Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 694
Filtrar
2.
Abdom Radiol (NY) ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958754

RESUMO

OBJECTIVE: To assess impact of image quality on prostate cancer extraprostatic extension (EPE) detection on MRI using a deep learning-based AI algorithm. MATERIALS AND METHODS: This retrospective, single institution study included patients who were imaged with mpMRI and subsequently underwent radical prostatectomy from June 2007 to August 2022. One genitourinary radiologist prospectively evaluated each patient using the NCI EPE grading system. Each T2WI was classified as low- or high-quality by a previously developed AI algorithm. Fisher's exact tests were performed to compare EPE detection metrics between low- and high-quality images. Univariable and multivariable analyses were conducted to assess the predictive value of image quality for pathological EPE. RESULTS: A total of 773 consecutive patients (median age 61 [IQR 56-67] years) were evaluated. At radical prostatectomy, 23% (180/773) of patients had EPE at pathology, and 41% (131/318) of positive EPE calls on mpMRI were confirmed to have EPE. The AI algorithm classified 36% (280/773) of T2WIs as low-quality and 64% (493/773) as high-quality. For EPE grade ≥ 1, high-quality T2WI significantly improved specificity for EPE detection (72% [95% CI 67-76%] vs. 63% [95% CI 56-69%], P = 0.03), but did not significantly affect sensitivity (72% [95% CI 62-80%] vs. 75% [95% CI 63-85%]), positive predictive value (44% [95% CI 39-49%] vs. 38% [95% CI 32-43%]), or negative predictive value (89% [95% CI 86-92%] vs. 89% [95% CI 85-93%]). Sensitivity, specificity, PPV, and NPV for EPE grades ≥ 2 and ≥ 3 did not show significant differences attributable to imaging quality. For NCI EPE grade 1, high-quality images (OR 3.05, 95% CI 1.54-5.86; P < 0.001) demonstrated a stronger association with pathologic EPE than low-quality images (OR 1.76, 95% CI 0.63-4.24; P = 0.24). CONCLUSION: Our study successfully employed a deep learning-based AI algorithm to classify image quality of prostate MRI and demonstrated that better quality T2WI was associated with more accurate prediction of EPE at final pathology.

5.
bioRxiv ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38903108

RESUMO

B cells are an attractive platform for engineering to produce protein-based biologics absent in genetic disorders, and potentially for the treatment of metabolic diseases and cancer. As part of pre-clinical development of B cell medicines, we demonstrate a method to collect, ex vivo expand, differentiate, radioactively label, and track adoptively transferred non-human primate (NHP) B cells. These cells underwent 10- to 15-fold expansion, initiated IgG class switching, and differentiated into antibody secreting cells. Zirconium-89-oxine labeled cells were infused into autologous donors without any preconditioning and tracked by PET/CT imaging. Within 24 hours of infusion, 20% of the initial dose homed to the bone marrow and spleen and distributed stably and equally between the two. Interestingly, approximately half of the dose homed to the liver. Image analysis of the bone marrow demonstrated inhomogeneous distribution of the cells. The subjects experienced no clinically significant side effects or laboratory abnormalities. A second infusion of B cells into one of the subjects resulted in an almost identical distribution of cells, suggesting a non-limiting engraftment niche and feasibility of repeated infusions. This work supports the NHP as a valuable model to assess the potential of B cell medicines as potential treatment for human diseases.

6.
Oncoimmunology ; 13(1): 2370544, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915782

RESUMO

Regulatory T cells (Tregs) play a crucial role in mediating immunosuppression in the tumor microenvironment. Furthermore, Tregs contribute to the lack of efficacy and hyperprogressive disease upon Programmed cell death protein 1 (PD-1) blockade immunotherapy. Thus, Tregs are considered a promising therapeutic target, especially when combined with PD-1 blockade. However, systemic depletion of Tregs causes severe autoimmune adverse events, which poses a serious challenge to Treg-directed therapy. Here, we developed a novel treatment to locally and predominantly damage Tregs by near-infrared duocarmycin photorelease (NIR-DPR). In this technology, we prepared anti-CD25 F(ab')2 conjugates, which site-specifically uncage duocarmycin in CD25-expressing cells upon exposure to NIR light. In vitro, CD25-targeted NIR-DPR significantly increased apoptosis of CD25-expressing HT2-A5E cells. When tumors were irradiated with NIR light in vivo, intratumoral CD25+ Treg populations decreased and Ki-67 and Interleukin-10 expression was suppressed, indicating impaired functioning of intratumoral CD25+ Tregs. CD25-targeted NIR-DPR suppressed tumor growth and improved survival in syngeneic murine tumor models. Of note, CD25-targeted NIR-DPR synergistically enhanced the efficacy of PD-1 blockade, especially in tumors with higher CD8+/Treg PD-1 ratios. Furthermore, the combination therapy induced significant anti-cancer immunity including maturation of dendritic cells, extensive intratumoral infiltration of cytotoxic CD8+ T cells, and increased differentiation into CD8+ memory T cells. Altogether, CD25-targeted NIR-DPR locally and predominantly targets Tregs in the tumor microenvironment and synergistically improves the efficacy of PD-1 blockade, suggesting that this combination therapy can be a rational anti-cancer combination immunotherapy.


Assuntos
Duocarmicinas , Receptor de Morte Celular Programada 1 , Linfócitos T Reguladores , Microambiente Tumoral , Animais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Camundongos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Duocarmicinas/farmacologia , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Humanos , Linhagem Celular Tumoral , Feminino , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Subunidade alfa de Receptor de Interleucina-2/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Apoptose/efeitos dos fármacos , Raios Infravermelhos
7.
Cell Stem Cell ; 31(7): 974-988.e5, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38843830

RESUMO

Cellular therapies with cardiomyocytes produced from induced pluripotent stem cells (iPSC-CMs) offer a potential route to cardiac regeneration as a treatment for chronic ischemic heart disease. Here, we report successful long-term engraftment and in vivo maturation of autologous iPSC-CMs in two rhesus macaques with small, subclinical chronic myocardial infarctions, all without immunosuppression. Longitudinal positron emission tomography imaging using the sodium/iodide symporter (NIS) reporter gene revealed stable grafts for over 6 and 12 months, with no teratoma formation. Histological analyses suggested capability of the transplanted iPSC-CMs to mature and integrate with endogenous myocardium, with no sign of immune cell infiltration or rejection. By contrast, allogeneic iPSC-CMs were rejected within 8 weeks of transplantation. This study provides the longest-term safety and maturation data to date in any large animal model, addresses concerns regarding neoantigen immunoreactivity of autologous iPSC therapies, and suggests that autologous iPSC-CMs would similarly engraft and mature in human hearts.


Assuntos
Células-Tronco Pluripotentes Induzidas , Macaca mulatta , Miócitos Cardíacos , Animais , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Diferenciação Celular , Humanos , Transplante Autólogo , Tomografia por Emissão de Pósitrons , Fatores de Tempo , Infarto do Miocárdio/terapia , Infarto do Miocárdio/patologia
8.
Radiology ; 311(2): e230750, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38713024

RESUMO

Background Multiparametric MRI (mpMRI) improves prostate cancer (PCa) detection compared with systematic biopsy, but its interpretation is prone to interreader variation, which results in performance inconsistency. Artificial intelligence (AI) models can assist in mpMRI interpretation, but large training data sets and extensive model testing are required. Purpose To evaluate a biparametric MRI AI algorithm for intraprostatic lesion detection and segmentation and to compare its performance with radiologist readings and biopsy results. Materials and Methods This secondary analysis of a prospective registry included consecutive patients with suspected or known PCa who underwent mpMRI, US-guided systematic biopsy, or combined systematic and MRI/US fusion-guided biopsy between April 2019 and September 2022. All lesions were prospectively evaluated using Prostate Imaging Reporting and Data System version 2.1. The lesion- and participant-level performance of a previously developed cascaded deep learning algorithm was compared with histopathologic outcomes and radiologist readings using sensitivity, positive predictive value (PPV), and Dice similarity coefficient (DSC). Results A total of 658 male participants (median age, 67 years [IQR, 61-71 years]) with 1029 MRI-visible lesions were included. At histopathologic analysis, 45% (294 of 658) of participants had lesions of International Society of Urological Pathology (ISUP) grade group (GG) 2 or higher. The algorithm identified 96% (282 of 294; 95% CI: 94%, 98%) of all participants with clinically significant PCa, whereas the radiologist identified 98% (287 of 294; 95% CI: 96%, 99%; P = .23). The algorithm identified 84% (103 of 122), 96% (152 of 159), 96% (47 of 49), 95% (38 of 40), and 98% (45 of 46) of participants with ISUP GG 1, 2, 3, 4, and 5 lesions, respectively. In the lesion-level analysis using radiologist ground truth, the detection sensitivity was 55% (569 of 1029; 95% CI: 52%, 58%), and the PPV was 57% (535 of 934; 95% CI: 54%, 61%). The mean number of false-positive lesions per participant was 0.61 (range, 0-3). The lesion segmentation DSC was 0.29. Conclusion The AI algorithm detected cancer-suspicious lesions on biparametric MRI scans with a performance comparable to that of an experienced radiologist. Moreover, the algorithm reliably predicted clinically significant lesions at histopathologic examination. ClinicalTrials.gov Identifier: NCT03354416 © RSNA, 2024 Supplemental material is available for this article.


Assuntos
Aprendizado Profundo , Imageamento por Ressonância Magnética Multiparamétrica , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Idoso , Estudos Prospectivos , Imageamento por Ressonância Magnética Multiparamétrica/métodos , Pessoa de Meia-Idade , Algoritmos , Próstata/diagnóstico por imagem , Próstata/patologia , Biópsia Guiada por Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos
9.
Oncotarget ; 15: 288-300, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712741

RESUMO

PURPOSE: Sequential PET/CT studies oncology patients can undergo during their treatment follow-up course is limited by radiation dosage. We propose an artificial intelligence (AI) tool to produce attenuation-corrected PET (AC-PET) images from non-attenuation-corrected PET (NAC-PET) images to reduce need for low-dose CT scans. METHODS: A deep learning algorithm based on 2D Pix-2-Pix generative adversarial network (GAN) architecture was developed from paired AC-PET and NAC-PET images. 18F-DCFPyL PSMA PET-CT studies from 302 prostate cancer patients, split into training, validation, and testing cohorts (n = 183, 60, 59, respectively). Models were trained with two normalization strategies: Standard Uptake Value (SUV)-based and SUV-Nyul-based. Scan-level performance was evaluated by normalized mean square error (NMSE), mean absolute error (MAE), structural similarity index (SSIM), and peak signal-to-noise ratio (PSNR). Lesion-level analysis was performed in regions-of-interest prospectively from nuclear medicine physicians. SUV metrics were evaluated using intraclass correlation coefficient (ICC), repeatability coefficient (RC), and linear mixed-effects modeling. RESULTS: Median NMSE, MAE, SSIM, and PSNR were 13.26%, 3.59%, 0.891, and 26.82, respectively, in the independent test cohort. ICC for SUVmax and SUVmean were 0.88 and 0.89, which indicated a high correlation between original and AI-generated quantitative imaging markers. Lesion location, density (Hounsfield units), and lesion uptake were all shown to impact relative error in generated SUV metrics (all p < 0.05). CONCLUSION: The Pix-2-Pix GAN model for generating AC-PET demonstrates SUV metrics that highly correlate with original images. AI-generated PET images show clinical potential for reducing the need for CT scans for attenuation correction while preserving quantitative markers and image quality.


Assuntos
Aprendizado Profundo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias da Próstata , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Idoso , Pessoa de Meia-Idade , Glutamato Carboxipeptidase II/metabolismo , Antígenos de Superfície/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Compostos Radiofarmacêuticos , Reprodutibilidade dos Testes
10.
Front Oncol ; 14: 1367962, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715784

RESUMO

Introduction: Prostate-specific membrane antigen (PSMA) is present in high amounts in salivary glands, but it is unclear whether labeled binders of PSMA are excreted in the saliva. Methods: Ten patients with prostate cancer underwent whole-body [18F]DCFPyL PET/CT (NCT03181867), and saliva samples were collected between 0-120 minutes post-injection. [18F]DCFPyL salivary excretion was measured over 120 minutes and expressed as %ID/g. Protein-associated binding was estimated by the percentage of [18F]DCFPyL versus parent radiotracer. Results: All PET scans of 10 patients (69 ± 8 years) with histologically confirmed prostate cancer (PSA= 2.4 ± 2.4, and Gleason Grade = 6-9) showed high uptake of [18F]-DCFPyL in salivary glands while 8 patients demonstrated high uptake in the saliva at 45 minutes. The intact [18F]-DCFPyL (98%) was also confirmed in the saliva samples at 120 min with increasing salivary radioactivity between 30-120 min. Conclusion: Systemically injected [18F]DCFPyL shows salivary gland uptake, an increasing amount of which is secreted in saliva over time and is not maximized by 120 minutes post-injection. Although probably insignificant for diagnostic studies, patients undergoing PSMA-targeted therapies should be aware of radioactivity in saliva.

11.
Clin Nucl Med ; 49(7): 630-636, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38651785

RESUMO

PURPOSE: Prostate-specific membrane antigen (PSMA)-targeting PET radiotracers reveal physiologic uptake in the urinary system, potentially misrepresenting activity in the prostatic urethra as an intraprostatic lesion. This study examined the correlation between midline 18 F-DCFPyL activity in the prostate and hyperintensity on T2-weighted (T2W) MRI as an indication of retained urine in the prostatic urethra. PATIENTS AND METHODS: Eighty-five patients who underwent both 18 F-DCFPyL PSMA PET/CT and prostate MRI between July 2017 and September 2023 were retrospectively analyzed for midline radiotracer activity and retained urine on postvoid T2W MRIs. Fisher's exact tests and unpaired t tests were used to compare residual urine presence and prostatic urethra measurements between patients with and without midline radiotracer activity. The influence of anatomical factors including prostate volume and urethral curvature on urinary stagnation was also explored. RESULTS: Midline activity on PSMA PET imaging was seen in 14 patients included in the case group, whereas the remaining 71 with no midline activity constituted the control group. A total of 71.4% (10/14) and 29.6% (21/71) of patients in the case and control groups had urethral hyperintensity on T2W MRI, respectively ( P < 0.01). Patients in the case group had significantly larger mean urethral dimensions, larger prostate volumes, and higher incidence of severe urethral curvature compared with the controls. CONCLUSIONS: Stagnated urine within the prostatic urethra is a potential confounding factor on PSMA PET scans. Integrating PET imaging with T2W MRI can mitigate false-positive calls, especially as PSMA PET/CT continues to gain traction in diagnosing localized prostate cancer.


Assuntos
Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Uretra , Humanos , Masculino , Reações Falso-Positivas , Idoso , Uretra/diagnóstico por imagem , Pessoa de Meia-Idade , Estudos Retrospectivos , Lisina/análogos & derivados , Próstata/diagnóstico por imagem , Ureia/análogos & derivados , Ureia/farmacocinética , Glutamato Carboxipeptidase II , Neoplasias da Próstata/diagnóstico por imagem , Antígenos de Superfície , Idoso de 80 Anos ou mais
12.
Cancer Sci ; 115(7): 2396-2409, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38671582

RESUMO

Near-infrared photoimmunotherapy (NIR-PIT) is a new type of cancer therapy that employs antibody-IRDye700DX conjugates (AbPCs) and near-infrared (NIR) light at a wavelength of 689 nm, the excitation wavelength of IR700. Administered intravenously, injected AbPCs bind specifically to cells expressing the target antigen, whereupon NIR light exposure causes rapid, selective killing. This process induces an anticancer T cell response, leading to sustained anticancer host immune response. Programmed cell death ligand-1 (PD-L1) is a major inhibitory immune checkpoint molecule expressed in various cancers. In this study, we first assessed the efficacy of PD-L1-targeted NIR-PIT (αPD-L1-PIT) in immune-competent tumor mouse models. αPD-L1-PIT showed a significant therapeutic effect on the tumor models with high PD-L1 expression. Furthermore, αPD-L1-PIT induced an abscopal effect on distant tumors and long-term immunological memory. In contrast, αPD-L1-PIT was not as effective for tumor models with low PD-L1 expression. To improve the efficacy of PD-L1-targeted NIR-PIT, PEGylated interferon-gamma (IFNγ) was administered with αPD-L1-PIT. The combination therapy improved the treatment efficacy by increasing PD-L1 expression leading to more efficient cell killing by αPD-L1-PIT. Furthermore, the PEGylated IFNγ led to a CD8+ T cell-dominant tumor microenvironment (TME) with an enhanced anticancer T cell response after αPD-L1-PIT. As a result, even so-called cold tumors exhibited complete responses after αPD-L1-PIT. Thus, combination therapy of PEGylated IFNγ and PD-L1-targeted NIR-PIT has the potential to be an important future strategy for cancer immunotherapy.


Assuntos
Antígeno B7-H1 , Imunoterapia , Raios Infravermelhos , Fototerapia , Microambiente Tumoral , Animais , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Antígeno B7-H1/metabolismo , Camundongos , Imunoterapia/métodos , Linhagem Celular Tumoral , Fototerapia/métodos , Humanos , Feminino , Indóis/farmacologia , Indóis/uso terapêutico , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Camundongos Endogâmicos C57BL
13.
Mol Cancer Ther ; 23(7): 1031-1042, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38638034

RESUMO

Esophageal cancer remains a highly aggressive malignancy with a poor prognosis, despite ongoing advancements in treatments such as immunotherapy. The tumor microenvironment, particularly cancer-associated fibroblasts (CAF), plays a crucial role in driving the aggressiveness of esophageal cancer. In a previous study utilizing human-derived xenograft models, we successfully developed a novel cancer treatment that targeted CAFs with near-infrared photoimmunotherapy (NIR-PIT), as an adjuvant therapy. In this study, we sought to translate our findings toward clinical practice by employing patient-derived xenograft (PDX) models and utilizing humanized mAbs, specifically sibrotuzumab, which is an antihuman fibroblast activation protein (FAP) Ab and already being investigated in clinical trials as monotherapy. PDX models derived from patients with esophageal cancer were effectively established, preserving the expression of key biomarkers such as EGFR and FAP, as observed in primary tumors. The application of FAP-targeted NIR-PIT using sibrotuzumab, conjugated with the photosensitizer IR700DX, exhibited precise binding and selective elimination of FAP-expressing fibroblasts in vitro. Notably, in our in vivo investigations using both cell line-derived xenograft and PDX models, FAP-targeted NIR-PIT led to significant inhibition of tumor progression compared with control groups, all without inducing adverse events such as weight loss. Immunohistologic assessments revealed a substantial reduction in CAFs exclusively within the tumor microenvironment of both models, further supporting the efficacy of our approach. Thus, our study demonstrates the potential of CAF-targeted NIR-PIT employing sibrotuzumab as a promising therapeutic avenue for the clinical treatment of patients with esophageal cancer.


Assuntos
Fibroblastos Associados a Câncer , Imunoterapia , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Animais , Camundongos , Fibroblastos Associados a Câncer/efeitos dos fármacos , Fibroblastos Associados a Câncer/metabolismo , Imunoterapia/métodos , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Linhagem Celular Tumoral , Neoplasias Esofágicas/terapia , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/imunologia , Neoplasias Esofágicas/tratamento farmacológico , Feminino , Fototerapia/métodos , Proteínas de Membrana , Endopeptidases
14.
Acad Radiol ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38670874

RESUMO

RATIONALE AND OBJECTIVES: Extraprostatic extension (EPE) is well established as a significant predictor of prostate cancer aggression and recurrence. Accurate EPE assessment prior to radical prostatectomy can impact surgical approach. We aimed to utilize a deep learning-based AI workflow for automated EPE grading from prostate T2W MRI, ADC map, and High B DWI. MATERIAL AND METHODS: An expert genitourinary radiologist conducted prospective clinical assessments of MRI scans for 634 patients and assigned risk for EPE using a grading technique. The training set and held-out independent test set consisted of 507 patients and 127 patients, respectively. Existing deep-learning AI models for prostate organ and lesion segmentation were leveraged to extract area and distance features for random forest classification models. Model performance was evaluated using balanced accuracy, ROC AUCs for each EPE grade, as well as sensitivity, specificity, and accuracy compared to EPE on histopathology. RESULTS: A balanced accuracy score of .390 ± 0.078 was achieved using a lesion detection probability threshold of 0.45 and distance features. Using the test set, ROC AUCs for AI-assigned EPE grades 0-3 were 0.70, 0.65, 0.68, and 0.55 respectively. When using EPE≥ 1 as the threshold for positive EPE, the model achieved a sensitivity of 0.67, specificity of 0.73, and accuracy of 0.72 compared to radiologist sensitivity of 0.81, specificity of 0.62, and accuracy of 0.66 using histopathology as the ground truth. CONCLUSION: Our AI workflow for assigning imaging-based EPE grades achieves an accuracy for predicting histologic EPE approaching that of physicians. This automated workflow has the potential to enhance physician decision-making for assessing the risk of EPE in patients undergoing treatment for prostate cancer due to its consistency and automation.

15.
J Imaging Inform Med ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587770

RESUMO

Uptake segmentation and classification on PSMA PET/CT are important for automating whole-body tumor burden determinations. We developed and evaluated an automated deep learning (DL)-based framework that segments and classifies uptake on PSMA PET/CT. We identified 193 [18F] DCFPyL PET/CT scans of patients with biochemically recurrent prostate cancer from two institutions, including 137 [18F] DCFPyL PET/CT scans for training and internally testing, and 56 scans from another institution for external testing. Two radiologists segmented and labelled foci as suspicious or non-suspicious for malignancy. A DL-based segmentation was developed with two independent CNNs. An anatomical prior guidance was applied to make the DL framework focus on PSMA-avid lesions. Segmentation performance was evaluated by Dice, IoU, precision, and recall. Classification model was constructed with multi-modal decision fusion framework evaluated by accuracy, AUC, F1 score, precision, and recall. Automatic segmentation of suspicious lesions was improved under prior guidance, with mean Dice, IoU, precision, and recall of 0.700, 0.566, 0.809, and 0.660 on the internal test set and 0.680, 0.548, 0.749, and 0.740 on the external test set. Our multi-modal decision fusion framework outperformed single-modal and multi-modal CNNs with accuracy, AUC, F1 score, precision, and recall of 0.764, 0.863, 0.844, 0.841, and 0.847 in distinguishing suspicious and non-suspicious foci on the internal test set and 0.796, 0.851, 0.865, 0.814, and 0.923 on the external test set. DL-based lesion segmentation on PSMA PET is facilitated through our anatomical prior guidance strategy. Our classification framework differentiates suspicious foci from those not suspicious for cancer with good accuracy.

16.
Jpn J Radiol ; 42(8): 820-824, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38658501

RESUMO

Near infrared photoimmunotherapy (NIR-PIT) is a recently approved cancer therapy for recurrent head and neck cancer. It involves the intravenous administration of an antibody-photoabsorber (IRDye700DX: IR700) conjugate (APC) to target cancer cells, followed 24 h later by exposure to near infrared light to activate cell-specific cytotoxicity. NIR-PIT selectively targets cancer cells for destruction and activates a strong anticancer host immunity. The fluorescent signal emitted by IR700 enables the visualization of the APC in vivo using fluorescence imaging. Similarly, the activation of IR700 during therapy can be monitored by loss of fluorescence. NIR-PIT can be used with a variety of antibodies and therefore, a variety of cancer types. However, in most cases, NIR-PIT requires direct light exposure only achieved with interstitial diffuser light fibers that are placed with image-guided interventional needle insertion. In addition, the unique nature of NIR-PIT cell death, means that metabolic molecular imaging techniques such as PET and diffusion MRI can be used to assess therapeutic outcomes. This mini-review focuses on the potential implications of NIR-PIT for interventional radiology and therapeutic monitoring.


Assuntos
Imunoterapia , Imagem Molecular , Humanos , Imunoterapia/métodos , Imagem Molecular/métodos , Radiologia Intervencionista/métodos , Neoplasias de Cabeça e Pescoço/terapia , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Raios Infravermelhos/uso terapêutico , Fototerapia/métodos
17.
Abdom Radiol (NY) ; 49(5): 1545-1556, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38512516

RESUMO

OBJECTIVE: Automated methods for prostate segmentation on MRI are typically developed under ideal scanning and anatomical conditions. This study evaluates three different prostate segmentation AI algorithms in a challenging population of patients with prior treatments, variable anatomic characteristics, complex clinical history, or atypical MRI acquisition parameters. MATERIALS AND METHODS: A single institution retrospective database was queried for the following conditions at prostate MRI: prior prostate-specific oncologic treatment, transurethral resection of the prostate (TURP), abdominal perineal resection (APR), hip prosthesis (HP), diversity of prostate volumes (large ≥ 150 cc, small ≤ 25 cc), whole gland tumor burden, magnet strength, noted poor quality, and various scanners (outside/vendors). Final inclusion criteria required availability of axial T2-weighted (T2W) sequence and corresponding prostate organ segmentation from an expert radiologist. Three previously developed algorithms were evaluated: (1) deep learning (DL)-based model, (2) commercially available shape-based model, and (3) federated DL-based model. Dice Similarity Coefficient (DSC) was calculated compared to expert. DSC by model and scan factors were evaluated with Wilcox signed-rank test and linear mixed effects (LMER) model. RESULTS: 683 scans (651 patients) met inclusion criteria (mean prostate volume 60.1 cc [9.05-329 cc]). Overall DSC scores for models 1, 2, and 3 were 0.916 (0.707-0.971), 0.873 (0-0.997), and 0.894 (0.025-0.961), respectively, with DL-based models demonstrating significantly higher performance (p < 0.01). In sub-group analysis by factors, Model 1 outperformed Model 2 (all p < 0.05) and Model 3 (all p < 0.001). Performance of all models was negatively impacted by prostate volume and poor signal quality (p < 0.01). Shape-based factors influenced DL models (p < 0.001) while signal factors influenced all (p < 0.001). CONCLUSION: Factors affecting anatomical and signal conditions of the prostate gland can adversely impact both DL and non-deep learning-based segmentation models.


Assuntos
Algoritmos , Inteligência Artificial , Imageamento por Ressonância Magnética , Neoplasias da Próstata , Humanos , Masculino , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/cirurgia , Neoplasias da Próstata/patologia , Interpretação de Imagem Assistida por Computador/métodos , Pessoa de Meia-Idade , Idoso , Próstata/diagnóstico por imagem , Aprendizado Profundo
18.
Br J Cancer ; 130(10): 1647-1658, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38555315

RESUMO

BACKGROUND: Cancer-associated fibroblasts (CAFs) in the tumor microenvironment (TME) play a critical role in tumor immunosuppression. However, targeted depletion of CAFs is difficult due to their diverse cells of origin and the resulting lack of specific surface markers. Near-infrared photoimmunotherapy (NIR-PIT) is a novel cancer treatment that leads to rapid cell membrane damage. METHODS: In this study, we used anti-mouse fibroblast activation protein (FAP) antibody to target FAP+ CAFs (FAP-targeted NIR-PIT) and investigated whether this therapy could suppress tumor progression and improve tumor immunity. RESULTS: FAP-targeted NIR-PIT induced specific cell death in CAFs without damaging adjacent normal cells. Furthermore, FAP-targeted NIR-PIT treated mice showed significant tumor regression in the CAF-rich tumor model accompanied by an increase in CD8+ tumor infiltrating lymphocytes (TILs). Moreover, treated tumors showed increased levels of IFN-γ, TNF-α, and IL-2 in CD8+ TILs compared with non-treated tumors, suggesting enhanced antitumor immunity. CONCLUSIONS: Cancers with FAP-positive CAFs in their TME grow rapidly and FAP-targeted NIR-PIT not only suppresses their growth but improves tumor immunosuppression. Thus, FAP-targeted NIR-PIT is a potential therapeutic strategy for selectively targeting the TME of CAF+ tumors.


Assuntos
Fibroblastos Associados a Câncer , Imunoterapia , Microambiente Tumoral , Animais , Humanos , Camundongos , Fibroblastos Associados a Câncer/imunologia , Fibroblastos Associados a Câncer/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Endopeptidases , Gelatinases/metabolismo , Imunoterapia/métodos , Raios Infravermelhos/uso terapêutico , Linfócitos do Interstício Tumoral/imunologia , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Fototerapia/métodos , Serina Endopeptidases/metabolismo , Microambiente Tumoral/imunologia
20.
EBioMedicine ; 102: 105050, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490105

RESUMO

BACKGROUND: Noninvasive in vivo cell tracking is valuable in understanding the mechanisms that enhance anti-cancer immunity. We have recently developed a new method called phototruncation-assisted cell tracking (PACT), that uses photoconvertible cell tracking technology to detect in vivo cell migration. This method has the advantages of not requiring genetic engineering of cells and employing tissue-penetrant near-infrared light. METHODS: We applied PACT to monitor the migration of immune cells between a tumour and its tumour-draining lymph node (TDLN) after near-infrared photoimmunotherapy (NIR-PIT). FINDINGS: PACT showed a significant increase in the migration of dendritic cells (DCs) and macrophages from the tumour to the TDLN immediately after NIR-PIT. This migration by NIR-PIT was abrogated by inhibiting the sphingosine-1-phosphate pathway or Gαi signaling. These results were corroborated by intranodal immune cell profiles at two days post-treatment; NIR-PIT significantly induced DC maturation and increased and activated the CD8+ T cell population in the TDLN. Furthermore, PACT revealed that NIR-PIT significantly enhanced the migration of CD8+ T cells from the TDLN to the tumour four days post-treatment, which was consistent with the immunohistochemical assessment of tumour-infiltrating lymphocytes and tumour regression. INTERPRETATION: Immune cells dramatically migrated between the tumour and TDLN following NIR-PIT, indicating its potential as an immune-stimulating therapy. Also, PACT is potentially applicable to a wide range of immunological research. FUNDING: This work was supported by the Intramural Research Program of the National Institutes of Health, National Cancer Institute, Centre for Cancer Research (grant number: ZIA BC011513 and ZIA BC011506).


Assuntos
Linfócitos T CD8-Positivos , Carbocianinas , Rastreamento de Células , Humanos , Linhagem Celular Tumoral , Fototerapia/métodos , Imunoterapia/métodos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...