RESUMO
The chemical industry is a major and growing source of CO2 emissions. Here, we extend the principal U.S.-based integrated assessment model, GCAM, to include a representation of steam cracking, the dominant process in the organic chemical industry today, and a suite of emerging decarbonization strategies, including catalytic cracking, lower-carbon process heat, and feedstock switching. We find that emerging catalytic production technologies only have a small impact on midcentury emissions mitigation. In contrast, process heat generation could achieve strong mitigation, reducing associated CO2 emissions by â¼76% by 2050. Process heat generation is diversified to include carbon capture and storage (CCS), hydrogen, and electrification. A sensitivity analysis reveals that our results for future net CO2 emissions are most sensitive to the amount of CCS deployed globally. The system as defined cannot reach net-zero emissions if the share of incineration increases as projected without coupling incineration with CCS. Less organic chemicals are produced in a net-zero CO2 future than those in a no-policy scenario. Mitigation of feedstock emissions relies heavily on biogenic carbon used as an alternative feedstock and waste treatment of plastics. The only scenario that delivers net-negative CO2 emissions from the organic chemical sector (by 2070) combines greater use of biogenic feedstocks with a continued reliance on landfilling of waste plastic, versus recycling or incineration, which has trade-offs.
Assuntos
Dióxido de Carbono , Incineração , Dióxido de Carbono/análise , Incineração/métodos , Indústrias , Compostos Orgânicos , Carbono , PlásticosRESUMO
Antibiotic-resistant bacteria originating from hospitals are ultimately discharged to municipal wastewater treatment plants (WWTP), which may serve as important reservoirs for the spread of antibiotic resistant genes. This study traced and quantified the presence of a rare but clinically relevant antimicrobial resistance gene; Klebsiella pneumoniae carbapenamase (KPC)-and the viable organisms (KPCO) which carried this gene in hospital, non-hospital wastewater discharges, various compartments within a municipal WWTP, receiving water and sediment samples. High concentration of the gene, blaKPC harbored in viable and multispecies KPCO was detected in the hospital wastewater and in the forepart stages of the WWTP, but was not detected in the final effluent following UV disinfection. KPCO were not detected in multiple non-hospital sources of wastewater discharges tested. The treatment train used in the sampled WWTP was found to help remove and reduce KPCO load. Using whole-genome sequencing, a KPC-producing Klebsiella oxytoca strain identical to strains seen in the patients and hospital environment was isolated from the downstream receiving water on one sampling event. KPCO were also found to persist in the biosolids throughout the WWTP, but were not detected in the processed compost-products made from WWTP-biosolids. This study systematically demonstrates dissemination of KPCO from hospital point source to environment via municipal WWTP. Understanding hospitals as the origin and source of spread of some of the most clinically urgent antimicrobial-resistant organisms may help direct interventions that target rate at which antibiotic resistant bacteria evolve and spread via enhancement of wastewater treatment and mitigation of dissemination at source.
RESUMO
Congregate living poses one of the highest risk situations for the transmission of respiratory viruses including SARS-CoV-2. University dormitories exemplify such high-risk settings. We demonstrate the value of using building-level SARS-CoV-2 wastewater surveillance as an early warning system to inform when prevalence testing of all building occupants is warranted. Coordinated daily testing of composite wastewater samples and clinical testing in dormitories was used to prompt the screening of otherwise unrecognized infected occupants. We overlay the detection patterns in the context of regular scheduled occupant testing to validate a wastewater detection model. The trend of wastewater positivity largely aligned well with the clinical positivity and epidemiology of dormitory occupants. However, the predictive ability of wastewater-surveillance to detect new positive cases is hampered by convalescent shedding in recovered/noncontagious individuals as they return to the building. Building-level pooled wastewater-surveillance and forecasting is most productive for predicting new cases in low-prevalence instances at the community level. For higher-education facilities and other congregate living settings to remain in operation during a pandemic, a thorough surveillance-based decision-making system is vital. Building-level wastewater monitoring on a daily basis paired with regular testing of individual dormitory occupants is an effective and efficient approach for mitigating outbreaks on university campuses.
RESUMO
Wastewater-based monitoring for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the individual building level could be an efficient, passive means of early detection of new cases in congregate living settings, but this approach has not been validated. Preliminary samples were collected from a hospital and a local municipal wastewater treatment plant. Molecular diagnostic methods were compared side by side to assess feasibility, performance, and sensitivity. Refined sample collection and processing protocols were then used to monitor two occupied dormitory complexes (n = 105 and 66) over 8 weeks. Wastewater results were validated using known case counts from external clinical testing of building occupants. Results confirm that ultracentrifugation from a 24-h composite collection had a sensitivity of 96.2% and a specificity of 100%. However, the method could not distinguish new infectious cases from persistent convalescent shedding of SARS-CoV-2 RNA. If the detection of convalescent shedding is considered a false positive, then the sensitivity is 100% and specificity drops to 45%. It was determined that the proposed approach constitutes a highly sensitive wastewater surveillance method for detecting SARS-CoV-2, but it could not distinguish new infectious cases from persistent convalescent shedding. Future work must focus on approaches to distinguish new infections from convalescent shedding to fully realize the potential of building wastewater as a surveillance tool for congregate living. IMPORTANCE Some of the most severe outbreaks of COVID-19 have taken place in places where persons live together, such as nursing homes. Wastewater testing from individual buildings could be used for frequent pooled surveillance of virus from all occupants, including those who are contagious, with or without symptoms. This work provides a sensitive practical method for detecting infected individuals, as validated in two building complexes housing occupants who underwent frequent clinical testing performed by external entities. Although this sensitive method could be deployed now for pooled surveillance as an early warning system to limit outbreaks, the study shows that the approach will require further refinement to differentiate contagious, newly infected individuals from persons who have persistent viral fragments shedding in their stool outside the contagious period.
Assuntos
COVID-19/epidemiologia , Instituições Residenciais , SARS-CoV-2/isolamento & purificação , Águas Residuárias/virologia , COVID-19/diagnóstico , Humanos , Técnicas de Diagnóstico Molecular , Reprodutibilidade dos Testes , SARS-CoV-2/genética , Vigilância Epidemiológica Baseada em Águas ResiduáriasRESUMO
Antibiotics in the effluents of municipal wastewater treatment plants (WWTP) may create selective pressures to induce antibiotic resistance in bacteria downstream. This study evaluates ciprofloxacin (CIP) removal by a freshwater alga, Scenedesmus dimorphus, to assess the efficacy of algae-based tertiary treatment in reducing effluent-induced CIP resistance. Results show significant CIP removal in light-exposed samples without algae and experimental algae (EA) samples: 53% and 93%, respectively, over 144â¯h. A residual antibiotic potency assay reveals that untreated CIP is significantly more growth-inhibiting to a model bacterium (Escherichia coli) than the algae-treated and light-exposed samples during short exposures (6â¯h). Adaptive laboratory evolution (ALE), again using E. coli, reveals that treated samples exhibit reduced capacity to elicit CIP resistance during sustained exposures compared to untreated CIP. Finally, observed CIP resistance in the CIP-exposed ALE lineages is corroborated via genotype characterization, which reveals the presence of resistance-associated mutations in gyrase subunit A (gyrA) that are not present in ALE lineages exposed to algae treated or light-exposed samples. As such, algae-mediated tertiary treatment could be effective in suppressing CIP resistance in bacterial communities downstream from WWTP. In addition, ALE is useful for assessing the potential of wastewater-relevant samples to elicit antibiotic resistance downstream.
Assuntos
Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Scenedesmus/metabolismo , Eliminação de Resíduos Líquidos/métodos , Antibacterianos/isolamento & purificação , Antibacterianos/metabolismo , Ciprofloxacina/isolamento & purificação , Ciprofloxacina/metabolismo , DNA Girase/genética , Farmacorresistência Bacteriana/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Genótipo , Testes de Sensibilidade Microbiana , Mutação , Águas Residuárias/química , Poluentes Químicos da Água/isolamento & purificação , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/farmacologiaRESUMO
Overabundance of endocrine disruptors (EDs), such as steroid estrogens, in the natural environment disrupts hormone synthesis in aquatic organisms. Livestock and wastewater outflows contribute measurable quantities of steroid estrogens into the environment where they are picked up and transported via surface runoff and feedlot effluents into water matrices. E1, E2ß, E2α, E3 and EE2 are the most prevalent estrogens in these environmental systems. Estrogens in soils and water undergo several concurrent attenuation processes including sorption to particles, biotransformation, photo-transformation, and plant uptake. This review summarizes current studies on the attenuation and transport of steroid estrogens with a focus on estrogen attenuation and transport modeling. The authors use this information to synthesize appropriate strategies for reducing estrogenicity in the environment.
Assuntos
Organismos Aquáticos/efeitos dos fármacos , Disruptores Endócrinos/análise , Congêneres do Estradiol/análise , Poluentes Químicos da Água/análise , Organismos Aquáticos/metabolismo , Biodegradação Ambiental , Biotransformação , Disruptores Endócrinos/metabolismo , Disruptores Endócrinos/toxicidade , Congêneres do Estradiol/metabolismo , Congêneres do Estradiol/toxicidade , Modelos Teóricos , Águas Residuárias/química , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidadeRESUMO
Management of coalbed methane (CBM)-produced water is a crucial part of the water-energy nexus, especially as CBM is projected to play a key role as a bridge fuel in major economies. In this paper, we consider one management technique, i.e., desalination of CBM-produced water to generate potable water. We discuss a confluence of geographic, sociotechnical, regulatory, and other circumstances that could make this concept viable for select coal-bearing regions. Having said that, for maximizing benefits, it is prudent to take a synergistic view targeting multiple objectives (water access, health, environmental impacts, and ease of waste management). Thus, we make design recommendations and suggest a system-evaluation framework for making sustainable decisions related to produced-to-potable water systems. For instance, a key question is whether such systems should be centralized or decentralized-and this paper highlights crucial tradeoffs that are present in both the cases.
Assuntos
Água Potável , Metano , Carvão MineralRESUMO
The environmental impacts of algae biofuels have been evaluated by life-cycle assessment (LCA); however, these analyses have overlooked nitrous oxide (N2O), a potent greenhouse gas. A literature analysis was performed to estimate algal N2O emissions and assess the impacts of growth conditions on flux magnitudes. Nitrogen source and dissolved oxygen concentration were identified as possible key contributors; therefore, their individual and combined impacts were evaluated using bench-scale experiments. It was observed that maximum N2O emissions (77.5µg/galgae/day) occur under anoxic conditions with nitrite. Conversely, minimum emissions (6.25µg/galgae/day) occur under oxic conditions with nitrate. Aggregated N2O flux estimates were then incorporated into a LCA framework for algae biodiesel. Accounting for "low" N2O emissions mediated no significant increase (<1%) compared to existing GWP estimates; however, "high" N2O emissions mediate an increase of roughly 25%, potentially jeopardizing the anticipated economic and environmental performances of algae biofuels.
Assuntos
Biocombustíveis , Aquecimento Global , Nitrogênio/análise , Óxido Nitroso/análise , Oxigênio/química , Meio Ambiente , Nitratos/química , Nitritos/química , Nitrogênio/químicaRESUMO
Water resource recovery facilities (WRRFs) are asked to improve both energy efficiency and nutrient removal efficacy. Integration of algaculture offers several potential synergies that could address these goals, including an opportunity to leverage anaerobic digestion at WRRFs. In this study, bench-scale experiments are used to measure methane yield during co-digestion of Scenedesmus dimorphus or mixed WRRF-grown algae with WRRF biosolids. The results indicate that normalized methane yield decreases with increasing algae content in a manner than can be reasonably well fit using linear regression (R(2) = 67%). It is thus possible to predict methane yield for any mixture of algae and biosolids based on the methane yield of the biosolids alone. Using revised methane yields, the energy return on investment of a typical WRRF increases from 0.53 (without algae) to 0.66 (with algae). Thus, algae-based wastewater treatment may hold promise for improving WRRF energy efficiency without compromising effluent quality.
Assuntos
Metano/metabolismo , Scenedesmus/metabolismo , Eliminação de Resíduos Líquidos/métodos , Anaerobiose , Microalgas/metabolismo , Modelos Teóricos , Nitrogênio/metabolismo , Fósforo/metabolismo , Esgotos/química , Águas ResiduáriasRESUMO
This study uses a systems-level modeling approach to illustrate a novel synergy between municipal wastewater treatment and large-scale algaculture for production of bio-energy, whereby algae-mediated tertiary treatment provides efficient removal of unregulated, strongly estrogenic steroid hormones from the secondary effluent. Laboratory results from previously published studies suggested that algae-mediated treatment could deliver roughly 75-85% removal of a model estrogen (17ß-estradiol) within typical algae pond residence times. As such, experimental results are integrated into a comprehensive life cycle assessment (LCA) framework, to assess the environmental performance of an algae-based tertiary treatment system relative to three conventional tertiary treatments: ozonation, UV irradiation, and adsorption onto granular activated carbon. Results indicate that the algae-mediated tertiary treatment is superior to the selected benchmarks on the basis of raw energy return on investment (EROI) and normalized energy use per mass of estrogenic toxicity removed. It is the only tertiary treatment system that creates more energy than it consumes, and it delivers acceptable effluent quality for nutrient and coliform concentrations while rendering a significant reduction in estrogenic toxicity. These results highlight the dual water and energy sustainability benefits that accrue from the integration of municipal wastewater treatment and large-scale algae farming.
Assuntos
Estrogênios/análise , Microalgas/metabolismo , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Biodegradação AmbientalRESUMO
This study evaluates the social, economic, and environmental sustainability of ceramic filters impregnated with silver nanoparticles for point-of-use (POU) drinking water treatment in developing countries. The functional unit for this analysis was the amount of water consumed by a typical household over ten years (37,960 L), as delivered by either the POU technology or a centralized water treatment and distribution system. Results indicate that the ceramic filters are 3-6 times more cost-effective than the centralized water system for reduction of waterborne diarrheal illness among the general population and children under five. The ceramic filters also exhibit better environmental performance for four of five evaluated life cycle impacts: energy use, water use, global warming potential, and particulate matter emissions (PM10). For smog formation potential, the centralized system is preferable to the ceramic filter POU technology. This convergence of social, economic, and environmental criteria offers clear indication that the ceramic filter POU technology is a more sustainable choice for drinking water treatment in developing countries than the centralized treatment systems that have been widely adopted in industrialized countries.
Assuntos
Cerâmica , Filtração/instrumentação , Nanopartículas Metálicas , Prata , Purificação da Água/instrumentação , Adulto , Pré-Escolar , Análise Custo-Benefício , Países em Desenvolvimento , Diarreia/epidemiologia , Diarreia/prevenção & controle , Água Potável , Características da Família , Filtração/economia , Infecções por HIV/epidemiologia , Humanos , Qualidade de Vida , Purificação da Água/economiaRESUMO
Life cycle assessment (LCA) has been used widely to estimate the environmental implications of deploying algae-to-energy systems even though no full-scale facilities have yet to be built. Here, data from a pilot-scale facility using hydrothermal liquefaction (HTL) is used to estimate the life cycle profiles at full scale. Three scenarios (lab-, pilot-, and full-scale) were defined to understand how development in the industry could impact its life cycle burdens. HTL-derived algae fuels were found to have lower greenhouse gas (GHG) emissions than petroleum fuels. Algae-derived gasoline had significantly lower GHG emissions than corn ethanol. Most algae-based fuels have an energy return on investment between 1 and 3, which is lower than petroleum biofuels. Sensitivity analyses reveal several areas in which improvements by algae bioenergy companies (e.g., biocrude yields, nutrient recycle) and by supporting industries (e.g., CO2 supply chains) could reduce the burdens of the industry.
Assuntos
Poluição do Ar/análise , Biocombustíveis/análise , Biotecnologia/métodos , Eucariotos/metabolismo , Temperatura , Água/química , Gasolina/análise , Efeito Estufa , Modelos Teóricos , Projetos Piloto , TermodinâmicaRESUMO
Many current fate and transport models based on the assumption of instantaneous sorption equilibrium of contaminants in the water column may not be valid for certain pharmaceuticals with long times to reach sorption equilibrium. In this study, a sorption kinetics model was developed and incorporated into a water quality model for the Patuxent River Estuary to evaluate the effect of sorption kinetics. Model results indicate that the assumption of instantaneous sorption equilibrium results in significant under-prediction of water column concentrations for some pharmaceuticals. The relative difference between predicted concentrations for the instantaneous versus kinetic approach is as large as 150% at upstream locations in the Patuxent Estuary. At downstream locations, where sorption processes have had sufficient time to reach equilibrium, the relative difference decreases to roughly 25%. This indicates that sorption kinetics affect a model's ability to capture accumulation of pharmaceuticals into riverbeds and the transport of pharmaceuticals in estuaries. These results offer strong evidence that chemicals are not removed from the water column as rapidly as has been assumed on the basis of equilibrium-based analyses. The findings are applicable not only for pharmaceutical compounds, but also for diverse contaminants that reach sorption equilibrium slowly.
Assuntos
Estuários , Sedimentos Geológicos/química , Preparações Farmacêuticas/química , Poluentes Químicos da Água/química , Adsorção , Monitoramento Ambiental , Sedimentos Geológicos/análise , Cinética , Maryland , Modelos Teóricos , Preparações Farmacêuticas/análise , Movimentos da Água , Poluentes Químicos da Água/análiseRESUMO
Life cycle assessment (LCA) and life cycle costing (LCC) are used to investigate integrated algae bioenergy production and nutrient management on small dairy farms. Four cases are considered: a reference land-application scenario (REF), anaerobic digestion with land-application of liquid digestate (AD), and anaerobic digestion with recycling of liquid digestate to either an open-pond algae cultivation system (OPS) or an algae turf scrubber (ATS). LCA indicates that all three "improved" scenarios (AD, OPS, and ATS) are environmentally favorable compared to REF, exhibiting increases in net energy output up to 854GJ/yr, reductions in net eutrophication potential up to 2700kg PO(4)-eq/yr, and reductions in global warming potential up to 196Mg CO(2)-eq/yr. LCC reveals that the integrated algae systems are much more financially attractive than either AD or REF, whereby net present values (NPV) are as follows: $853,250 for OPS, $790,280 for ATS, -$62,279 for REF, and -$211,126 for AD. However, these results are highly dependent on the sale price for nutrient credits. Comparison of LCA and LCC results indicates that robust nutrient credit markets or other policy tools are required to align financial and environmental preferability of energy production systems and foster widespread adoption of sustainable nutrient management systems.
Assuntos
Biocombustíveis , Fertilizantes , Esterco , Microalgas , Gerenciamento de Resíduos/economia , Anaerobiose , Animais , Bovinos , Conservação de Recursos Energéticos , Indústria de Laticínios , Eutrofização , Aquecimento Global , Gerenciamento de Resíduos/métodosRESUMO
The widespread occurrence of the brominated flame retardant tetrabromobisphenol A (TBBPA) makes it a possible source of concern. Our experiments suggest that TBBPA can be effectively transformed by the naturally occurring laccase enzyme from Trametes versicolor. These reactions follow second-order kinetics, whereby apparent removal rate is a function of both substrate and enzyme concentrations. For reactions at different initial concentrations and with or without natural organic matter (NOM), reaction products are identified using liquid or gas chromatography with mass spectrometry. Detailed reaction pathways are proposed. It is postulated that two TBBPA radicals resulting from a laccase-mediated reaction are coupled together via interaction of an oxygen atom on one radical and a propyl-substituted aromatic carbon atom on the other. A 2,6-dibromo-4-isopropylphenol carbocation is then eliminated from the radical dimer. All but one of the detected products arise from either substitution or proton elimination of the 2,6-dibromo-4-isopropylphenol carbocation. Three additional products are identified for reactions in the presence of NOM, which suggests that reaction occurs between NOM and TBBPA radical. Data from acute immobilization tests with Daphnia confirm that TBBPA toxicity is effectively eliminated by laccase-catalyzed TBBPA removal. These findings are useful for understanding laccase-mediated TBBPA reactions and could eventually lead to development of novel methods to control TBBPA contamination.
Assuntos
Retardadores de Chama/isolamento & purificação , Lacase/metabolismo , Bifenil Polibromatos/isolamento & purificação , Trametes/enzimologia , Poluentes Químicos da Água/isolamento & purificação , Animais , Daphnia/efeitos dos fármacos , Daphnia/fisiologia , Retardadores de Chama/metabolismo , Retardadores de Chama/toxicidade , Bifenil Polibromatos/metabolismo , Bifenil Polibromatos/toxicidade , Trametes/metabolismo , Água/análise , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidadeRESUMO
Algae are an attractive energy source, but important questions still exist about the sustainability of this technology on a large scale. Two particularly important questions concern the method of cultivation and the type of algae to be used. This present study combines elements of life cycle analysis (LCA) and life cycle costing (LCC) to evaluate open pond (OP) systems and horizontal tubular photobioreactors (PBRs) for the cultivation of freshwater (FW) or brackish-to-saline water (BSW) algae. Based on the LCA, OPs have lower energy consumption and greenhouse gas emissions than PBRs; e.g., 32% less energy use for construction and operation. According to the LCC, all four systems are currently financially unattractive investments, though OPs are less so than PBRs. BSW species deliver better energy and GHG performance and higher profitability than FW species in both OPs and PBRs. Sensitivity analyses suggest that improvements in critical cultivation parameters (e.g., CO(2) utilization efficiency or algae lipid content), conversion parameters (e.g., anaerobic digestion efficiency), and market factors (e.g., costs of CO(2) and electricity, or sale prices for algae biodiesel) could alter these results.
Assuntos
Biocombustíveis/economia , Biotecnologia/economia , Biotecnologia/métodos , Eucariotos/crescimento & desenvolvimento , Custos e Análise de Custo , Eletricidade , Água Doce , Gases/análise , Efeito Estufa , Salinidade , TermodinâmicaRESUMO
This research investigates the environmental behavior of two widely prescribed cholesterol-lowering statin drugs that are expected to be present at significant concentrations in wastewater influents, namely: atorvastatin and simvastatin. Batch biodegradation experiments suggest that both statins are well degraded during secondary treatment, and removal rates exhibit a substrate-enhancement model reflecting elements of both first-order behavior and cometabolism. Resulting biodegradation parameters are used in conjunction with literature sorption parameters to construct a mass-balance model of statin concentrations during conventional treatment. Model results exhibit excellent accuracy compared to measurements from a medium-sized WWTP in the Southeastern USA. Influent concentrations of 1.56 µg L(-1) and 1.23 µg L(-1) were measured for atorvastatin and simvastatin. Results also suggest that 85-90% of each drug is removed during conventional treatment, with sorption accounting for less than 10% of overall removal. Expected effluent concentrations are orders of magnitude less than previously reported ecotoxicity thresholds for both drugs. Overall, results suggest statin active ingredients do not pose a significant environmental threat. It is recommended that future work characterize the fate of statin metabolites and that the same mass-balance modeling approach be used to assess other highly-prescribed pharmaceutical drugs.
Assuntos
Ácidos Heptanoicos/metabolismo , Pirróis/metabolismo , Sinvastatina/metabolismo , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/metabolismo , Atorvastatina , Biomassa , Biotransformação , Ácidos Heptanoicos/química , Modelos Estatísticos , Peso Molecular , Pirróis/química , Reprodutibilidade dos Testes , Esgotos/microbiologia , Sinvastatina/química , Poluentes Químicos da Água/químicaRESUMO
The fate and transport of endocrine disrupting chemicals (EDCs) in ambient river waters is a major concern associated with effluents from municipal wastewater treatment plants (WWTPs). This paper presents a methodology for quantifying the spatial distribution of EDCs in a river mixing zone. The core of the technical analysis is based on a two-dimensional steady-state analytical model characterized by ambient turbulence in the receiving water. This model was first calibrated with mass transport data from field measurements for a conservative substance (electrical conductivity) and then used to predict aqueous-phase EDC concentrations throughout a WWTP mixing zone. To demonstrate the usefulness of this methodology for water quality management purposes, the modeling framework presented in this paper was used to determine a lumped in-stream attenuation rate constant (k(d)=3 d(-1)) for 17ß-estradiol under natural conditions. This rate constant likely accounts for the combined contributions of physical sorption, photolysis, microbial and chemical degradation, and the measured value is highly consistent with previously published results from bench-scale removal experiments.
Assuntos
Disruptores Endócrinos/análise , Monitoramento Ambiental/métodos , Estradiol/análise , Poluentes Químicos da Água/análise , Cromatografia Líquida , Condutividade Elétrica , Modelos Biológicos , Rios/química , Extração em Fase Sólida , Espectrometria de Massas por Ionização por Electrospray , Virginia , Eliminação de Resíduos LíquidosRESUMO
A meta-analysis of several published life cycle assessments of algae-to-energy systems was developed to better understand the environmental implications of deploying this technology at large scales. Taken together, results from these six studies seemed largely inconclusive because of differences in modeling assumptions and system boundaries. To overcome this, the models were normalized using a generic pathway for cultivating algae in open ponds, converting it into biodiesel, and processing the nonlipid fraction using anaerobic digestion. Meta-analysis results suggest that algae-based biodiesel would result in energy consumption and greenhouse gas emissions on par with terrestrial alternatives such as corn ethanol and soy biodiesel. Net energy ratio and normalized greenhouse gas emissions were 1.4 MJ produced/MJ consumed and 0.19 kg CO(2)-equivalent/km traveled, respectively. A scenario analysis underscores the extent to which breakthroughs in key technologies are needed before algae-derived fuels become an attractive alternative to conventional biofuels.
Assuntos
Bactérias/química , Biocombustíveis , Transferência de Energia , Modelos Biológicos , Modelos Químicos , Simulação por ComputadorRESUMO
Several classes of oxidative enzymes have shown promise for efficient removal of endocrine disrupting compounds (EDCs) that are resistant to conventional wastewater treatments. Although the kinetics of reactions between individual EDCs and selected oxidative enzymes are well documented in the literature, there has been little investigation of reactions with EDC mixtures. This makes it impossible to predict how enzyme-mediated treatment systems will perform since wastewater effluents generally contain multiple EDCs. This paper reports pseudo-first order rate constants for a model oxidative enzyme, horseradish peroxidase (HRP), during single-substrate (k1) and mixed-substrate (k1-MIX) reactions. Measured values are compared with literature values of three Michaelis-Menten parameters: half-saturation constant (KM), enzyme turnover number (kCAT), and the ratio kCAT/KM. Published reports had suggested that each of these could be correlated with HRP reactivity towards EDCs in mixtures, and empirical results from this study show that KM can be used to predict the sequence of EDC removal reactions within a particular mixture. We also observed that k1-MIX values were generally greater than k1 values and that compounds exhibiting greatest estrogenic toxicities reacted most rapidly in a given mixture. Finally, because KM may be tedious to measure for every EDC of interest, we have constructed a quantitative structure-activity relationship (QSAR) model to predict these values. This model predicts KM quite accurately (R2=89%) based on two molecular characteristics: molecular volume and hydration energy. Its accuracy makes this QSAR a useful tool for predicting which EDCs will be removed most efficiently during enzyme treatment of EDC mixtures.