Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 43(22): 10734-45, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26384427

RESUMO

The bacterial transposon Tn7 facilitates horizontal transfer by directing transposition into actively replicating DNA with the element-encoded protein TnsE. Structural analysis of the C-terminal domain of wild-type TnsE identified a novel protein fold including a central V-shaped loop that toggles between two distinct conformations. The structure of a robust TnsE gain-of-activity variant has this loop locked in a single conformation, suggesting that conformational flexibility regulates TnsE activity. Structure-based analysis of a series of TnsE mutants relates transposition activity to DNA binding stability. Wild-type TnsE appears to naturally form an unstable complex with a target DNA, whereas mutant combinations required for large changes in transposition frequency and targeting stabilized this interaction. Collectively, our work unveils a unique structural proofreading mechanism where toggling between two conformations regulates target commitment by limiting the stability of target DNA engagement until an appropriate insertion site is identified.


Assuntos
Proteínas de Bactérias/química , Elementos de DNA Transponíveis , Proteínas de Ligação a DNA/química , Transposases/metabolismo , Alanina/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Modelos Moleculares , Mutação , Dobramento de Proteína , Estrutura Terciária de Proteína
2.
J Vis Exp ; (69): e4266, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23149570

RESUMO

Escherichia coli SeqA is a negative regulator of DNA replication that prevents premature reinitiation events by sequestering hemimethylated GATC clusters within the origin of replication. Beyond the origin, SeqA is found at the replication forks, where it organizes newly replicated DNA into higher ordered structures. SeqA associates only weakly with single GATC sequences, but it forms high affinity complexes with DNA duplexes containing multiple GATC sites. The minimal functional and structural unit of SeqA is a dimer, thereby explaining the requirement of at least two GATC sequences to form a high-affinity complex with hemimethylated DNA. Additionally, the SeqA architecture, with the oligomerization and DNA-binding domains separated by a flexible linker, allows binding to GATC repeats separated by up to three helical turns. Therefore, understanding the function of SeqA at a molecular level requires the structural analysis of SeqA bound to multiple GATC sequences. In protein-DNA crystallization, DNA can have none to an exceptional effect on the packing interactions depending on the relative sizes and architecture of the protein and the DNA. If the protein is larger than the DNA or footprints most of the DNA, the crystal packing is primarily mediated by protein-protein interactions. Conversely, when the protein is the same size or smaller than the DNA or it only covers a fraction of the DNA, DNA-DNA and DNA-protein interactions dominate crystal packing. Therefore, crystallization of protein-DNA complexes requires the systematic screening of DNA length and DNA ends (blunt or overhang). In this report, we describe how to design, optimize, purify and crystallize hemimethylated DNA duplexes containing tandem GATC repeats in complex with a dimeric variant of SeqA (SeqAΔ(41-59)-A25R) to obtain crystals suitable for structure determination.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas de Ligação a DNA/química , DNA/química , Proteínas de Escherichia coli/química , Cristalização , Dimerização , Escherichia coli/química , Conformação de Ácido Nucleico
3.
Chem Biol ; 17(9): 959-69, 2010 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-20851345

RESUMO

In ClpXP and ClpAP complexes, ClpA and ClpX use the energy of ATP hydrolysis to unfold proteins and translocate them into the self-compartmentalized ClpP protease. ClpP requires the ATPases to degrade folded or unfolded substrates, but binding of acyldepsipeptide antibiotics (ADEPs) to ClpP bypasses this requirement with unfolded proteins. We present the crystal structure of Escherichia coli ClpP bound to ADEP1 and report the structural changes underlying ClpP activation. ADEP1 binds in the hydrophobic groove that serves as the primary docking site for ClpP ATPases. Binding of ADEP1 locks the N-terminal loops of ClpP in a ß-hairpin conformation, generating a stable pore through which extended polypeptides can be threaded. This structure serves as a model for ClpP in the holoenzyme ClpAP and ClpXP complexes and provides critical information to further develop this class of antibiotics.


Assuntos
Antibacterianos/química , Depsipeptídeos/química , Endopeptidase Clp/química , Proteínas de Escherichia coli/química , Modelos Moleculares , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Endopeptidase Clp/metabolismo , Escherichia coli/enzimologia , Proteínas de Escherichia coli/metabolismo , Cinética , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Especificidade por Substrato
4.
Mol Cell ; 39(1): 145-51, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20603082

RESUMO

DNA mismatch repair corrects errors that have escaped polymerase proofreading, increasing replication fidelity 100- to 1000-fold in organisms ranging from bacteria to humans. The MutL protein plays a central role in mismatch repair by coordinating multiple protein-protein interactions that signal strand removal upon mismatch recognition by MutS. Here we report the crystal structure of the endonuclease domain of Bacillus subtilis MutL. The structure is organized in dimerization and regulatory subdomains connected by a helical lever spanning the conserved endonuclease motif. Additional conserved motifs cluster around the lever and define a Zn(2+)-binding site that is critical for MutL function in vivo. The structure unveils a powerful inhibitory mechanism to prevent undesired nicking of newly replicated DNA and allows us to propose a model describing how the interaction with MutS and the processivity clamp could license the endonuclease activity of MutL. The structure also provides a molecular framework to propose and test additional roles of MutL in mismatch repair.


Assuntos
Adenosina Trifosfatases/química , Bacillus subtilis/enzimologia , Adenosina Trifosfatases/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Sequência Conservada , Cristalografia por Raios X , Reparo de Erro de Pareamento de DNA , Endonucleases/química , Ativação Enzimática , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Zinco/metabolismo
5.
Nucleic Acids Res ; 37(10): 3143-52, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19304745

RESUMO

SeqA is a negative regulator of DNA replication in Escherichia coli and related bacteria that functions by sequestering the origin of replication and facilitating its resetting after every initiation event. Inactivation of the seqA gene leads to unsynchronized rounds of replication, abnormal localization of nucleoids and increased negative superhelicity. Excess SeqA also disrupts replication synchrony and affects cell division. SeqA exerts its functions by binding clusters of transiently hemimethylated GATC sequences generated during replication. However, the molecular mechanisms that trigger formation and disassembly of such complex are unclear. We present here the crystal structure of a dimeric mutant of SeqA [SeqADelta(41-59)-A25R] bound to tandem hemimethylated GATC sites. The structure delineates how SeqA forms a high-affinity complex with DNA and it suggests why SeqA only recognizes GATC sites at certain spacings. The SeqA-DNA complex also unveils additional protein-protein interaction surfaces that mediate the formation of higher ordered complexes upon binding to newly replicated DNA. Based on this data, we propose a model describing how SeqA interacts with newly replicated DNA within the origin of replication and at the replication forks.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , DNA Bacteriano/química , Proteínas de Ligação a DNA/química , Proteínas de Escherichia coli/química , Origem de Replicação , Sequências de Repetição em Tandem , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/metabolismo , Sítios de Ligação , Replicação do DNA , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína
6.
Artigo em Inglês | MEDLINE | ID: mdl-18540078

RESUMO

Escherichia coli SeqA is a negative regulator of DNA replication. The SeqA protein forms a high-affinity complex with newly replicated DNA at the origin of replication and thus prevents premature re-initiation events. Beyond the origin, SeqA is found at the replication forks, where it organizes newly replicated DNA into higher ordered structures. These two functions depend on SeqA binding to multiple hemimethylated GATC sequences. In an effort to understand how SeqA forms a high-affinity complex with hemimethylated DNA, a dimeric variant of SeqA was overproduced, purified and crystallized bound to a DNA duplex containing two hemimethylated GATC sites. The preliminary X-ray analysis of crystals diffracting to 3 A resolution is presented here.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Nucleotídeos/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Pareamento de Bases , Sequência de Bases , Sítios de Ligação , Cristalização , Metilação de DNA , DNA Bacteriano , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Dimerização , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Ligação de Hidrogênio , Isopropiltiogalactosídeo/farmacologia , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , Nucleotídeos/química , Plasmídeos , Ligação Proteica , Estrutura Terciária de Proteína , Análise de Sequência de DNA , Difração de Raios X
7.
J Bacteriol ; 188(12): 4183-9, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16740924

RESUMO

An extensive study of teichoic acid biosynthesis in the model organism Bacillus subtilis has established teichoic acid polymers as essential components of the gram-positive cell wall. However, similar studies pertaining to therapeutically relevant organisms, such as Staphylococcus aureus, are scarce. In this study we have carried out a meticulous examination of the dispensability of teichoic acid biosynthetic enzymes in S. aureus. By use of an allelic replacement methodology, we examined all facets of teichoic acid assembly, including intracellular polymer production and export. Using this approach we confirmed that the first-acting enzyme (TarO) was dispensable for growth, in contrast to dispensability studies in B. subtilis. Upon further characterization, we demonstrated that later-acting gene products (TarB, TarD, TarF, TarIJ, and TarH) responsible for polymer formation and export were essential for viability. We resolved this paradox by demonstrating that all of the apparently indispensable genes became dispensable in a tarO null genetic background. This work suggests a lethal gain-of-function mechanism where lesions beyond the initial step in wall teichoic acid biosynthesis render S. aureus nonviable. This discovery poses questions regarding the conventional understanding of essential gene sets, garnered through single-gene knockout experiments in bacteria and higher organisms, and points to a novel drug development strategy targeting late steps in teichoic acid synthesis for the infectious pathogen S. aureus.


Assuntos
Proteínas de Bactérias/genética , Genes Bacterianos/fisiologia , Staphylococcus aureus/metabolismo , Ácidos Teicoicos/biossíntese , Proteínas de Bactérias/metabolismo , Plasmídeos , Staphylococcus aureus/genética , Staphylococcus aureus/crescimento & desenvolvimento , Ácidos Teicoicos/química , Ácidos Teicoicos/genética , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...