assuntos
Distrofia Muscular Facioescapuloumeral , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/diagnóstico , Humanos , Cromossomos Humanos Par 4/genética , Masculino , Mapeamento Cromossômico , Feminino , Southern Blotting , Haplótipos , Adulto , Pessoa de Meia-IdadeRESUMO
Importance: Despite advances in next-generation sequencing (NGS), a significant proportion of patients with inherited retinal disease (IRD) remain undiagnosed after initial genetic testing. Exome sequencing (ES) reanalysis in the clinical setting has been suggested as one method for improving diagnosis of IRD. Objective: To investigate the association of clinician-led reanalysis of ES data, which incorporates updated clinical information and comprehensive bioinformatic analysis, with the diagnostic yield in a cohort of patients with IRDs in Korea. Design, Setting, and Participants: This was a multicenter prospective cohort study involving 264 unrelated patients with IRDs, conducted in Korea between March 2018 and February 2020. Comprehensive ophthalmologic examinations and ES analyses were performed, and ES data were reanalyzed by an IRD specialist for single nucleotide variants, copy number variants, mobile element insertions, and mitochondrial variants. Data were analyzed from March to July 2023. Main Outcomes and Measures: Diagnostic rate of conventional bioinformatic analysis and clinician-driven ES reanalysis. Results: A total of 264 participants (151 [57.2%] male; mean [SD] age at genetic testing, 33.6 [18.9] years) were enrolled, including 129 patients (48.9%) with retinitis pigmentosa and 26 patients (9.8%) with Stargardt disease or macular dystrophy. Initial bioinformatic analysis diagnosed 166 patients (62.9%). Clinician-driven reanalysis identified the molecular cause of diseases in an additional 22 patients, corresponding to an 8.3-percentage point increase in diagnostic rate. Key factors associated with new molecular diagnoses included clinical phenotype updates (4 patients) and detection of previously overlooked variation, such as structural variants (9 patients), mitochondrial variants (3 patients), filtered or not captured variants (4 patients), and noncanonical splicing variants (2 patients). Among the 22 patients, variants in 7 patients (31.8%) were observed in the initial analysis but not reported to patients, while those in the remaining 15 patients (68.2%) were newly detected by the ES reanalysis. Conclusions and Relevance: In this cohort study, clinician-centered reanalysis of ES data was associated with improved molecular diagnostic yields in patients with IRD. This approach is important for uncovering missed genetic causes of retinal disease.
Assuntos
Sequenciamento do Exoma , Doenças Retinianas , Humanos , Masculino , Feminino , Sequenciamento do Exoma/métodos , Adulto , Estudos Prospectivos , Doenças Retinianas/genética , Doenças Retinianas/diagnóstico , Pessoa de Meia-Idade , República da Coreia , Testes Genéticos/métodos , Testes Genéticos/estatística & dados numéricos , Adolescente , Adulto Jovem , Criança , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Biologia Computacional/métodosRESUMO
Background: Structural variants (SVs) are currently analyzed using a combination of conventional methods; however, this approach has limitations. Optical genome mapping (OGM), an emerging technology for detecting SVs using a single-molecule strategy, has the potential to replace conventional methods. We compared OGM with conventional diagnostic methods for detecting SVs in various hematologic malignancies. Methods: Residual bone marrow aspirates from 27 patients with hematologic malignancies in whom SVs were observed using conventional methods (chromosomal banding analysis, FISH, an RNA fusion panel, and reverse transcription PCR) were analyzed using OGM. The concordance between the OGM and conventional method results was evaluated. Results: OGM showed concordance in 63% (17/27) and partial concordance in 37% (10/27) of samples. OGM detected 76% (52/68) of the total SVs correctly (concordance rate for each type of SVs: aneuploidies, 83% [15/18]; balanced translocation, 80% [12/15] unbalanced translocation, 54% [7/13] deletions, 81% [13/16]; duplications, 100% [2/2] inversion 100% [1/1]; insertion, 100% [1/1]; marker chromosome, 0% [0/1]; isochromosome, 100% [1/1]). Sixteen discordant results were attributed to the involvement of centromeric/telomeric regions, detection sensitivity, and a low mapping rate and coverage. OGM identified additional SVs, including submicroscopic SVs and novel fusions, in five cases. Conclusions: OGM shows a high level of concordance with conventional diagnostic methods for the detection of SVs and can identify novel variants, suggesting its potential utility in enabling more comprehensive SV analysis in routine diagnostics of hematologic malignancies, although further studies and improvements are required.
Assuntos
Genoma Humano , Variação Estrutural do Genoma , Humanos , Inversão Cromossômica , Translocação Genética , Mapeamento CromossômicoRESUMO
Background: Aplastic anemia (AA), characterized by hematopoietic stem cell deficiency, can evolve into different hematologic malignancies. Our understanding of the genetic basis and mechanisms of this progression remains limited. Methods: We retrospectively studied 9 acquired AA patients who later developed hematologic malignancies. Data encompassed clinical, laboratory, karyotype, and next-generation sequencing (NGS) information. We explored chromosomal alterations and mutation profiles to uncover genetic changes underlying the transition. Results: Nine AA patients developed myelodysplastic syndrome (seven patients), acute myeloid leukemia (one patient), or chronic myelomonocytic leukemia (one patient). Among eight patients with karyotype results at secondary malignancy diagnosis, monosomy 7 was detected in three. Trisomy 1, der(1;7), del(6q), trisomy 8, and del(12p) were detected in one patient each. Among three patients with NGS results at secondary malignancy diagnosis, KMT2C mutation was detected in two patients. Acquisition of a PTPN11 mutation was observed in one patient who underwent follow-up NGS testing during progression from chronic myelomonocytic leukemia to acute myeloid leukemia. Conclusion: This study highlights the genetic dynamics in the progression from AA to hematologic malignancy. Monosomy 7's prevalence and the occurrence of PTPN11 mutations suggest predictive and prognostic significance. Clonal evolution underscores the complexity of disease progression.
RESUMO
PURPOSE: We designed and evaluated the clinical performance of a plasma circulating tumor DNA (ctDNA) panel of 112 genes in various subtypes of lymphoma. MATERIALS AND METHODS: Targeted deep sequencing with an error-corrected algorithm was performed in ctDNA from plasma samples that were collected before treatment in 42 lymphoma patients. Blood buffy coat was utilized as a germline control. We evaluated the targeted gene panel using mutation detection concordance on the plasma samples with matched tissue samples analyzed the mutation profiles of the ctDNA. RESULTS: Next-generation sequencing analysis using matched tissue samples was available for 18 of the 42 patients. At least one mutation was detected in the majority of matched tissue biopsy samples (88.9%) and plasma samples (83.3%). A considerable number of mutations (40.4%) that were detected in the tissue samples were also found in the matched plasma samples. Majority of patients (21/42) were diffuse large B cell lymphoma patients. The overall detection rate of ctDNA in patients was 85.7% (36/42). The frequently mutated genes included PIM1, TET2, BCL2, KMT2D, KLHL6, HIST1H1E, and IRF8. A cutoff concentration (4,506 pg/mL) of ctDNA provided 88.9% sensitivity and 82.1% specificity to predict ctDNA mutation detection. The ctDNA concentration correlated with elevated lactate dehydrogenase level and the disease stage. CONCLUSION: Our design panel can detect many actionable gene mutations, including those at low frequency. Therefore, liquid biopsy can be applied clinically in the evaluation of lymphoma patients, especially in aggressive lymphoma patients.
Assuntos
DNA Tumoral Circulante , Linfoma , Humanos , DNA Tumoral Circulante/genética , Biópsia Líquida , Mutação , Biomarcadores Tumorais/genética , Sequenciamento de Nucleotídeos em Larga EscalaRESUMO
OBJECTIVE: We aimed to identify common genes and recurrent causative variants in a large group of Asian patients with different epilepsy syndromes and subgroups. METHODS: Patients with unexplained pediatric-onset epilepsy were identified from the in-house Severance Neurodevelopmental Disorders and Epilepsy Database. All patients underwent either exome sequencing or multigene panels from January 2017 to December 2019, at Severance Children's Hospital in Korea. Clinical data were extracted from the medical records. RESULTS: Of the 957 patients studied, 947 (99.0%) were Korean and 570 were male (59.6%). The median age at testing was 4.91 years (interquartile range, 1.53-9.39). The overall diagnostic yield was 32.4% (310/957). Clinical exome sequencing yielded a diagnostic rate of 36.9% (134/363), whereas the epilepsy panel yielded a diagnostic rate of 29.9% (170/569). Diagnostic yield differed across epilepsy syndromes. It was high in Dravet syndrome (87.2%, 41/47) and early infantile developmental epileptic encephalopathy (60.7%, 17/28), but low in West syndrome (21.8%, 34/156) and myoclonic-atonic epilepsy (4.8%, 1/21). The most frequently implicated genes were SCN1A (n = 49), STXBP1 (n = 15), SCN2A (n = 14), KCNQ2 (n = 13), CDKL5 (n = 11), CHD2 (n = 9), SLC2A1 (n = 9), PCDH19 (n = 8), MECP2 (n = 6), SCN8A (n = 6), and PRRT2 (n = 5). The recurrent genetic abnormalities included 15q11.2 deletion/duplication (n = 9), Xq28 duplication (n = 5), PRRT2 deletion (n = 4), MECP2 duplication (n = 3), SCN1A, c.2556+3A>T (n = 3), and 2q24.3 deletion (n = 3). SIGNIFICANCE: Here we present the results of a large-scale study conducted in East Asia, where we identified several common genes and recurrent variants that varied depending on specific epilepsy syndromes. The overall genetic landscape of the Asian population aligns with findings from other populations of varying ethnicities.
Assuntos
Epilepsias Mioclônicas , Epilepsia , Síndromes Epilépticas , Espasmos Infantis , Criança , Humanos , Masculino , Pré-Escolar , Feminino , Epilepsia/genética , Epilepsia/diagnóstico , Espasmos Infantis/genética , Espasmos Infantis/diagnóstico , Epilepsias Mioclônicas/genética , Fenótipo , Mutação , ProtocaderinasRESUMO
Circulating tumor DNA (ctDNA) may aid in personalizing ovarian cancer therapeutic options. Here, we aimed to assess the clinical utility of serial ctDNA testing using tumor-naïve, small-sized next-generation sequencing (NGS) panels. A total of 296 patients, including 201 with ovarian cancer and 95 with benign or borderline disease, were enrolled. Samples were collected at baseline (initial diagnosis or surgery) and every 3 months after that, resulting in a total of 811 blood samples. Patients received adjuvant therapy based on the current standard of care. Cell-free DNA was extracted and sequenced using an NGS panel of 9 genes: TP53, BRCA1, BRCA2, ARID1A, CCNE1, KRAS, MYC, PIK3CA, and PTEN. Pathogenic somatic mutations were identified in 69.2% (139/201) of patients with ovarian cancer at baseline but not in those with benign or borderline disease. Detection of ctDNA at baseline and/or at 6 months follow-up was predictive of progression-free survival (PFS). PFS was significantly poorer in patients with detectable pathogenic mutations at baseline that persisted at follow-up than in patients that converted from having detectable ctDNA at baseline to being undetectable at follow-up; survival did not differ between patients without pathogenic ctDNA mutations in baseline or follow-up samples and those that converted from ctDNA positive to negative. Disease recurrence was also detected earlier with ctDNA than with conventional radiologic assessment or CA125 monitoring. These findings demonstrate that serial ctDNA testing could effectively monitor patients and detect minimal residual disease, facilitating early detection of disease progression and tailoring of adjuvant therapies for ovarian cancer treatment. SIGNIFICANCE: In ovarian cancer, serial circulating tumor DNA testing is a highly predictive marker of patient survival, with a significantly improved recurrence detection lead time compared with conventional monitoring tools.
Assuntos
DNA Tumoral Circulante , Neoplasias Ovarianas , Humanos , Feminino , DNA Tumoral Circulante/genética , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Neoplasias Ovarianas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Biomarcadores Tumorais/genética , MutaçãoRESUMO
OBJECTIVES: Clonal hematopoiesis (CH) is a condition in which healthy individuals have somatic mutations in hematopoietic stem cells. It has been reported with increased risk of hematologic malignancy and cardiovascular disease in the general population, but studies of Korean populations with comorbid disease entities are scarce. METHODS: White blood cells (WBCs) from patients with gastric cancer (GC) (n=121) were analyzed using a DNA-based targeted (531 genes) panel with customized pipeline designed to detect single nucleotide variants and small indels with low-allele-frequency of ≥0.2â¯%. We defined significant CH variants as having variant allele frequency (VAF) ≥2â¯% among variants found in WBCs. Matched cell-free DNA (cfDNA) samples were also analyzed with the same pipeline to investigate the false-positive results caused by WBC variants in cfDNA profiling. RESULTS: Significant CH variants were detected in 29.8â¯% of patients and were associated with age and male sex. The number of CH variants was associated with a history of anti-cancer therapy and age. DNMT3A and TET2 were recurrently mutated. Overall survival rate of treatment-naïve patients with stage IV GC was higher in those with CH, but Cox regression showed no significant association after adjustment for age, sex, anti-cancer therapy, and smoking history. In addition, we analyzed the potential interference of WBC variants in plasma cell-free DNA testing, which has attracted interest as a complementary method for tissue biopsy. Results showed that 37.0â¯% (47/127) of plasma specimens harbored at least one WBC variant. VAFs of interfering WBC variants in the plasma and WBC were correlated, and WBC variants with VAF ≥4â¯% in WBC were frequently detected in plasma with the same VAF. CONCLUSIONS: This study revealed the clinical impact of CH in Korean patients and suggests the potential for its interference in cfDNA tests.
Assuntos
Ácidos Nucleicos Livres , Neoplasias Gástricas , Humanos , Masculino , Ácidos Nucleicos Livres/genética , Hematopoiese Clonal , Neoplasias Gástricas/genética , Relevância Clínica , Impressões Digitais de DNA , Mutação , Hematopoese/genéticaRESUMO
Background: The three best-known NUP214 rearrangements found in leukemia (SET:: NUP214, NUP214::ABL1, and DEK::NUP214) are associated with treatment resistance and poor prognosis. Mouse experiments have shown that NUP214 rearrangements alone are insufficient for leukemogenesis; therefore, the identification of concurrent mutations is important for accurate assessment and tailored patient management. Here, we characterized the demographic characteristics and concurrent mutations in patients harboring NUP214 rearrangements. Methods: To identify patients with NUP214 rearrangements, RNA-sequencing results of diagnostic bone marrow aspirates were retrospectively studied. Concurrent targeted next-generation sequencing results, patient demographics, karyotypes, and flow cytometry information were also reviewed. Results: In total, 11 patients harboring NUP214 rearrangements were identified, among whom four had SET::NUP214, three had DEK::NUP214, and four had NUP214::ABL1. All DEK::NUP214-positive patients were diagnosed as having AML. In patients carrying SET::NUP214 and NUP214::ABL1, T-lymphoblastic leukemia was the most common diagnosis (50%, 4/8). Concurrent gene mutations were found in all cases. PFH6 mutations were the most common (45.5%, 5/11), followed by WT1 (27.3%, 3/11), NOTCH1 (27.3%, 3/11), FLT3-internal tandem duplication (27.3%, 3/11), NRAS (18.2%, 2/11), and EZH2 (18.2%, 2/11) mutations. Two patients represented the second and third reported cases of NUP214::ABL1-positive AML. Conclusions: We examined the characteristics and concurrent test results, including gene mutations, of 11 leukemia patients with NUP214 rearrangement. We hope that the elucidation of the context in which they occurred will aid future research on tailored monitoring and treatment.
Assuntos
Leucemia Mieloide Aguda , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Animais , Camundongos , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Estudos Retrospectivos , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genéticaRESUMO
BACKGROUND: Hereditary hemolytic anemia (HHA) refers to a heterogeneous group of genetic disorders that share one common feature: destruction of circulating red blood cells (RBCs). The destruction of RBCs may be due to membranopathies, enzymopathies, or hemoglobinopathies. Because these are genetic disorders, incorporation of next-generation sequencing (NGS) has facilitated the diagnostic process of HHA. METHOD: Genetic data from 29 patients with suspected hereditary anemia in a tertiary hospital were retrospectively reviewed to evaluate the efficacy of NGS on hereditary anemia diagnosis. Targeted NGS was performed with custom probes for 497 genes associated with hematologic disorders. After genomic DNA was extracted from peripheral blood, prepared libraries were hybridized with capture probes and sequenced using NextSeq 550Dx (Illumina, San Diego, CA, USA). RESULT: Among the 29 patients, ANK1 variants were detected in five, four of which were pathogenic or likely pathogenic variants. SPTB variants were detected in six patients, five of which were classified as pathogenic or likely pathogenic variants. We detected g6pd pathogenic and spta1 likely pathogenic variants in two patients and one patient, respectively. Whole-gene deletions in both HBA1 and HBA2 were detected in two patients, while only HBA2 deletion was detected in one patient. One likely pathogenic variant in PLKR was detected in one patient, and one likely pathogenic variant in ALAS2 was detected in another. CONCLUSION: Here, NGS played a critical role in definitive diagnosis in 18 out of 29 patients (62.07%) with suspected HHA. Thus, its incorporation into the diagnostic workflow is crucial.
Assuntos
Anemia Hemolítica Congênita , Humanos , Criança , Estudos Retrospectivos , Anemia Hemolítica Congênita/diagnóstico , Anemia Hemolítica Congênita/genética , Eritrócitos , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas do Citoesqueleto , 5-Aminolevulinato SintetaseRESUMO
The positivity rate of circulating tumor DNA (ctDNA) next-generation sequencing (NGS) varies among patients with metastatic prostate cancer (mPC), complicating its incorporation into regular practice. This retrospective study analyzed the ctDNA sequencing results of 100 mPC patients from May 2021 to March 2023 to identify the factors associated with positive ctDNA. Three custom gene panels were used for sequencing. Overall, 63% of the patients exhibited tier I/II somatic alterations, while 12% had pathogenic/likely pathogenic germline alterations. The key genes that were altered included AR, TP53, RB1, PTEN, and APC. Mutations in BRCA1/2, either germline or somatic, were observed in 21% of the patients. Among the metastatic castration-resistant prostate cancer (mCRPC) patients, the ctDNA-positive samples generally showed higher median prostate-specific antigen (PSA) levels and were more likely to be at the radiographic and clinical progressive disease stages, although they were not significantly associated with PSA progression. Our results suggest that ctDNA analysis could detect meaningful genetic changes in mPC patients, especially during disease progression.
RESUMO
[This corrects the article DOI: 10.3389/fimmu.2023.1178582.].