Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Microscopy (Oxf) ; 69(5): 321-323, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-32332999

RESUMO

High refractive index organic solvents are commonly used as an imaging medium in tissue clearing approaches. While effective, such solvents provide serious concerns for the safety of users and the equipment, especially in a central microscopy unit. To overcome these concerns, we have developed a large and reusable imaging chamber compatible with the universal mounting frame AK (PeCon GmbH). This chamber is easy to assemble and significantly improves the working environment in a central microscopy unit, where hazardous chemicals could negatively affect equipment and people. To encourage the uptake of these chambers, the design is made publicly available for download.


Assuntos
Técnicas Histológicas/instrumentação , Técnicas Histológicas/métodos , Imageamento Tridimensional/instrumentação , Imageamento Tridimensional/métodos , Microscopia/instrumentação , Microscopia/métodos , Solventes/química
2.
Curr Biol ; 29(23): 4052-4059.e4, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31735675

RESUMO

A diverse array of vertebrate species employs the Earth's magnetic field to assist navigation. Despite compelling behavioral evidence that a magnetic sense exists, the location of the primary sensory cells and the underlying molecular mechanisms remain unknown [1]. To date, most research has focused on a light-dependent radical-pair-based concept and a system that is proposed to rely on biogenic magnetite (Fe3O4) [2, 3]. Here, we explore an overlooked hypothesis that predicts that animals detect magnetic fields by electromagnetic induction within the semicircular canals of the inner ear [4]. Employing an assay that relies on the neuronal activity marker C-FOS, we confirm that magnetic exposure results in activation of the caudal vestibular nuclei in pigeons that is independent of light [5]. We show experimentally and by physical calculations that magnetic stimulation can induce electric fields in the pigeon semicircular canals that are within the physiological range of known electroreceptive systems. Drawing on this finding, we report the presence of a splice isoform of a voltage-gated calcium channel (CaV1.3) in the pigeon inner ear that has been shown to mediate electroreception in skates and sharks [6]. We propose that pigeons detect magnetic fields by electromagnetic induction within the semicircular canals that is dependent on the presence of apically located voltage-gated cation channels in a population of electrosensory hair cells.


Assuntos
Columbidae/fisiologia , Orelha Interna/fisiologia , Campos Magnéticos , Sensação , Animais
3.
New Phytol ; 219(2): 808-823, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29621393

RESUMO

There is a need for flexible and affordable plant phenotyping solutions for basic research and plant breeding. We demonstrate our open source plant imaging and processing solution ('PhenoBox'/'PhenoPipe') and provide construction plans, source code and documentation to rebuild the system. Use of the PhenoBox is exemplified by studying infection of the model grass Brachypodium distachyon by the head smut fungus Ustilago bromivora, comparing phenotypic responses of maize to infection with a solopathogenic Ustilago maydis (corn smut) strain and effector deletion strains, and studying salt stress response in Nicotiana benthamiana. In U. bromivora-infected grass, phenotypic differences between infected and uninfected plants were detectable weeks before qualitative head smut symptoms. Based on this, we could predict the infection outcome for individual plants with high accuracy. Using a PhenoPipe module for calculation of multi-dimensional distances from phenotyping data, we observe a time after infection-dependent impact of U. maydis effector deletion strains on phenotypic response in maize. The PhenoBox/PhenoPipe system is able to detect established salt stress responses in N. benthamiana. We have developed an affordable, automated, open source imaging and data processing solution that can be adapted to various phenotyping applications in plant biology and beyond.


Assuntos
Brachypodium/anatomia & histologia , Zea mays/anatomia & histologia , Automação , Brachypodium/microbiologia , Interações Hospedeiro-Patógeno , Fenótipo , Doenças das Plantas/microbiologia , Estresse Salino , Nicotiana/microbiologia , Ustilago/fisiologia , Zea mays/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...