RESUMO
Every year, unfavorable environmental factors significantly affect crop productivity and threaten food security. Plants are sessile; they cannot move to escape unfavorable environmental conditions, and therefore, they activate a variety of defense pathways. Among them are processes regulated by stress-associated proteins (SAPs). SAPs have a specific zinc finger domain (A20) at the N-terminus and either AN1 or C2H2 at the C-terminus. SAP proteins are involved in many biological processes and in response to various abiotic or biotic constraints. Most SAPs play a role in conferring transgenic stress resistance and are stress-inducible. The emerging field of SAPs in abiotic or biotic stress response regulation has attracted the attention of researchers. Although SAPs interact with various proteins to perform their functions, the exact mechanisms of these interactions remain incompletely understood. This review aims to provide a comprehensive understanding of SAPs, covering their diversity, structure, expression, and subcellular localization. SAPs play a pivotal role in enabling crosstalk between abiotic and biotic stress signaling pathways, making them essential for developing stress-tolerant crops without yield penalties. Collectively, understanding the complex regulation of SAPs in stress responses can contribute to enhancing tolerance against various environmental stresses through several techniques such as transgenesis, classical breeding, or gene editing.
Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Estresse Fisiológico , Estresse Fisiológico/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Transdução de Sinais , Plantas/metabolismo , Plantas/genética , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismoRESUMO
Salt-induced stress poses a significant barrier to agricultural productivity by impeding crop growth. Presently, environmentalists are dedicated to safeguarding food security by enhancing agricultural yields in challenging environments. Biostimulants play a crucial role in mitigating abiotic stresses in crop production, and among these, plant essential oils (EOs) stand out as organic substances with diverse biological effects on living organisms. Among the natural promoters of plant growth, Rosmarinus officinalis L. essential oil (RoEO) has gained considerable attention. Although the manifold effects of essential oils (EOs) on plant growth have been extensively demonstrated, their impact on salt stress tolerance in durum wheat seedlings remains unexplored. This investigation was undertaken to evaluate the biostimulatory capabilities of RoEO on the durum wheat cultivar "Mahmoudi." The effects of three RoEO concentrations (1, 2.5, and 5 ppm) on seed germination, growth establishment, and the induction of salt resistance under salinity conditions (150 mM NaCl) were tested. At 5 ppm, RoEO enhanced seedlings' tolerance to salinity by improving growth and reducing membrane deterioration and oxidative stress-induced damage. The expression profile analyses of seven stress-related genes (TdNHX1, TdSOS1, TdSOD, TdCAT, TdGA20-ox1, TdNRT2.1, and TdGS) using RT-qPCR showed enhancement of several important genes in durum wheat seedlings treated with 5 ppm RoEO, even under control conditions, which may be related to salt stress tolerance. The results indicate that the application of RoEO suggests a possible alternative strategy to increase salt tolerance in durum wheat seedlings towards better growth quality, thus increasing ROS scavenging and activation of antioxidant defense.
Assuntos
Antioxidantes , Óleos Voláteis , Espécies Reativas de Oxigênio , Rosmarinus , Plântula , Triticum , Triticum/efeitos dos fármacos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Óleos Voláteis/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/metabolismo , Rosmarinus/química , Tolerância ao Sal/efeitos dos fármacos , Estresse Salino/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Germinação/efeitos dos fármacosRESUMO
Gibberellic acid-stimulated Arabidopsis (GASA) gene family is a class of functional cysteine-rich proteins characterized by an N-terminal signal peptide and a C-terminal-conserved GASA domain with 12 invariant cysteine (Cys) residues. GASA proteins are widely distributed among plant species, and the majority of them are involved in the signal transmission of plant hormones, the regulation of plant development and growth, and the responses to different environmental constraints. To date, their action mechanisms are not completely elucidated. This review reports an overview of the diversity, structure, and subcellular localization of GASA proteins, their involvement in hormone crosstalk and redox regulation during development, and plant responses to abiotic and biotic stresses. Knowledge of this complex regulation can be a contribution to promoting multiple abiotic stress tolerance with potential agricultural applications through the engineering of genes encoding GASA proteins and the production of transgenic plants.
RESUMO
Cold stress is a key environmental factor affecting plant growth and development, crop productivity, and geographic distribution. Thioredoxins (Trxs) are small proteins that are ubiquitously expressed in all organisms and implicated in several cellular processes, including redox reactions. However, their role in the regulation of cold stress in the halophyte plant Lobularia maritima remains unknown. We recently showed that overexpression of LmTrxh2, which is the gene that encodes the h-type Trx protein previously isolated from L. maritima, led to an enhanced tolerance to salt and osmotic stress in transgenic tobacco. This study functionally characterized the LmTrxh2 gene via its overexpression in tobacco and explored its cold tolerance mechanisms. Results of the RT-qPCR and western blot analyses indicated differential temporal and spatial regulation of LmTrxh2 in L. maritima under cold stress at 4 °C. LmTrxh2 overexpression enhanced the cold tolerance of transgenic tobacco, as evidenced by increased germination rate, fresh weight and catalase (CAT), superoxide dismutase (SOD) and peroxidase (POD) activities; reduced malondialdehyde levels, membrane leakage, superoxide anion (O2-), and hydrogen peroxide (H2O2) levels; and higher retention of chlorophyll than in non-transgenic plants (NT). Furthermore, the transcript levels of reactive oxygen species (ROS)-related genes (NtSOD and NtCAT1), stress-responsive late embryogenis abundant protein 5 (NtLEA5), early response to dehydration 10C (NtERD10C), DRE-binding proteins 1A (NtDREB1A), and cold-responsive (COR) genes (NtCOR15A, NtCOR47, and NtKIN1) were upregulated in transgenic lines compared with those in NT plants under cold stress, indicating that LmTrxh2 conferred cold stress tolerance by enhancing the ROS scavenging ability of plants, thus enabling them to maintain membrane integrity. These results suggest that LmTrxh2 promotes cold tolerance in tobacco and provide new insight into the improvement of cold-stress resistance to cold stress in non-halophyte plants and crops.