Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39360412

RESUMO

BACKGROUND: The protease thrombin, which elicits multiple physiological and pathological effects on vascular endothelial cells (ECs), can signal through PARs (protease-activated receptors) 1 and 4. PAR1 is a high-affinity thrombin receptor known to signal on ECs, whereas PAR4 is a low-affinity thrombin receptor, and evidence for its expression and function on ECs is mixed. This study aims to exploit the high levels of thrombin generation and hepatic vascular dysfunction that occur during acetaminophen (APAP) overdose to determine (1) whether hepatic endothelial PAR4 is a functional receptor, and (2) the endothelial-specific functions for PAR1 and PAR4 in a high thrombin and pathological setting. METHODS: We generated mice with conditional deletion of Par1/Par4 in ECs and overdosed them with APAP. Hepatic vascular permeability, erythrocyte accumulation in the liver, thrombin generation, and liver function were assessed following overdose. Additionally, we investigated the expression levels of endothelial PARs and how they influence transcription in APAP-overdosed liver ECs using endothelial translating ribosome affinity purification followed by next-generation sequencing. RESULTS: We found that mice deficient in high-expressing endothelial Par1 or low-expressing Par4 had equivalent reductions in APAP-induced hepatic vascular instability, although mice deficient for both receptors had lower vascular permeability at an earlier timepoint after APAP overdose than either of the single mutants. Additionally, mice with loss of both endothelial Par1 and Par4 had reduced thrombin generation after APAP overdose, suggesting decreased hypercoagulability. Last, we found that endothelial PAR1-but not PAR4-can regulate transcription in hepatic ECs. CONCLUSIONS: Low-expressing PAR4 can react similarly to high-expressing PAR1 in APAP-overdosed hepatic ECs, demonstrating that PAR4 is a potent thrombin receptor. Additionally, these receptors are functionally redundant but act divergently in their expression and ability to influence transcription in hepatic ECs.

2.
Exp Eye Res ; 248: 110101, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39303842

RESUMO

Endothelial cells (ECs) display organ- and tissue-specific heterogeneity. In the eye, the retinal and choroidal vascular beds are distinct networks with different molecular and morphological properties that serve location-specific functions, i.e., the former maintaining a tight barrier and the latter, a permeable fenestrated vasculature. Given that retinal health critically relies on the function of these vascular beds and that their dysfunction is implicated in a variety of retinal diseases, a molecular understanding of both physiological and pathophysiological characteristics of these distinct vasculatures is critical. Given their interspersed anatomic distribution among parenchymal cells, the study of EC gene expression, in vivo, has been hampered by the challenge of isolating pure populations of ocular ECs in sufficient quantities for large-scale transcriptomics. To address this challenge, we present a methodological and analytical workflow to facilitate inter-tissue comparisons of the in vivo EC translatome isolated from choroid, retina, and brain using the Cre-inducible NuTRAP flox construct and two widely-used endothelial Cre mouse lines: constitutive Tie2-Cre and tamoxifen-inducible Cdh5-CreERT2. For each Cre line, inter-tissue comparison of TRAP-RNAseq enrichment (TRAP-isolated translatome vs input transcriptome) showed tissue-specific gene enrichments with differential pathway representation. For each mouse model, inter-tissue comparison of the EC translatome (choroid vs brain, choroid vs retina, and brain vs retina) showed over 50% overlap of differentially expressed genes (DEGs) between the three paired comparisons, with differential pathway representation for each tissue. Pathway analysis of DEGs in the Cdh5-NuTRAP vs Tie2-NuTRAP comparison for retina, choroid, and brain predicted inhibition of processes related to myeloid cell function and activation, consistent with more specific targeting of ECs in the Cdh5-NuTRAP than in the Tie2-NuTRAP model which also targets hematopoietic progenitors giving rise to immune cells. Indeed, while TRAP enriches for EC transcripts in both models, myeloid transcripts were also captured in the Tie2-NuTRAP model which was confirmed using cell sorting. We suggest experimental/analytical considerations should be taken when selecting Cre-lines to target ECs.


Assuntos
Corioide , Células Endoteliais , Vasos Retinianos , Animais , Camundongos , Corioide/irrigação sanguínea , Corioide/metabolismo , Vasos Retinianos/metabolismo , Vasos Retinianos/citologia , Células Endoteliais/metabolismo , Transcriptoma , Encéfalo/metabolismo , Encéfalo/irrigação sanguínea , Retina/metabolismo , Endotélio Vascular/metabolismo , Camundongos Endogâmicos C57BL
3.
bioRxiv ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38895465

RESUMO

Background & Aims: Hepatic endothelial cell (EC) dysfunction and centrilobular hepatocyte necrosis occur with acetaminophen (APAP) overdose. The protease thrombin, which is acutely generated during APAP overdose, can signal through protease-activated receptors 1 and 4 (PAR1/PAR4). PAR1 is a high-affinity thrombin receptor that is known to signal on ECs, whereas PAR4 is a low-affinity thrombin receptor, and evidence for its expression and function on ECs is mixed. This study aims to exploit the high levels of thrombin generated during APAP overdose to determine (1) if hepatic endothelial PAR4 is a functional receptor, and (2) endothelial-specific functions for PAR1 and PAR4 in a high thrombin setting. Methods: We generated mice with conditional deletion(s) of Par1/Par4 in ECs and overdosed them with APAP. Hepatic vascular permeability, erythrocyte congestion/bleeding, and liver function were assessed following overdose. Additionally, we investigated the expression levels of endothelial PARs and how they influence transcription in APAP-overdosed liver ECs using endothelial Translating Ribosome Affinity Purification followed by next-generation sequencing (TRAPseq). Results: We found that mice deficient in high-expressing endothelial Par1 or low-expressing Par4 had equivalent reductions in APAP-induced hepatic vascular instability but no effect on hepatocyte necrosis. Additionally, mice with loss of endothelial Par1 and Par4 had reduced permeability at an earlier time point after APAP overdose when compared to mice singly deficient in either receptor in ECs. We also found that endothelial PAR1-but not PAR4-can regulate transcription in hepatic ECs. Conclusions: Low-expressing PAR4 can react similarly to high-expressing PAR1 in APAP-overdosed hepatic ECs, demonstrating that PAR4 is a potent thrombin receptor. Additionally, these receptors are functionally redundant but act divergently in their expression and ability to influence transcription in hepatic ECs.

4.
J Thromb Haemost ; 21(10): 2917-2928, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37364776

RESUMO

BACKGROUND: Plasminogen activator inhibitor-1 (PAI-1, Serpine1) is an important circulating fibrinolysis inhibitor. PAI-1 exists in 2 pools, packaged within platelet α-granules and freely circulating in plasma. Elevated plasma PAI-1 levels are associated with cardiovascular disease. However, little is known about the regulation of platelet PAI-1 (pPAI-1). OBJECTIVES: We investigated the genetic control of pPAI-1 levels in mice and humans. METHODS: We measured pPAI-1 antigen levels via enzyme-linked immunosorbent assay in platelets isolated from 10 inbred mouse strains, including LEWES/EiJ (LEWES) and C57BL/6J (B6). LEWES and B6 were crossed to produce the F1 generation, B6LEWESF1. B6LEWESF1 mice were intercrossed to produce B6LEWESF2 mice. These mice were subjected to genome-wide genetic marker genotyping followed by quantitative trait locus analysis to identify pPAI-1 regulatory loci. RESULTS: We identified differences in pPAI-1 between several laboratory strains, with LEWES having pPAI-1 levels more than 10-fold higher than those in B6. Quantitative trait locus analysis of B6LEWESF2 offspring identified a major pPAI-1 regulatory locus on chromosome 5 from 136.1 to 137.6 Mb (logarithm of the odds score, 16.2). Significant pPAI-1 modifier loci on chromosomes 6 and 13 were also identified. CONCLUSION: Identification of pPAI-1 genomic regulatory elements provides insights into platelet/megakaryocyte-specific and cell type-specific gene expression. This information can be used to design more precise therapeutic targets for diseases where PAI-1 plays a role.


Assuntos
Plaquetas , Inibidor 1 de Ativador de Plasminogênio , Animais , Camundongos , Plaquetas/metabolismo , Fibrinólise , Genômica , Camundongos Endogâmicos C57BL , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Locos de Características Quantitativas , Humanos
5.
Res Pract Thromb Haemost ; 6(4): e12718, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35599705

RESUMO

A State of the Art lecture entitled "Molecular Analysis of Vascular Gene Expression" was presented at the ISTH Congress in 2021. Endothelial cells (ECs) form a critical interface between the blood and underlying tissue environment, serving as a reactive barrier to maintain tissue homeostasis. ECs play an important role in not only coagulation, but also in the response to inflammation by connecting these two processes in the host defense against pathogens. Furthermore, ECs tailor their behavior to the needs of the microenvironment in which they reside, resulting in a broad display of EC phenotypes. While this heterogeneity has been acknowledged for decades, the contributing molecular mechanisms have only recently started to emerge due to technological advances. These include high-throughput sequencing combined with methods to isolate ECs directly from their native tissue environment, as well as sequencing samples at a high cellular resolution. In addition, the newest technologies simultaneously quantitate and visualize a multitude of RNA transcripts directly in tissue sections, thus providing spatial information. Understanding how ECs function in (patho)physiological conditions is crucial to develop new therapeutics as many diseases can directly affect the endothelium. Of particular relevance for thrombotic disorders, EC dysfunction can lead to a procoagulant, proinflammatory phenotype with increased vascular permeability that can result in coagulopathy and tissue damage, as seen in a number of infectious diseases, including sepsis and coronavirus disease 2019. In light of the current pandemic, we will summarize relevant new data on the latter topic presented during the 2021 ISTH Congress.

6.
Sci Rep ; 11(1): 21100, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702932

RESUMO

The COPII component SEC24 mediates the recruitment of transmembrane cargos or cargo adaptors into newly forming COPII vesicles on the ER membrane. Mammalian genomes encode four Sec24 paralogs (Sec24a-d), with two subfamilies based on sequence homology (SEC24A/B and C/D), though little is known about their comparative functions and cargo-specificities. Complete deficiency for Sec24d results in very early embryonic lethality in mice (before the 8 cell stage), with later embryonic lethality (E7.5) observed in Sec24c null mice. To test the potential overlap in function between SEC24C/D, we employed dual recombinase mediated cassette exchange to generate a Sec24cc-d allele, in which the C-terminal 90% of SEC24C has been replaced by SEC24D coding sequence. In contrast to the embryonic lethality at E7.5 of SEC24C-deficiency, Sec24cc-d/c-d pups survive to term, though dying shortly after birth. Sec24cc-d/c-d pups are smaller in size, but exhibit no other obvious developmental abnormality by pathologic evaluation. These results suggest that tissue-specific and/or stage-specific expression of the Sec24c/d genes rather than differences in cargo export function explain the early embryonic requirements for SEC24C and SEC24D.


Assuntos
Desenvolvimento Embrionário , Teste de Complementação Genética , Proteínas de Transporte Vesicular , Animais , Camundongos , Camundongos Transgênicos , Proteínas de Transporte Vesicular/biossíntese , Proteínas de Transporte Vesicular/genética
7.
Res Pract Thromb Haemost ; 5(5): e12532, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34296056

RESUMO

This year's Congress of the International Society of Thrombosis and Haemostasis (ISTH) was hosted virtually from Philadelphia July 17-21, 2021. The conference, now held annually, highlighted cutting-edge advances in basic, population and clinical sciences of relevance to the Society. Despite being held virtually, the 2021 congress was of the same scope and quality as an annual meeting held in person. An added feature of the program is that talks streamed at the designated times will then be available on-line for asynchronous viewing. The program included 77 State of the Art (SOA) talks, thematically grouped in 28 sessions, given by internationally recognized leaders in the field. The SOA speakers were invited to prepare brief illustrated reviews of their talks that were peer reviewed and are included in this article. The topics, across the main scientific themes of the congress, include Arterial Thromboembolism, Coagulation and Natural Anticoagulants, COVID-19 and Coagulation, Diagnostics and Omics, Fibrinogen, Fibrinolysis and Proteolysis, Hemophilia and Rare Bleeding Disorders, Hemostasis in Cancer, Inflammation and Immunity, Pediatrics, Platelet Disorders, von Willebrand Disease and Thrombotic Angiopathies, Platelets and Megakaryocytes, Vascular Biology, Venous Thromboembolism and Women's Health. These illustrated capsules highlight the major scientific advances with potential to impact clinical practice. Readers are invited to take advantage of the excellent educational resource provided by these illustrated capsules. They are also encouraged to use the image in social media to draw attention to the high quality and impact of the science presented at the congress.

8.
Blood ; 137(2): 258-268, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-32735640

RESUMO

Tissue factor pathway inhibitor (TFPI) inhibits proteases in the blood coagulation cascade that lead to the production of thrombin, including prothrombinase (factor Xa [FXa]/FVa), the catalytic complex that directly generates thrombin. Thus, TFPI and FV are directly linked in regulating the procoagulant response. Studies using knockout mice indicate that TFPI and FV are necessary for embryogenesis, but their contributions to vascular development are unclear. We performed extensive histological analyses of Tfpi-/- and Tfpi-/-F5-/- mouse embryos to investigate the importance of the interplay between TFPI and FV in regulating hemostasis and vascular development during embryogenesis. We observed normal tissue development throughout Tfpi-/- embryos, except in the central nervous system (CNS). The CNS displayed stunted brain growth, delayed development of the meninges, and severe vascular pathology characterized by the formation of glomeruloid bodies surrounding areas of cellular death, fibrin deposition, and hemorrhage. Removing FV from Tfpi-/- embryos completely ameliorated their brain pathology, suggesting that TFPI dampens FV-dependent procoagulant activity in a manner that modulates cerebrovascular development. Thus, we have identified a previously unrecognized role for TFPI activity within the CNS. This TFPI activity likely diminishes an effect of excess thrombin activity on signaling pathways that control cerebral vascular development.


Assuntos
Vasos Sanguíneos/embriologia , Encéfalo/irrigação sanguínea , Encéfalo/embriologia , Desenvolvimento Embrionário/fisiologia , Lipoproteínas/metabolismo , Animais , Fator V/metabolismo , Camundongos , Camundongos Knockout
9.
Pediatr Nephrol ; 35(10): 1887-1896, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32399663

RESUMO

BACKGROUND: Urinary CD80 has emerged as potential biomarker in idiopathic nephrotic syndrome (INS). However, its cellular source remains controversial. The aim of the study was to assess whether CD80 is truly expressed by glomerular cells in INS patients during relapse and in the LPS mouse model of podocyte injury. METHODS: The presence of CD80 in glomeruli was evaluated by combining immunostaining, immunogold labeling, and in situ hybridization techniques. RESULTS: CD80 was present along the surface of glomerular endothelial cells (GEC) and rarely in podocytes in six of nine minimal change disease (MCD) patients in relapse, two of eleven patients with focal segmental glomerulosclerosis in relapse, and absent in controls. In mice, CD80 was upregulated at mRNA and protein level in GEC and podocytes, in a similar pattern to that seen in MCD patients. CONCLUSIONS: Glomerular endothelial cells and podocytes can express CD80 in patients with MCD during relapse. A better understanding of the role of CD80 in glomerular cells may provide further insights into the mechanisms of proteinuria in INS.


Assuntos
Antígeno B7-1/metabolismo , Células Endoteliais/metabolismo , Glomerulosclerose Segmentar e Focal/diagnóstico , Nefrose Lipoide/diagnóstico , Podócitos/metabolismo , Adulto , Animais , Antígeno B7-1/urina , Biomarcadores/metabolismo , Biomarcadores/urina , Biópsia , Células Endoteliais/ultraestrutura , Feminino , Glomerulosclerose Segmentar e Focal/patologia , Glomerulosclerose Segmentar e Focal/urina , Humanos , Glomérulos Renais/citologia , Glomérulos Renais/patologia , Glomérulos Renais/ultraestrutura , Masculino , Camundongos , Microscopia Eletrônica de Transmissão , Pessoa de Meia-Idade , Nefrose Lipoide/patologia , Nefrose Lipoide/urina , Podócitos/ultraestrutura , Recidiva , Adulto Jovem
10.
Blood Adv ; 4(1): 207-216, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31935292

RESUMO

The intrinsic tenase complex (FIXa-FVIIIa) of the intrinsic coagulation pathway and, to a lesser extent, thrombin-mediated activation of FXI, are necessary to amplify tissue factor (TF)-FVIIa-initiated thrombin generation. In this study, we determined the contribution of murine FIX and FXI to TF-dependent thrombin generation in vitro. We further investigated TF-dependent FIX activation in mice and the contribution of this pathway to hemostasis. Thrombin generation was decreased in FIX- but not in FXI-deficient mouse plasma. Furthermore, injection of TF increased levels of FIXa-antithrombin complexes in both wild-type and FXI-/- mice. Genetic studies were used to determine the effect of complete deficiencies of either FIX or FXI on the survival of mice expressing low levels of TF. Low-TF;FIX-/y male mice were born at the expected frequency, but none survived to wean. In contrast, low-TF;FXI-/- mice were generated at the expected frequency at wean and had a 6-month survival equivalent to that of low-TF mice. Surprisingly, a deficiency of FXI, but not FIX, exacerbated the size of blood pools in low-TF placentas and led to acute hemorrhage and death of some pregnant dams. Our data indicate that FIX, but not FXI, is essential for survival of low-TF mice after birth. This finding suggests that TF-FVIIa-mediated activation of FIX plays a critical role in murine hemostasis. In contrast, FXI deficiency, but not FIX deficiency, exacerbated blood pooling in low-TF placentas, indicating a tissue-specific requirement for FXI in the murine placenta under conditions of low TF.


Assuntos
Fator IX , Tromboplastina , Animais , Fator IX/genética , Feminino , Hemostasia , Masculino , Camundongos , Placenta , Gravidez , Trombina , Tromboplastina/genética
11.
Proc Natl Acad Sci U S A ; 116(47): 23618-23624, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31712416

RESUMO

Endothelial cells (ECs) are highly specialized across vascular beds. However, given their interspersed anatomic distribution, comprehensive characterization of the molecular basis for this heterogeneity in vivo has been limited. By applying endothelial-specific translating ribosome affinity purification (EC-TRAP) combined with high-throughput RNA sequencing analysis, we identified pan EC-enriched genes and tissue-specific EC transcripts, which include both established markers and genes previously unappreciated for their presence in ECs. In addition, EC-TRAP limits changes in gene expression after EC isolation and in vitro expansion, as well as rapid vascular bed-specific shifts in EC gene expression profiles as a result of the enzymatic tissue dissociation required to generate single-cell suspensions for fluorescence-activated cell sorting or single-cell RNA sequencing analysis. Comparison of our EC-TRAP with published single-cell RNA sequencing data further demonstrates considerably greater sensitivity of EC-TRAP for the detection of low abundant transcripts. Application of EC-TRAP to examine the in vivo host response to lipopolysaccharide (LPS) revealed the induction of gene expression programs associated with a native defense response, with marked differences across vascular beds. Furthermore, comparative analysis of whole-tissue and TRAP-selected mRNAs identified LPS-induced differences that would not have been detected by whole-tissue analysis alone. Together, these data provide a resource for the analysis of EC-specific gene expression programs across heterogeneous vascular beds under both physiologic and pathologic conditions.


Assuntos
Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Animais , Plaquetas/metabolismo , Encéfalo/irrigação sanguínea , Regulação da Expressão Gênica/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Isoformas de Proteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Sensibilidade e Especificidade , Análise de Célula Única , Transgenes , Vísceras/irrigação sanguínea
12.
J Exp Med ; 216(6): 1291-1300, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31048328

RESUMO

Macrophages resident in different organs express distinct genes, but understanding how this diversity fits into tissue-specific features is limited. Here, we show that selective expression of coagulation factor V (FV) by resident peritoneal macrophages in mice promotes bacterial clearance in the peritoneal cavity and serves to facilitate the well-known but poorly understood "macrophage disappearance reaction." Intravital imaging revealed that resident macrophages were nonadherent in peritoneal fluid during homeostasis. Bacterial entry into the peritoneum acutely induced macrophage adherence and associated bacterial phagocytosis. However, optimal control of bacterial expansion in the peritoneum also required expression of FV by the macrophages to form local clots that effectively brought macrophages and bacteria in proximity and out of the fluid phase. Thus, acute cellular adhesion and resident macrophage-induced coagulation operate independently and cooperatively to meet the challenges of a unique, open tissue environment. These events collectively account for the macrophage disappearance reaction in the peritoneal cavity.


Assuntos
Fator V/metabolismo , Macrófagos/metabolismo , Cavidade Peritoneal/microbiologia , Cavidade Peritoneal/patologia , Animais , Coagulação Sanguínea , Adesão Celular , Tamanho Celular , Escherichia coli/fisiologia , Macrófagos/patologia , Camundongos Endogâmicos C57BL , Baço/microbiologia
13.
PLoS Genet ; 14(9): e1007658, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30188893

RESUMO

Although the Factor V Leiden (FVL) gene variant is the most prevalent genetic risk factor for venous thrombosis, only 10% of FVL carriers will experience such an event in their lifetime. To identify potential FVL modifier genes contributing to this incomplete penetrance, we took advantage of a perinatal synthetic lethal thrombosis phenotype in mice homozygous for FVL (F5L/L) and haploinsufficient for tissue factor pathway inhibitor (Tfpi+/-) to perform a sensitized dominant ENU mutagenesis screen. Linkage analysis conducted in the 3 largest pedigrees generated from the surviving F5L/L Tfpi+/- mice ('rescues') using ENU-induced coding variants as genetic markers was unsuccessful in identifying major suppressor loci. Whole exome sequencing was applied to DNA from 107 rescue mice to identify candidate genes enriched for ENU mutations. A total of 3,481 potentially deleterious candidate ENU variants were identified in 2,984 genes. After correcting for gene size and multiple testing, Arl6ip5 was identified as the most enriched gene, though not reaching genome-wide significance. Evaluation of CRISPR/Cas9 induced loss of function in the top 6 genes failed to demonstrate a clear rescue phenotype. However, a maternally inherited (not ENU-induced) de novo mutation (Plcb4R335Q) exhibited significant co-segregation with the rescue phenotype (p = 0.003) in the corresponding pedigree. Thrombosis suppression by heterozygous Plcb4 loss of function was confirmed through analysis of an independent, CRISPR/Cas9-induced Plcb4 mutation (p = 0.01).


Assuntos
Fator V/genética , Predisposição Genética para Doença/genética , Mutagênese/genética , Fosfolipase C beta/genética , Tromboembolia Venosa/genética , Animais , Proteínas de Transporte , Modelos Animais de Doenças , Etilnitrosoureia/toxicidade , Feminino , Proteínas de Choque Térmico , Humanos , Estimativa de Kaplan-Meier , Lipoproteínas/genética , Masculino , Proteínas de Membrana Transportadoras , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutagênese/efeitos dos fármacos , Linhagem , Penetrância , Tromboembolia Venosa/mortalidade , Sequenciamento do Exoma
14.
Proc Natl Acad Sci U S A ; 114(36): 9659-9664, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28827327

RESUMO

Factor V Leiden (F5L ) is a common genetic risk factor for venous thromboembolism in humans. We conducted a sensitized N-ethyl-N-nitrosourea (ENU) mutagenesis screen for dominant thrombosuppressor genes based on perinatal lethal thrombosis in mice homozygous for F5L (F5L/L ) and haploinsufficient for tissue factor pathway inhibitor (Tfpi+/- ). F8 deficiency enhanced the survival of F5L/LTfpi+/- mice, demonstrating that F5L/LTfpi+/- lethality is genetically suppressible. ENU-mutagenized F5L/L males and F5L/+Tfpi+/- females were crossed to generate 6,729 progeny, with 98 F5L/LTfpi+/- offspring surviving until weaning. Sixteen lines, referred to as "modifier of Factor 5 Leiden (MF5L1-16)," exhibited transmission of a putative thrombosuppressor to subsequent generations. Linkage analysis in MF5L6 identified a chromosome 3 locus containing the tissue factor gene (F3). Although no ENU-induced F3 mutation was identified, haploinsufficiency for F3 (F3+/- ) suppressed F5L/LTfpi+/- lethality. Whole-exome sequencing in MF5L12 identified an Actr2 gene point mutation (p.R258G) as the sole candidate. Inheritance of this variant is associated with suppression of F5L/LTfpi+/- lethality (P = 1.7 × 10-6), suggesting that Actr2p.R258G is thrombosuppressive. CRISPR/Cas9 experiments to generate an independent Actr2 knockin/knockout demonstrated that Actr2 haploinsufficiency is lethal, supporting a hypomorphic or gain-of-function mechanism of action for Actr2p.R258G Our findings identify F8 and the Tfpi/F3 axis as key regulators in determining thrombosis balance in the setting of F5L and also suggest a role for Actr2 in this process.


Assuntos
Fator V/genética , Trombose/genética , Proteína 2 Relacionada a Actina/genética , Sequência de Aminoácidos , Animais , Mapeamento Cromossômico , Modelos Animais de Doenças , Etilnitrosoureia , Fator VIII/genética , Feminino , Testes Genéticos , Haploinsuficiência , Homozigoto , Humanos , Lipoproteínas/deficiência , Lipoproteínas/genética , Masculino , Camundongos , Camundongos Knockout , Camundongos Mutantes , Camundongos Transgênicos , Mutagênese , Gravidez , Fatores de Risco , Trombose/prevenção & controle , Sequenciamento do Exoma
15.
PLoS One ; 10(7): e0131859, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26176620

RESUMO

BACKGROUND: Obesity is associated with a hypercoagulable state and increased risk for thrombotic cardiovascular events. OBJECTIVE: Establish the onset and reversibility of the hypercoagulable state during the development and regression of nutritionally-induced obesity in mice, and its relation to transcriptional changes and clearance rates of coagulation factors as well as its relation to changes in metabolic and inflammatory parameters. METHODS: Male C57BL/6J mice were fed a low fat (10% kcal as fat; LFD) or high fat diet (45% kcal as fat; HFD) for 2, 4, 8 or 16 weeks. To study the effects of weight loss, mice were fed the HFD for 16 weeks and switched to the LFD for 1, 2 or 4 weeks. For each time point analyses of plasma and hepatic mRNA levels of coagulation factors were performed after overnight fasting, as well as measurements of circulating metabolic and inflammatory parameters. Furthermore, in vivo clearance rates of human factor (F) VII, FVIII and FIX proteins were determined after 2 weeks of HFD-feeding. RESULTS: HFD feeding gradually increased the body and liver weight, which was accompanied by a significant increase in plasma glucose levels from 8 weeks onwards, while insulin levels were affected after 16 weeks. Besides a transient rise in cytokine levels at 2 weeks after starting the HFD, no significant effect on inflammation markers was present. Increased plasma levels of fibrinogen, FII, FVII, FVIII, FIX, FXI and FXII were observed in mice on a HFD for 2 weeks, which in general persisted throughout the 16 weeks of HFD-feeding. Interestingly, with the exception of FXI the effects on plasma coagulation levels were not paralleled by changes in relative transcript levels in the liver, nor by decreased clearance rates. Switching from HFD to LFD reversed the HFD-induced procoagulant shift in plasma, again not coinciding with transcriptional modulation. CONCLUSIONS: Changes in dietary fat content rapidly alter the mouse plasma coagulation profile, thereby preceding plasma metabolic changes, which cannot be explained by changes in relative expression of coagulation factors or decreased clearance rates.


Assuntos
Fatores de Coagulação Sanguínea/análise , Dieta com Restrição de Gorduras , Gorduras na Dieta/sangue , Animais , Citocinas/sangue , Dieta Hiperlipídica , Gorduras na Dieta/metabolismo , Fator IX/análise , Fator VII/análise , Fator VIII/análise , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/sangue , Obesidade/etiologia , Tempo de Tromboplastina Parcial , Tempo de Protrombina , RNA/isolamento & purificação , RNA/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
16.
Blood ; 123(24): 3697-705, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24719406

RESUMO

The primary cellular source of factor VIII (FVIII) biosynthesis is controversial, with contradictory evidence supporting an endothelial or hepatocyte origin. LMAN1 is a cargo receptor in the early secretory pathway that is responsible for the efficient secretion of factor V (FV) and FVIII to the plasma. Lman1 mutations result in combined deficiency of FV and FVIII, with levels of both factors reduced to ~10% to 15% of normal in human patients. We generated Lman1 conditional knockout mice to characterize the FVIII secretion profiles of endothelial cells and hepatocytes. We demonstrate that endothelial cells are the primary biosynthetic source of murine FVIII and that hepatocytes make no significant contribution to the plasma FVIII pool. Utilizing RiboTag mice and polyribosome immunoprecipitation, we performed endothelial cell-specific messenger RNA isolation and quantitative polymerase chain reaction analyses to confirm that endothelial cells highly express F8 and to explore the heterogeneity of F8 expression in different vascular beds. We demonstrate that endothelial cells from multiple, but not all, tissues contribute to the plasma FVIII pool in the mouse.


Assuntos
Células Endoteliais/metabolismo , Fator VIII/biossíntese , Animais , Células Sanguíneas/metabolismo , Células Cultivadas , Fator V/genética , Fator V/metabolismo , Feminino , Hepatócitos/metabolismo , Masculino , Lectinas de Ligação a Manose/genética , Lectinas de Ligação a Manose/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
17.
PLoS One ; 8(9): e74637, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24066149

RESUMO

Single nucleotide polymorphisms (SNPs) in a 4q35.2 locus that harbors the coagulation factor XI (F11), prekallikrein (KLKB1), and a cytochrome P450 family member (CYP4V2) genes are associated with deep venous thrombosis (DVT). These SNPs exert their effect on DVT by modifying the circulating levels of FXI. However, SNPs associated with DVT were not necessarily all in F11, but also in KLKB1 and CYP4V2. Here, we searched for evidence for common regulatory elements within the 4q35.2 locus, outside the F11 gene, that might control FXI plasma levels and/or DVT risk. To this end, we investigated the regulation of the orthologous mouse gene cluster under several metabolic conditions that impact mouse hepatic F11 transcription. In livers of mice in which HNF4α, a key transcription factor controlling F11, was ablated, or reduced by siRNA, a strong decrease in hepatic F11 transcript levels was observed that correlated with Cyp4v3 (mouse orthologue of CYP4V2), but not by Klkb1 levels. Estrogens induced hepatic F11 and Cyp4v3, but not Klkb1 transcript levels, whereas thyroid hormone strongly induced hepatic F11 transcript levels, and reduced Cyp4v3, leaving Klkb1 levels unaffected. Mice fed a high-fat diet also had elevated F11 transcription, markedly paralleled by an induction of Klkb1 and Cyp4v3 expression. We conclude that within the mouse F11, Klkb1, Cyp4v3 gene cluster, F11 and Cyp4v3 frequently display striking parallel transcriptional responses suggesting the presence of shared regulatory elements.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Fator XI/genética , Fígado/metabolismo , Pré-Calicreína/genética , Animais , Feminino , Camundongos , Polimorfismo de Nucleotídeo Único/genética , Trombose Venosa/genética
19.
Thromb Haemost ; 102(5): 993-1000, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19888539

RESUMO

Obesity and oral estrogens are independent risk factors for venous thrombosis, and their combined effect is stronger than the sum of the isolated factors. It was the objective of this study to investigate the interaction between obesity and estrogens at the level of venous thrombotic tendency, coagulation and inflammation in a mouse model. Female C57Bl/6J mice were fed a standard fat diet (SFD) or a high fat diet (HFD) to induce nutritional obesity. After 14 weeks, while maintaining their diet, mice were orally treated eight days with 1 microg ethinylestradiol or vehicle (n=25 per group), and subsequently subjected to an inferior caval vein (ICV) thrombosis model. The ICV thrombosis model resulted in an increased thrombus weight in vehicle-treated HFD mice (3.0 +/- 0.7 mg) compared to vehicle-treated SFD mice (1.4 +/- 0.4 mg; p=0.064). Surprisingly, estrogens reduced thrombus weight, which was significant for the HFD group (0.8 +/- 0.5 mg; p=0.013). As compared to SFD feeding, HFD feeding significantly increased plasma levels of coagulation factor VIII, combined factor II/VII/X (p < 0.001), and plasminogen activator inhibitor-1 (p=0.009), causing a prothrombotic shift of the coagulation profile. Estrogens had no significant effects on this profile with either diet, whereas serum amyloid A and hepatic inflammatory cytokines were minimally affected. The synergistic effect of obesity and estrogens on the venous thrombotic risk in women could not be translated into the mouse context. Short-term ethinylestradiol administration in a mouse ICV thrombosis model counteracts the prothrombotic phenotype associated with nutritionally induced obesity, despite a comparable activated plasma coagulation profile in estrogen-treated and untreated obese mice.


Assuntos
Etinilestradiol/uso terapêutico , Obesidade/complicações , Trombofilia/tratamento farmacológico , Veia Cava Inferior/efeitos dos fármacos , Trombose Venosa/prevenção & controle , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/patologia , Animais , Fatores de Coagulação Sanguínea/análise , Gorduras na Dieta/toxicidade , Relação Dose-Resposta a Droga , Etinilestradiol/administração & dosagem , Etinilestradiol/farmacologia , Feminino , Inflamação/sangue , Interleucina-6/análise , Lipídeos/sangue , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Tamanho do Órgão/efeitos dos fármacos , Ovariectomia , Proteína Amiloide A Sérica/análise , Especificidade da Espécie , Trombofilia/etiologia , Útero/efeitos dos fármacos , Útero/patologia
20.
Thromb Res ; 122(4): 549-55, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18234295

RESUMO

An FeCl(3) induced femoral arterial thrombosis model was applied to lean (47+/-1.4 g) and obese (64+/-1.7 g) mice (Swiss genetic background) in order to study the relation between obesity and thrombotic risk. As compared to lean mice, obese mice showed a significantly shorter occlusion time (9.9+/-1.0 min versus 13+/-0.5 min; p=0.04) and lower total blood flow (37+/-7.3% versus 69+/-6.7%; p=0.008). A significant negative correlation was observed between body weight and both occlusion time (r=-0.57; p=0.014) and blood flow (r=-0.57; p=0.028). Analysis of the coagulation profile revealed significantly higher levels of plasminogen activator inhibitor-1 (PAI-1), thrombin-antithrombin complex, Factor V activity and combined Factors II/VII/X activity, and moderately elevated Factor VIII activity in obese mice. The degree of arterial damage and the thrombus extension were, however, not significantly different. A significant positive correlation was observed between body weight and either PAI-1 (r=0.63; p=0.003), Factors II/VII/X levels (r=0.80; p<0.0001) or Factor V levels (r=0.65; p=0.003). Thus, this injury induced femoral artery thrombosis model in mice establishes experimentally a correlation between obesity and prothrombotic tendency.


Assuntos
Artéria Femoral/patologia , Obesidade/sangue , Obesidade/complicações , Trombose/sangue , Trombose/complicações , Animais , Antitrombinas/metabolismo , Coagulação Sanguínea , Peso Corporal , Cloretos , Fator V/metabolismo , Compostos Férricos/farmacologia , Humanos , Masculino , Camundongos , Modelos Estatísticos , Inibidor 1 de Ativador de Plasminogênio/sangue , Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...