Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 345
Filtrar
2.
Artigo em Inglês | MEDLINE | ID: mdl-39258766

RESUMO

Mitochondrial donation to reduce the risk of primary mitochondrial disease transmission from mother to child is now permitted under Australian law as part of a clinical trial. The energy demands of pregnancy have the potential to worsen mitochondrial disease symptoms and severity in affected women. We conducted a systematic literature review on mitochondrial disease in pregnancy; five cohort studies and 19 case reports were included. For many women with mitochondrial disease, pregnancy does not have a negative effect on health status. However, serious adverse outcomes may occur. We provide suggested guidelines for preconception counselling and antenatal care.

3.
Orphanet J Rare Dis ; 19(1): 288, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095811

RESUMO

BACKGROUND: Significant recent efforts have facilitated increased access to clinical genetics assessment and genomic sequencing for children with rare diseases in many centres, but there remains a service gap for adults. The Austin Health Adult Undiagnosed Disease Program (AHA-UDP) was designed to complement existing UDP programs that focus on paediatric rare diseases and address an area of unmet diagnostic need for adults with undiagnosed rare conditions in Victoria, Australia. It was conducted at a large Victorian hospital to demonstrate the benefits of bringing genomic techniques currently used predominantly in a research setting into hospital clinical practice, and identify the benefits of enrolling adults with undiagnosed rare diseases into a UDP program. The main objectives were to identify the causal mutation for a variety of diseases of individuals and families enrolled, and to discover novel disease genes. METHODS: Unsolved patients in whom standard genomic diagnostic techniques such as targeted gene panel, exome-wide next generation sequencing, and/or chromosomal microarray, had already been performed were recruited. Genome sequencing and enhanced genomic analysis from the research setting were applied to aid novel gene discovery. RESULTS: In total, 16/50 (32%) families/cases were solved. One or more candidate variants of uncertain significance were detected in 18/50 (36%) families. No candidate variants were identified in 16/50 (32%) families. Two novel disease genes (TOP3B, PRKACB) and two novel genotype-phenotype correlations (NARS, and KMT2C genes) were identified. Three out of eight patients with suspected mosaic tuberous sclerosis complex had their diagnosis confirmed which provided reproductive options for two patients. The utility of confirming diagnoses for patients with mosaic conditions (using high read depth sequencing and ddPCR) was not specifically envisaged at the onset of the project, but the flexibility to offer recruitment and analyses on an as-needed basis proved to be a strength of the AHA-UDP. CONCLUSION: AHA-UDP demonstrates the utility of a UDP approach applying genome sequencing approaches in diagnosing adults with rare diseases who have had uninformative conventional genetic analysis, informing clinical management, recurrence risk, and recommendations for relatives.


Assuntos
Doenças Raras , Humanos , Adulto , Feminino , Masculino , Austrália , Doenças Raras/genética , Doenças Raras/diagnóstico , Doenças não Diagnosticadas/genética , Doenças não Diagnosticadas/diagnóstico , Testes Genéticos/métodos , Pessoa de Meia-Idade , Adulto Jovem
4.
Sci Rep ; 14(1): 18149, 2024 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103467

RESUMO

Cryogenic electron microscopy (cryo-EM) has emerged as a powerful method for the determination of structures of complex biological molecules. The accurate characterisation of the dynamics of such systems, however, remains a challenge. To address this problem, we introduce cryoENsemble, a method that applies Bayesian reweighting to conformational ensembles derived from molecular dynamics simulations to improve their agreement with cryo-EM data, thus enabling the extraction of dynamics information. We illustrate the use of cryoENsemble to determine the dynamics of the ribosome-bound state of the co-translational chaperone trigger factor (TF). We also show that cryoENsemble can assist with the interpretation of low-resolution, noisy or unaccounted regions of cryo-EM maps. Notably, we are able to link an unaccounted part of the cryo-EM map to the presence of another protein (methionine aminopeptidase, or MetAP), rather than to the dynamics of TF, and model its TF-bound state. Based on these results, we anticipate that cryoENsemble will find use for challenging heterogeneous cryo-EM maps for biomolecular systems encompassing dynamic components.


Assuntos
Teorema de Bayes , Microscopia Crioeletrônica , Simulação de Dinâmica Molecular , Microscopia Crioeletrônica/métodos , Ribossomos/ultraestrutura , Ribossomos/química , Ribossomos/metabolismo , Conformação Proteica
5.
Cell Mol Life Sci ; 81(1): 347, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136782

RESUMO

CDKL5 Deficiency Disorder (CDD) is a debilitating epileptic encephalopathy disorder affecting young children with no effective treatments. CDD is caused by pathogenic variants in Cyclin-Dependent Kinase-Like 5 (CDKL5), a protein kinase that regulates key phosphorylation events in neurons. For therapeutic intervention, it is essential to understand molecular pathways and phosphorylation targets of CDKL5. Using an unbiased phosphoproteomic approach we identified novel targets of CDKL5, including GTF2I, PPP1R35, GATAD2A and ZNF219 in human iPSC-derived neuronal cells. The phosphoserine residue in the target proteins lies in the CDKL5 consensus motif. We validated direct phosphorylation of GTF2I and PPP1R35 by CDKL5 using complementary approaches. GTF2I controls axon guidance, cell cycle and neurodevelopment by regulating expression of neuronal genes. PPP1R35 is critical for centriole elongation and cilia morphology, processes that are impaired in CDD. PPP1R35 interacts with CEP131, a known CDKL5 phospho-target. GATAD2A and ZNF219 belong to the Nucleosome Remodelling Deacetylase (NuRD) complex, which regulates neuronal activity-dependent genes and synaptic connectivity. In-depth knowledge of molecular pathways regulated by CDKL5 will allow a better understanding of druggable disease pathways to fast-track therapeutic development.


Assuntos
Síndromes Epilépticas , Células-Tronco Pluripotentes Induzidas , Neurônios , Proteínas Serina-Treonina Quinases , Espasmos Infantis , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Neurônios/metabolismo , Neurônios/citologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Fosforilação , Síndromes Epilépticas/metabolismo , Síndromes Epilépticas/genética , Síndromes Epilépticas/patologia , Espasmos Infantis/metabolismo , Espasmos Infantis/genética , Espasmos Infantis/patologia
6.
Nature ; 633(8028): 232-239, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39112704

RESUMO

Most proteins fold during biosynthesis on the ribosome1, and co-translational folding energetics, pathways and outcomes of many proteins have been found to differ considerably from those in refolding studies2-10. The origin of this folding modulation by the ribosome has remained unknown. Here we have determined atomistic structures of the unfolded state of a model protein on and off the ribosome, which reveal that the ribosome structurally expands the unfolded nascent chain and increases its solvation, resulting in its entropic destabilization relative to the peptide chain in isolation. Quantitative 19F NMR experiments confirm that this destabilization reduces the entropic penalty of folding by up to 30 kcal mol-1 and promotes formation of partially folded intermediates on the ribosome, an observation that extends to other protein domains and is obligate for some proteins to acquire their active conformation. The thermodynamic effects also contribute to the ribosome protecting the nascent chain from mutation-induced unfolding, which suggests a crucial role of the ribosome in supporting protein evolution. By correlating nascent chain structure and dynamics to their folding energetics and post-translational outcomes, our findings establish the physical basis of the distinct thermodynamics of co-translational protein folding.


Assuntos
Entropia , Biossíntese de Proteínas , Dobramento de Proteína , Proteínas , Ribossomos , Modelos Moleculares , Mutação , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Redobramento de Proteína , Estabilidade Proteica , Desdobramento de Proteína , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Ribossomos/metabolismo , Ribossomos/química , Solubilidade
7.
Genet Med ; 26(10): 101224, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39092589

RESUMO

PURPOSE: To develop and evaluate a scalable national program to build confidence, competence and capability in the use of rapid genomic testing (rGT) in the acute pediatric setting. METHODS: We used theory-informed approaches to design a modular, adaptive program of blended learning aimed at diverse professional groups involved in acute pediatric care. The program comprised 4 online learning modules and an online workshop and was centered on case-based learning. We evaluated the program using the Kirkpatrick 4-level model of training evaluation and report our findings using the Reporting Item Standards for Education and its Evaluation (RISE2) guidelines for genomics education and evaluation. RESULTS: Two hundred and two participants engaged with at least 1 component of the program. Participants self-reported increased confidence in using rGT, (P < .001), and quiz responses objectively demonstrated increased competence (eg, correct responses to a question on pretest counseling increased from 30% to 64%; P < .001). Additionally, their capability in applying genomic principles to simulated clinical cases increased (P < .001), as did their desire to take on more responsibility for performing rGT. The clinical interpretation of more complex test results (such as negative results or variants of uncertain significance) appeared to be more challenging, indicating a need for targeted education in this area. CONCLUSION: The program format was effective in delivering multidisciplinary and wide-scale genomics education in the acute care context. The modular approach we have developed now lends itself to application in other medical specialties or areas of health care.


Assuntos
Genômica , Pediatria , Humanos , Genômica/educação , Genômica/métodos , Pediatria/educação , Competência Clínica , Testes Genéticos/métodos , Masculino , Feminino , Currículo , Criança
8.
Sci Adv ; 10(28): eadn4824, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38985872

RESUMO

Molecular chaperones are central to the maintenance of proteostasis in living cells. A key member of this protein family is trigger factor (TF), which acts throughout the protein life cycle and has a ubiquitous role as the first chaperone encountered by proteins during synthesis. However, our understanding of how TF achieves favorable interactions with such a diverse substrate base remains limited. Here, we use microfluidics to reveal the thermodynamic determinants of this process. We find that TF binding to empty 70S ribosomes is enthalpy-driven, with micromolar affinity, while nanomolar affinity is achieved through a favorable entropic contribution for both intrinsically disordered and folding-competent nascent chains. These findings suggest a general mechanism for cotranslational TF function, which relies on occupation of the exposed TF-substrate binding groove rather than specific complementarity between chaperone and nascent chain. These insights add to our wider understanding of how proteins can achieve broad substrate specificity.


Assuntos
Ligação Proteica , Termodinâmica , Especificidade por Substrato , Biossíntese de Proteínas , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Ribossomos/metabolismo , Dobramento de Proteína , Peptidilprolil Isomerase
9.
Mol Genet Metab ; 142(3): 108508, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38820906

RESUMO

Short-chain enoyl-coA hydratase (SCEH) deficiency due to biallelic pathogenic ECHS1 variants was first reported in 2014 in association with Leigh syndrome (LS) and increased S-(2-carboxypropyl)cysteine excretion. It is potentially treatable with a valine-restricted, high-energy diet and emergency regimen. Recently, Simon et al. described four Samoan children harbouring a hypomorphic allele (c.489G > A, p.Pro163=) associated with reduced levels of normally-spliced mRNA. This synonymous variant, missed on standard genomic testing, is prevalent in the Samoan population (allele frequency 0.17). Patients with LS and one ECHS1 variant were identified in NZ and Australian genomic and clinical databases. ECHS1 sequence data were interrogated for the c.489G > A variant and clinical data were reviewed. Thirteen patients from 10 families were identified; all had Pacific ancestry including Samoan, Maori, Cook Island Maori, and Tokelauan. All developed bilateral globus pallidi lesions, excluding one pre-symptomatic infant. Symptom onset was in early childhood, and was triggered by illness or starvation in 9/13. Four of 13 had exercise-induced dyskinesia, 9/13 optic atrophy and 6/13 nystagmus. Urine S-(2-carboxypropyl)cysteine-carnitine and other SCEH-related metabolites were normal or mildly increased. Functional studies demonstrated skipping of exon four and markedly reduced ECHS1 protein. These data provide further support for the pathogenicity of this ECHS1 variant which is also prevalent in Maori, Cook Island Maori, and Tongan populations (allele frequency 0.14-0.24). It highlights the need to search for a second variant in apparent heterozygotes with an appropriate phenotype, and has implications for genetic counselling in family members who are heterozygous for the more severe ECHS1 alleles. SYNOPSIS: Short-chain enoyl-CoA hydratase deficiency is a frequent cause of Leigh-like disease in Maori and wider-Pacific populations, due to the high carrier frequency of a hypomorphic ECHS1 variant c.489G > A, p.[Pro163=, Phe139Valfs*65] that may be overlooked by standard genomic testing.


Assuntos
Enoil-CoA Hidratase , Doença de Leigh , Humanos , Enoil-CoA Hidratase/genética , Enoil-CoA Hidratase/deficiência , Masculino , Feminino , Lactente , Austrália/epidemiologia , Doença de Leigh/genética , Pré-Escolar , Criança , Mutação , Nova Zelândia , Alelos , Frequência do Gene
10.
Eur J Hum Genet ; 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796577

RESUMO

Reanalyzing stored genomic data over time is highly effective in increasing diagnostic yield in rare disease. Automation holds the promise of delivering the benefits of reanalysis at scale. Our study aimed to understand current reanalysis practices among Australian clinical and laboratory genetics services and explore attitudes towards large-scale automated re-analysis. We collected audit data regarding testing and reanalysis volumes, policies and procedures from all Australian diagnostic laboratories providing rare disease genomic testing. A genetic health professionals' survey explored current practices, barriers to reanalysis, preferences and attitudes towards automation. Between 2018 and 2021, Australian diagnostic laboratories performed over 25,000 new genomic tests and 950 reanalyses, predominantly in response to clinician requests. Laboratory and clinical genetic health professionals (N = 134) identified workforce capacity as the principal barrier to reanalysis. No specific laboratory or clinical guidelines for genomic data reanalysis or policies were identified nationally. Perceptions of acceptability and feasibility of automating reanalysis were positive, with professionals emphasizing clinical and workflow benefits. In conclusion, there is a large and rapidly growing unmet need for reanalysis of existing genomic data. Beyond developing scalable automated reanalysis pipelines, leadership and policy are needed to successfully transform service delivery models and maximize clinical benefit.

11.
NPJ Genom Med ; 9(1): 27, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582909

RESUMO

Genome-wide sequencing and genetic matchmaker services are propelling a new era of genotype-driven ascertainment of novel genetic conditions. The degree to which reported phenotype data in discovery-focused studies address informational priorities for clinicians and families is unclear. We identified reports published from 2017 to 2021 in 10 genetics journals of novel Mendelian disorders. We adjudicated the quality and detail of the phenotype data via 46 questions pertaining to six priority domains: (I) Development, cognition, and mental health; (II) Feeding and growth; (III) Medication use and treatment history; (IV) Pain, sleep, and quality of life; (V) Adulthood; and (VI) Epilepsy. For a subset of articles, all subsequent published follow-up case descriptions were identified and assessed in a similar manner. A modified Delphi approach was used to develop consensus reporting guidelines, with input from content experts across four countries. In total, 200 of 3243 screened publications met inclusion criteria. Relevant phenotypic details across each of the 6 domains were rated superficial or deficient in >87% of papers. For example, less than 10% of publications provided details regarding neuropsychiatric diagnoses and "behavioural issues", or about the type/nature of feeding problems. Follow-up reports (n = 95) rarely contributed this additional phenotype data. In summary, phenotype information relevant to clinical management, genetic counselling, and the stated priorities of patients and families is lacking for many newly described genetic diseases. The PHELIX (PHEnotype LIsting fiX) reporting guideline checklists were developed to improve phenotype reporting in the genomic era.

12.
BMJ Open ; 14(4): e081426, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38569677

RESUMO

INTRODUCTION: Newborn bloodspot screening (NBS) is a highly successful public health programme that uses biochemical and other assays to screen for severe but treatable childhood-onset conditions. Introducing genomic sequencing into NBS programmes increases the range of detectable conditions but raises practical and ethical issues. Evidence from prospectively ascertained cohorts is required to guide policy and future implementation. This study aims to develop, implement and evaluate a genomic NBS (gNBS) pilot programme. METHODS AND ANALYSIS: The BabyScreen+ study will pilot gNBS in three phases. In the preimplementation phase, study materials, including education resources, decision support and data collection tools, will be designed. Focus groups and key informant interviews will also be undertaken to inform delivery of the study and future gNBS programmes. During the implementation phase, we will prospectively recruit birth parents in Victoria, Australia, to screen 1000 newborns for over 600 severe, treatable, childhood-onset conditions. Clinically accredited whole genome sequencing will be performed following standard NBS using the same sample. High chance results will be returned by genetic healthcare professionals, with follow-on genetic and other confirmatory testing and referral to specialist services as required. The postimplementation phase will evaluate the feasibility of gNBS as the primary aim, and assess ethical, implementation, psychosocial and health economic factors to inform future service delivery. ETHICS AND DISSEMINATION: This project received ethics approval from the Royal Children's Hospital Melbourne Research Ethics Committee: HREC/91500/RCHM-2023, HREC/90929/RCHM-2022 and HREC/91392/RCHM-2022. Findings will be disseminated to policy-makers, and through peer-reviewed journals and conferences.


Assuntos
Genômica , Triagem Neonatal , Criança , Humanos , Recém-Nascido , Projetos Piloto , Estudos Prospectivos , Vitória
13.
Cell Rep ; 43(3): 113861, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38416643

RESUMO

Inherited metabolic disorders are a group of genetic conditions that can cause severe neurological impairment and child mortality. Uniquely, these disorders respond to dietary treatment; however, this option remains largely unexplored because of low disorder prevalence and the lack of a suitable paradigm for testing diets. Here, we screened 35 Drosophila amino acid disorder models for disease-diet interactions and found 26 with diet-altered development and/or survival. Using a targeted multi-nutrient array, we examine the interaction in a model of isolated sulfite oxidase deficiency, an infant-lethal disorder. We show that dietary cysteine depletion normalizes their metabolic profile and rescues development, neurophysiology, behavior, and lifelong fly survival, thus providing a basis for further study into the pathogenic mechanisms involved in this disorder. Our work highlights the diet-sensitive nature of metabolic disorders and establishes Drosophila as a valuable tool for nutrigenomic studies for informing potential dietary therapies.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Doenças Metabólicas , Lactente , Criança , Animais , Humanos , Nutrigenômica , Drosophila , Dieta , Doenças Metabólicas/genética
14.
Stem Cells Dev ; 33(5-6): 128-142, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38164119

RESUMO

Rett Syndrome (RTT) is a severe neurodevelopmental disorder, afflicting 1 in 10,000 female births. It is caused by mutations in the X-linked methyl-CpG-binding protein gene (MECP2), which encodes for the global transcriptional regulator methyl CpG binding protein 2 (MeCP2). As human brain samples of RTT patients are scarce and cannot be used for downstream studies, there is a pressing need for in vitro modeling of pathological neuronal changes. In this study, we use a direct reprogramming method for the generation of neuronal cells from MeCP2-deficient and wild-type human dermal fibroblasts using two episomal plasmids encoding the transcription factors SOX2 and PAX6. We demonstrated that the obtained neurons exhibit a typical neuronal morphology and express the appropriate marker proteins. RNA-sequencing confirmed neuronal identity of the obtained MeCP2-deficient and wild-type neurons. Furthermore, these MeCP2-deficient neurons reflect the pathophysiology of RTT in vitro, with diminished dendritic arborization and hyperacetylation of histone H3 and H4. Treatment with MeCP2, tethered to the cell penetrating peptide TAT, ameliorated hyperacetylation of H4K16 in MeCP2-deficient neurons, which strengthens the RTT relevance of this cell model. We generated a neuronal model based on direct reprogramming derived from patient fibroblasts, providing a powerful tool to study disease mechanisms and investigating novel treatment options for RTT.


Assuntos
Síndrome de Rett , Humanos , Feminino , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Síndrome de Rett/patologia , Neurônios/metabolismo , Histonas/metabolismo , Encéfalo/patologia , Mutação
15.
Genet Med ; 26(5): 101077, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38275146

RESUMO

PURPOSE: Gene selection for genomic newborn screening (gNBS) underpins the validity, acceptability, and ethical application of this technology. Existing gNBS gene lists are highly variable despite being based on shared principles of gene-disease validity, treatability, and age of onset. This study aimed to curate a gNBS gene list that builds upon existing efforts and provide a core consensus list of gene-disease pairs assessed by multiple expert groups worldwide. METHODS: Our multidisciplinary expert team curated a gene list using an open platform and multiple existing curated resources. We included severe treatable disorders with age of disease onset <5 years with established gene-disease associations and reliable variant detection. We compared the final list with published lists from 5 other gNBS projects to determine consensus genes and to identify areas of discrepancy. RESULTS: We reviewed 1279 genes and 604 met our inclusion criteria. Metabolic conditions comprised the largest group (25%), followed by immunodeficiencies (21%) and endocrine disorders (15%). We identified 55 consensus genes included by all 6 gNBS research projects. Common reasons for discrepancy included variable definitions of treatability and strength of gene-disease association. CONCLUSION: We have identified a consensus gene list for gNBS that can be used as a basis for systematic harmonization efforts internationally.


Assuntos
Testes Genéticos , Genômica , Triagem Neonatal , Humanos , Triagem Neonatal/métodos , Recém-Nascido , Testes Genéticos/métodos , Testes Genéticos/normas , Genômica/métodos , Consenso
16.
Clin Genet ; 105(2): 214-219, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37899549

RESUMO

Critical genes involved in embryonic development are often transcription factors, regulating many downstream genes. LMX1B is a homeobox gene that is involved in formation of the limbs, eyes and kidneys, heterozygous loss-of-function sequence variants and deletions cause Nail-Patella syndrome. Most of the reported variants are localised within the gene's coding sequence, however, approximately 5%-10% of affected individuals do not have a pathogenic variant identified within this region. In this study, we present a family with four affected individuals across two generations with a deletion spanning a conserved upstream LMX1B-binding sequence. This deletion is de novo in the mother of three affected children. Furthermore, in this family, the manifestations appear limited to the nails and limbs, and therefore may reflect an attenuated phenotype of the classic Nail-Patella phenotype that includes ophthalmological and renal manifestations.


Assuntos
Genes Homeobox , Unhas , Criança , Humanos , Proteínas de Homeodomínio/genética , Mutação , Patela , Fenótipo , Fatores de Transcrição/genética
17.
Genes (Basel) ; 14(8)2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37628658

RESUMO

Over the last 20 years, the understanding and natural history of Rett syndrome has advanced, but to date no cure has emerged, with multidisciplinary management being symptomatic and supportive. This study provides a comprehensive review of the clinical features, comorbidities and multidisciplinary management of a well-characterized cohort of females with classical Rett syndrome. We aim to improve awareness and understanding of Rett syndrome amongst pediatricians, pediatric subspecialists and allied health professionals to enable early diagnosis and a streamlined enrolment approach for future clinical trials. Rett syndrome, a complex X-linked condition, affecting mainly females, is due to pathogenic variants of the MECP2 gene in most affected individuals. The Rett syndrome Multidisciplinary Management clinic at The Children's Hospital at Westmead, Sydney, Australia, was established in 2000. This retrospective analysis of individuals who attended the clinic from 2000 to 2020 was performed to identify the incidence and predicted age of onset of Rett syndrome related comorbidities, disease progression and to review management principles. Data collected included age of Rett syndrome diagnosis, MECP2 genotype, clinical features and medical comorbidities, such as sleep disturbance, seizures, breathing irregularities, scoliosis, mobility, hand stereotypies, hand function, constipation, feeding ability, use of gastrostomy, communication skills, QTc prolongation, anthropometry, and bruxism. Analysis of 103 girls who fulfilled the clinical diagnostic criteria for classical Rett syndrome with a pathogenic variant of the MECP2 gene showed a median age of diagnosis of 3 years. The most frequent MECP2 variant was c.502 C>T.


Assuntos
Síndrome de Rett , Escoliose , Feminino , Humanos , Criança , Pré-Escolar , Masculino , Síndrome de Rett/diagnóstico , Síndrome de Rett/genética , Síndrome de Rett/terapia , Estudos Retrospectivos , Constipação Intestinal , Convulsões
18.
Brain ; 146(11): 4446-4455, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37471493

RESUMO

Childhood dementia is a devastating and under-recognized group of disorders with a high level of unmet need. Typically monogenic in origin, this collective of individual neurodegenerative conditions are defined by a progressive impairment of neurocognitive function, presenting in childhood and adolescence. This scoping review aims to clarify definitions and conceptual boundaries of childhood dementia and quantify the collective disease burden. A literature review identified conditions that met the case definition. An expert clinical working group reviewed and ratified inclusion. Epidemiological data were extracted from published literature and collective burden modelled. One hundred and seventy genetic childhood dementia disorders were identified. Of these, 25 were analysed separately as treatable conditions. Collectively, currently untreatable childhood dementia was estimated to have an incidence of 34.5 per 100 000 (1 in 2900 births), median life expectancy of 9 years and prevalence of 5.3 per 100 000 persons. The estimated number of premature deaths per year is similar to childhood cancer (0-14 years) and approximately 70% of those deaths will be prior to adulthood. An additional 49.8 per 100 000 births are attributable to treatable conditions that would cause childhood dementia if not diagnosed early and stringently treated. A relational database of the childhood dementia disorders has been created and will be continually updated as new disorders are identified (https://knowledgebase.childhooddementia.org/). We present the first comprehensive overview of monogenic childhood dementia conditions and their collective epidemiology. Unifying these conditions, with consistent language and definitions, reinforces motivation to advance therapeutic development and health service supports for this significantly disadvantaged group of children and their families.


Assuntos
Demência , Neoplasias , Doenças Neurodegenerativas , Criança , Adolescente , Humanos , Efeitos Psicossociais da Doença , Prevalência , Demência/epidemiologia
19.
Pharmgenomics Pers Med ; 16: 681-691, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37415831

RESUMO

The introduction of genomic sequencing technologies into routine newborn screening programs in some form is not only inevitable but also already occurring in some settings. The question is therefore not "if" but "when and how" genomic newborn screening (GNBS) should be implemented. In April 2022, the Centre for Ethics of Paediatric Genomics held a one-day symposium exploring ethical issues relating to the use of genomic sequencing in a range of clinical settings. This review article synthesises the panel discussion and presents both the potential benefits of wide-scale implementation of genomic newborn screening, as well as its practical and ethical issues, including obtaining appropriate consent, and health system implications. A more in-depth understanding of the barriers associated with implementing genomic newborn screening is critical to the success of GNBS programs, both from a practical perspective and also in order to maintain public trust in an important public health initiative.

20.
J Med Ethics ; 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37263770

RESUMO

Genomic sequencing (GS) is increasingly used in paediatric medicine to aid in screening, research and treatment. Some health systems are trialling GS as a first-line test in newborn screening programmes. Questions about what to do with genomic data after it has been generated are becoming more pertinent. While other research has outlined the ethical reasons for storing deidentified genomic data to be used in research, the ethical case for storing data for future clinical use has not been explicated. In this paper, we examine the ethical case for storing genomic data with the intention of using it as a lifetime health resource. In this model, genomic data would be stored with the intention of reanalysis at certain points through one's life. We argue this could benefit individuals and create an important public resource. However, several ethical challenges must first be met to achieve these benefits. We explore issues related to privacy, consent, justice and equality. We conclude by arguing that health systems should be moving towards futures that allow for the sequential interrogation of genomic data throughout the lifespan.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...