Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143757

RESUMO

Charge detection mass spectrometry (CDMS) is a well-established technique that provides direct mass spectral outputs regardless of analyte heterogeneity or molecular weight. Over the past few years, it has been demonstrated that CDMS can be multiplexed on Orbitrap analyzers utilizing an integrated approach termed individual ion mass spectrometry (I2MS). To further increase adaptability, robustness, and throughput of this technique, here, we present a method that utilizes numerous integrated equipment components including a Kingfisher system, SampleStream platform, and Q Exactive mass spectrometer to provide a fully automated workflow for immunoprecipitation, sample preparation, injection, and subsequent I2MS acquisition. This automated workflow has been applied to a cohort of 58 test subjects to determine individualized patient antibody responses to SARS-CoV-2 antigens. Results from a range of serum donors include 37 subject I2MS spectra that contained a positive COVID-19 antibody response and 21 I2MS spectra that contained a negative COVID-19 antibody response. This high-throughput automated I2MS workflow can currently process over 100 samples per week and is general for making immunoprecipitation-MS workflows achieve proteoform resolution.

2.
Anal Chem ; 95(47): 17263-17272, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37956201

RESUMO

Intact protein mass spectrometry (MS) coupled with liquid chromatography was applied to characterize the pharmacokinetics and stability profiles of therapeutic proteins. However, limitations from chromatography, including throughput and carryover, result in challenges with handling large sample numbers. Here, we combined intact protein MS with multiple front-end separations, including affinity capture, SampleStream, and high-field asymmetric waveform ion mobility spectrometry (FAIMS), to perform high-throughput and specific mass measurements of a multivalent antibody with one antigen-binding fragment (Fab) fused to an immunoglobulin G1 (IgG1) antibody. Generic affinity capture ensures the retention of both intact species 1Fab-IgG1 and the tentative degradation product IgG1. Subsequently, the analytes were directly loaded into SampleStream, where each injection occurs within ∼30 s. By separating ions prior to MS detection, FAIMS further offered improvement in signal-overnoise by ∼30% for denatured protein MS via employing compensation voltages that were optimized for different antibody species. When enhanced FAIMS transmission of 1Fab-IgG1 was employed, a qualified assay was established for spiked-in serum samples between 0.1 and 25 µg/mL, resulting in ∼10% accuracy bias and precision coefficient of variation. Selective FAIMS transmission of IgG1 as the degradation surrogate product enabled more sensitive detection of clipped species for intact 1Fab-IgG1 at 5 µg/mL in serum, generating an assay to measure 1Fab-IgG1 truncation between 2.5 and 50% with accuracy and precision below 20% bias and coefficient of variation. Our results revealed that the SampleStream-FAIMS-MS platform affords high throughput, selectivity, and sensitivity for characterizing therapeutic antibodies from complex biomatrices qualitatively and quantitatively.


Assuntos
Imunoglobulina G , Espectrometria de Mobilidade Iônica , Espectrometria de Mobilidade Iônica/métodos , Espectrometria de Massas/métodos , Cromatografia Líquida , Íons/química
3.
Anal Chem ; 94(48): 16543-16548, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36416365

RESUMO

Charge detection mass spectrometry (CDMS) provides mass domain spectra of large and highly heterogeneous analytes. Over the past few years, we have multiplexed CDMS on Orbitrap instruments, an approach termed Individual Ion Mass Spectrometry (I2MS). Until now, I2MS required manual adjustment of injection times to collect spectra in the individual ion regime. To increase sample adaptability, enable online separations, and reduce the barrier for entry, we report an automated method for adjusting ion injection times in I2MS for image current detectors like the Orbitrap. Automatic Ion Control (AIC) utilizes the density of signals in the m/z domain to adjust an ensemble of ions down to the individual ion regime in real-time. The AIC technique was applied to both denatured and native proteins yielding high quality data without human intervention directly in the mass domain.


Assuntos
Proteínas , Humanos , Espectrometria de Massas/métodos , Íons/química , Proteínas/análise
4.
J Proteome Res ; 21(1): 274-288, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34878788

RESUMO

Methods of antibody detection are used to assess exposure or immunity to a pathogen. Here, we present Ig-MS, a novel serological readout that captures the immunoglobulin (Ig) repertoire at molecular resolution, including entire variable regions in Ig light and heavy chains. Ig-MS uses recent advances in protein mass spectrometry (MS) for multiparametric readout of antibodies, with new metrics like Ion Titer (IT) and Degree of Clonality (DoC) capturing the heterogeneity and relative abundance of individual clones without sequencing of B cells. We applied Ig-MS to plasma from subjects with severe and mild COVID-19 and immunized subjects after two vaccine doses, using the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 as the bait for antibody capture. Importantly, we report a new data type for human serology, that could use other antigens of interest to gauge immune responses to vaccination, pathogens, or autoimmune disorders.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Humanos , Espectrometria de Massas , Glicoproteína da Espícula de Coronavírus/genética
5.
J Am Heart Assoc ; 10(17): e019890, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34472376

RESUMO

Background ApoAI (apolipoproteins AI) and apoAII (apolipoprotein AII) are structural and functional proteins of high-density lipoproteins (HDL) which undergo post-translational modifications at specific residues, creating distinct proteoforms. While specific post-translational modifications have been reported to alter apolipoprotein function, the full spectrum of apoAI and apoAII proteoforms and their associations with cardiometabolic phenotype remains unknown. Herein, we comprehensively characterize apoAI and apoAII proteoforms detectable in serum and their post-translational modifications and quantify their associations with cardiometabolic health indices. Methods and Results Using top-down proteomics (mass-spectrometric analysis of intact proteins), we analyzed paired serum samples from 150 CARDIA (Coronary Artery Risk Development in Young Adults) study participants from year 20 and 25 exams. Measuring 15 apoAI and 9 apoAII proteoforms, 6 of which carried novel post-translational modifications, we quantified associations between percent proteoform abundance and key cardiometabolic indices. Canonical (unmodified) apoAI had inverse associations with HDL cholesterol and HDL-cholesterol efflux, and positive associations with obesity indices (body mass index, waist circumference), and triglycerides, whereas glycated apoAI showed positive associations with serum glucose and diabetes mellitus. Fatty-acid‒modified ApoAI proteoforms had positive associations with HDL cholesterol and efflux, and inverse associations with obesity indices and triglycerides. Truncated and dimerized proteoforms of apoAII were associated with HDL cholesterol (positively) and obesity indices (inversely). Several proteoforms had no significant associations with phenotype. Conclusions Associations between apoAI and AII and cardiometabolic indices are proteoform-specific. These results provide "proof-of-concept" that precise chemical characterization of human apolipoproteins will yield improved insights into the complex pathways through which proteins signify and mediate health and disease.


Assuntos
Apolipoproteína A-II , Apolipoproteína A-I , Doenças Cardiovasculares , Adulto , Apolipoproteína A-I/sangue , Apolipoproteína A-II/sangue , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , HDL-Colesterol/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/diagnóstico , Obesidade/epidemiologia , Processamento de Proteína Pós-Traducional , Proteômica , Triglicerídeos/sangue
6.
medRxiv ; 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34268518

RESUMO

Methods of antibody detection are used to assess exposure or immunity to a pathogen. Here, we present Ig-MS , a novel serological readout that captures the immunoglobulin (Ig) repertoire at molecular resolution, including entire variable regions in Ig light and heavy chains. Ig-MS uses recent advances in protein mass spectrometry (MS) for multi-parametric readout of antibodies, with new metrics like Ion Titer (IT) and Degree of Clonality (DoC) capturing the heterogeneity and relative abundance of individual clones without sequencing of B cells. We apply Ig-MS to plasma from subjects with severe & mild COVID-19, using the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 as the bait for antibody capture. Importantly, we report a new data type for human serology, with compatibility to any recombinant antigen to gauge our immune responses to vaccination, pathogens, or autoimmune disorders.

7.
J Am Soc Mass Spectrom ; 32(7): 1659-1670, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34043341

RESUMO

Different proteoform products of the same gene can exhibit differing associations with health and disease, and their patterns of modifications may offer more precise markers of phenotypic differences between individuals. However, currently employed protein-biomarker discovery and quantification tools, such as bottom-up proteomics and ELISAs, are mostly proteoform-unaware. Moreover, the current throughput for proteoform-level analyses by liquid chromatography mass spectrometry (LCMS) for quantitative top-down proteomics is incompatible with population-level biomarker surveys requiring robust, faster proteoform analysis. To this end, we developed immunoprecipitation coupled to SampleStream mass spectrometry (IP-SampleStream-MS) as a high-throughput, automated technique for the targeted quantification of proteoforms. We applied IP-SampleStream-MS to serum samples of 25 individuals to assess the proteoform abundances of apolipoproteins A-I (ApoA-I) and C-III (ApoC-III). The results for ApoA-I were compared to those of LCMS for these individuals, with IP-SampleStream-MS showing a >7-fold higher throughput with >50% better analytical variation. Proteoform abundances measured by IP-SampleStream-MS correlated strongly to LCMS-based values (R2 = 0.6-0.9) and produced convergent proteoform-to-phenotype associations, namely, the abundance of canonical ApoA-I was associated with lower HDL-C (R = 0.5) and glycated ApoA-I with higher fasting glucose (R = 0.6). We also observed proteoform-to-phenotype associations for ApoC-III, 22 glycoproteoforms of which were characterized in this study. The abundance of ApoC-III modified by a single N-acetyl hexosamine (HexNAc) was associated with indices of obesity, such as BMI, weight, and waist circumference (R ∼ 0.7). These data show IP-SampleStream-MS to be a robust, scalable workflow for high-throughput associations of proteoforms to phenotypes.


Assuntos
Imunoprecipitação , Espectrometria de Massas , Proteômica , Adulto , Apolipoproteína A-I/análise , Apolipoproteína A-I/química , Cromatografia Líquida , Desenho de Equipamento , Feminino , Humanos , Imunoprecipitação/instrumentação , Imunoprecipitação/métodos , Masculino , Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Pessoa de Meia-Idade , Proteínas/análise , Proteínas/química , Proteômica/instrumentação , Proteômica/métodos
8.
Anal Chem ; 93(5): 2723-2727, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33322893

RESUMO

Native mass spectrometry involves transferring large biomolecular complexes into the gas phase, enabling the characterization of their composition and stoichiometry. However, the overlap in distributions created by residual solvation, ionic adducts, and post-translational modifications creates a high degree of complexity that typically goes unresolved at masses above ∼150 kDa. Therefore, native mass spectrometry would greatly benefit from higher resolution approaches for intact proteins and their complexes. By recording mass spectra of individual ions via charge detection mass spectrometry, we report isotopic resolution for pyruvate kinase (232 kDa) and ß-galactosidase (466 kDa), extending the limits of isotopic resolution for high mass and high m/z by >2.5-fold and >1.6-fold, respectively.


Assuntos
Processamento de Proteína Pós-Traducional , Proteínas , Íons , Espectrometria de Massas
9.
PLoS One ; 15(10): e0240829, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33104722

RESUMO

Histone post-translational modifications (PTMs) create a powerful regulatory mechanism for maintaining chromosomal integrity in cells. Histone acetylation and methylation, the most widely studied histone PTMs, act in concert with chromatin-associated proteins to control access to genetic information during transcription. Alterations in cellular histone PTMs have been linked to disease states and have crucial biomarker and therapeutic potential. Traditional bottom-up mass spectrometry of histones requires large numbers of cells, typically one million or more. However, for some cell subtype-specific studies, it is difficult or impossible to obtain such large numbers of cells and quantification of rare histone PTMs is often unachievable. An established targeted LC-MS/MS method was used to quantify the abundance of histone PTMs from cell lines and primary human specimens. Sample preparation was modified by omitting nuclear isolation and reducing the rounds of histone derivatization to improve detection of histone peptides down to 1,000 cells. In the current study, we developed and validated a quantitative LC-MS/MS approach tailored for a targeted histone assay of 75 histone peptides with as few as 10,000 cells. Furthermore, we were able to detect and quantify 61 histone peptides from just 1,000 primary human stem cells. Detection of 37 histone peptides was possible from 1,000 acute myeloid leukemia patient cells. We anticipate that this revised method can be used in many applications where achieving large cell numbers is challenging, including rare human cell populations.


Assuntos
Histonas/genética , Histonas/metabolismo , Proteômica/métodos , Acetilação , Linhagem Celular , Cromatografia Líquida/métodos , Humanos , Metilação , Peptídeos/química , Processamento de Proteína Pós-Traducional/genética , Espectrometria de Massas em Tandem/métodos
10.
Nat Methods ; 17(4): 391-394, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32123391

RESUMO

An Orbitrap-based ion analysis procedure determines the direct charge for numerous individual protein ions to generate true mass spectra. This individual ion mass spectrometry (I2MS) method for charge detection enables the characterization of highly complicated mixtures of proteoforms and their complexes in both denatured and native modes of operation, revealing information not obtainable by typical measurements of ensembles of ions.


Assuntos
Espectrometria de Massas/métodos , Proteínas/química , Proteômica/métodos , Humanos
11.
J Am Soc Mass Spectrom ; 31(3): 763-767, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32126774

RESUMO

Intact protein mass spectrometry (MS) via electrospray-based methods is often degraded by low-mass contaminants, which can suppress the spectral quality of the analyte of interest via space-charge effects. Consequently, selective removal of contaminants by their mobilities would benefit native MS if achieved without additional hardware and before the mass analyzer regions used for selection, analyte readout, or tandem MS. Here, we use the high-pressure multipole within the source of an Orbitrap Tribrid as the foundation for a coarse ion filter. Using this method, we show complete filtration of 2 mM polyethylene glycol (PEG-1000) during native MS of SILu mAb antibody present at a 200× lower concentration. We also show the generality of the process by rescuing 10 µM tetrameric pyruvate kinase from 2 mM PEG-1000, asserting this voltage rollercoaster filtering (VRF) method for use in native MS as an efficient alternative to conventional purification methods.


Assuntos
Filtração/instrumentação , Polietilenoglicóis/isolamento & purificação , Proteínas/química , Animais , Anticorpos Monoclonais/química , Desenho de Equipamento , Humanos , Espectrometria de Massas/instrumentação , Piruvato Quinase/química
12.
J Proteome Res ; 19(3): 1346-1350, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32032494

RESUMO

Charge detection mass spectrometry (CDMS) is mainly utilized to determine the mass of intact molecules. Previous applications of CDMS have determined the mass-to-charge ratio and the charge of large polymers, DNA molecules, and native protein complexes, from which corresponding mass values could be assigned. Recent advances have demonstrated that CDMS using an Orbitrap mass analyzer yields the reliable assignment of integer charge states that enables individual ion mass spectrometry (I2MS) and spectral output directly into the mass domain. Here I2MS analysis was extended to isotopically resolved fragment ions from intact proteoforms for the first time. With a radically different bias for ion readout, I2MS identified low-abundance fragment ions containing many hundreds of residues that were undetectable by standard Orbitrap measurements, leading to a doubling in the sequence coverage of triosephosphate isomerase. Thus MS/MS with the detection of individual ions (MS/I2MS) provides a far greater ability to detect high mass fragment ions and exhibits strong complementarity to traditional spectral readout in this, its first application to top-down mass spectrometry.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Íons
13.
J Am Soc Mass Spectrom ; 31(3): 574-581, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-31971796

RESUMO

New tools and techniques have dramatically accelerated the field of structural biology over the past several decades. One potent and relatively new technique that is now being utilized by an increasing number of laboratories is the combination of so-called "native" electrospray ionization (ESI) with mass spectrometry (MS) for the characterization of proteins and their noncovalent complexes. However, native ESI-MS produces species at increasingly higher m/z with increasing molecular weight, leading to substantial differences when compared to traditional mass spectrometric approaches using denaturing ESI solutions. Herein, these differences are explored both theoretically and experimentally to understand the role that charge state and isotopic distributions have on signal-to-noise (S/N) as a function of complex molecular weight and how the reduced collisional cross sections of proteins electrosprayed under native solution conditions can lead to improved data quality in image current mass analyzers, such as Orbitrap and FT-ICR. Quantifying ion signal differences under native and denatured conditions revealed enhanced S/N and a more gradual decay in S/N with increasing mass under native conditions. Charge state and isotopic S/N models, supported by experimental results, indicate that analysis of proteins under native conditions at 100 kDa will be 17 times more sensitive than analysis under denatured conditions at the same mass. Higher masses produce even larger sensitivity gains. Furthermore, reduced cross sections under native conditions lead to lower levels of ion decay within an Orbitrap scan event over long transient acquisition times, enabling isotopic resolution of species with molecular weights well in excess of those typically resolved under denatured conditions.


Assuntos
Proteínas/química , Animais , Humanos , Íons/química , Desnaturação Proteica , Espectrometria de Massas por Ionização por Electrospray , Eletricidade Estática
14.
Mol Cell Proteomics ; 19(2): 405-420, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31888965

RESUMO

Top-down proteomics studies intact proteoform mixtures and offers important advantages over more common bottom-up proteomics technologies, as it avoids the protein inference problem. However, achieving complete molecular characterization of investigated proteoforms using existing technologies remains a fundamental challenge for top-down proteomics. Here, we benchmark the performance of ultraviolet photodissociation (UVPD) using 213 nm photons generated by a solid-state laser applied to the study of intact proteoforms from three organisms. Notably, the described UVPD setup applies multiple laser pulses to induce ion dissociation, and this feature can be used to optimize the fragmentation outcome based on the molecular weight of the analyzed biomolecule. When applied to complex proteoform mixtures in high-throughput top-down proteomics, 213 nm UVPD demonstrated a high degree of complementarity with the most employed fragmentation method in proteomics studies, higher-energy collisional dissociation (HCD). UVPD at 213 nm offered higher average proteoform sequence coverage and degree of proteoform characterization (including localization of post-translational modifications) than HCD. However, previous studies have shown limitations in applying database search strategies developed for HCD fragmentation to UVPD spectra which contains up to nine fragment ion types. We therefore performed an analysis of the different UVPD product ion type frequencies. From these data, we developed an ad hoc fragment matching strategy and determined the influence of each possible ion type on search outcomes. By paring down the number of ion types considered in high-throughput UVPD searches from all types down to the four most abundant, we were ultimately able to achieve deeper proteome characterization with UVPD. Lastly, our detailed product ion analysis also revealed UVPD cleavage propensities and determined the presence of a product ion produced specifically by 213 nm photons. All together, these observations could be used to better elucidate UVPD dissociation mechanisms and improve the utility of the technique for proteomic applications.


Assuntos
Proteômica/métodos , Raios Ultravioleta , Animais , Anidrases Carbônicas , Células Cultivadas , Cromatografia Líquida , Fibroblastos , Proteínas Fúngicas , Humanos , Camundongos , Miócitos Cardíacos , Mioglobina , Fótons , Pseudomonas aeruginosa , Espectrometria de Massas em Tandem , Ubiquitina
15.
Anal Chem ; 92(2): 2186-2193, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31880920

RESUMO

With the rapid rise of therapeutic antibodies and antibody-drug conjugates, significant investments have been made in developing workflows that utilize mass spectrometry to detect these intact molecules, the large fragments generated by their selective digestion, and the peptides generated by traditional proteomics workflows. The resultant data is used to gain insight into a wide range of parameters, including primary sequence, disulfide bonding, glycosylation patterns, biotransformation, and more. However, many of the technologies utilized to couple these workflows to mass spectrometers have significant limitations that force nonoptimal modifications to upstream sample preparation steps, limit the throughput of high-volume workflows, and prevent the harmonization of diverse experiments onto a single hardware platform. Here, we describe a new analytical platform that enables direct and high-throughput coupling to electrospray ionization mass spectrometry. The SampleStream platform is compatible with both native and denaturing electrospray, operates with a throughput of up to 15 s/sample, provides extensive concentration of dilute samples, and affords similar sensitivity to comparable liquid chromatographic methods.


Assuntos
Anticorpos Monoclonais/análise , Ensaios de Triagem em Larga Escala , Imunoconjugados/análise , Ensaios de Triagem em Larga Escala/instrumentação , Software , Espectrometria de Massas por Ionização por Electrospray/instrumentação
16.
J Am Soc Mass Spectrom ; 30(11): 2200-2203, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31512223

RESUMO

Charge detection mass spectrometry (CDMS) of low-level signals is currently limited to the analysis of individual ions that generate a persistent signal during the entire observation period. Ions that disintegrate during the observation period produce reduced frequency domain signal amplitudes, which lead to an underestimation of the ion charge state, and thus the ion mass. The charge assignment can only be corrected through an accurate determination of the time of ion disintegration. The traditional mechanisms for temporal signal analysis have severe limitations for temporal resolution, spectral resolution, and signal-to-noise ratios. Selective Temporal Overview of Resonant Ions (STORI) plots provide a new framework to accurately analyze low-level time domain signals of individual ions. STORI plots allow for complete correction of intermittent signals, the differentiation of single and multiple ions at the same frequency, and the association of signals that spontaneously change frequency.

17.
J Am Soc Mass Spectrom ; 30(7): 1190-1198, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30963455

RESUMO

Native mass spectrometry (nMS) is a technique growing at the interface of analytical chemistry, structural biology, and proteomics that enables the detection and partial characterization of non-covalent protein assemblies. Currently, the standardization and dissemination of nMS is hampered by technical challenges associated with instrument operation, benchmarking, and optimization over time. Here, we provide a standard operating procedure for acquiring high-quality native mass spectra of 30-300 kDa proteins using an Orbitrap mass spectrometer. By describing reproducible sample preparation, loading, ionization, and nMS analysis, we forward two proteoforms and three complexes as possible standards to advance training and longitudinal assessment of instrument performance. Spectral data for five standards can guide assessment of instrument parameters, data production, and data analysis. By introducing this set of standards and protocols, we aim to help normalize native mass spectrometry practices across labs and provide benchmarks for reproducibility and high-quality data production in the years ahead. Graphical abstract.


Assuntos
Espectrometria de Massas/métodos , Multimerização Proteica , Proteínas/química , Álcool Desidrogenase/química , Animais , Anidrases Carbônicas/química , Bovinos , Modelos Moleculares , Piruvato Quinase/química , Coelhos , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química
18.
Anal Chem ; 91(4): 2776-2783, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30609364

RESUMO

It is well-known that with Orbitrap-based Fourier-transform-mass-spectrometry (FT-MS) analysis, longer-time-domain signals are needed to better resolve species of interest. Unfortunately, increasing the signal-acquisition period comes at the expense of increasing ion decay, which lowers signal-to-noise ratios and ultimately limits resolution. This is especially problematic for intact proteins, including antibodies, which demonstrate rapid decay because of their larger collisional cross-sections, and result in more frequent collisions with background gas molecules. Provided here is a method that utilizes numerous low-ion-count spectra and single-ion processing to reconstruct a conventional m/ z spectrum. This technique has been applied to proteins varying in molecular weight from 8 to 150 kDa, with a resolving power of 677 000 achieved for transients of carbonic anhydrase (29 kDa) with a duration of only ∼250 ms. A resolution improvement ranging from 10- to 20-fold was observed for all proteins, providing isotopic resolution where none was previously present.


Assuntos
Espectrometria de Massas/métodos , Proteínas/análise , Animais , Anidrases Carbônicas/análise , Análise de Fourier , Humanos , Íons/análise , Mioglobina/análise , Fosfopiruvato Hidratase/análise , Transferrina/análise , Ubiquitina/análise
19.
J Neurochem ; 148(6): 822-836, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30565253

RESUMO

Amyloid ß oligomers (AßOs) accumulate early in Alzheimer's disease (AD) and experimentally cause memory dysfunction and the major pathologies associated with AD, for example, tau abnormalities, synapse loss, oxidative damage, and cognitive dysfunction. In order to develop the most effective AßO-targeting diagnostics and therapeutics, the AßO structures contributing to AD-associated toxicity must be elucidated. Here, we investigate the structural properties and pathogenic relevance of AßOs stabilized by the bifunctional crosslinker 1,5-difluoro-2,4-dinitrobenzene (DFDNB). We find that DFDNB stabilizes synthetic Aß in a soluble oligomeric conformation. With DFDNB, solutions of Aß that would otherwise convert to large aggregates instead yield solutions of stable AßOs, predominantly in the 50-300 kDa range, that are maintained for at least 12 days at 37°C. Structures were determined by biochemical and native top-down mass spectrometry analyses. Assayed in neuronal cultures and i.c.v.-injected mice, the DFDNB-stabilized AßOs were found to induce tau hyperphosphorylation, inhibit choline acetyltransferase, and provoke neuroinflammation. Most interestingly, DFDNB crosslinking was found to stabilize an AßO conformation particularly potent in inducing memory dysfunction in mice. Taken together, these data support the utility of DFDNB crosslinking as a tool for stabilizing pathogenic AßOs in structure-function studies.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/química , Reagentes de Ligações Cruzadas/farmacologia , Neurônios/patologia , Animais , Humanos , Camundongos , Ratos
20.
Anal Chem ; 90(14): 8421-8429, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29894161

RESUMO

Targeted top-down (TD) and middle-down (MD) mass spectrometry (MS) offer reduced sample manipulation during protein analysis, limiting the risk of introducing artifactual modifications to better capture sequence information on the proteoforms present. This provides some advantages when characterizing biotherapeutic molecules such as monoclonal antibodies, particularly for the class of biosimilars. Here, we describe the results obtained analyzing a monoclonal IgG1, either in its ∼150 kDa intact form or after highly specific digestions yielding ∼25 and ∼50 kDa subunits, using an Orbitrap mass spectrometer on a liquid chromatography (LC) time scale with fragmentation from ion-photon, ion-ion, and ion-neutral interactions. Ultraviolet photodissociation (UVPD) used a new 213 nm solid-state laser. Alternatively, we applied high-capacity electron-transfer dissociation (ETD HD), alone or in combination with higher energy collisional dissociation (EThcD). Notably, we verify the degree of complementarity of these ion activation methods, with the combination of 213 nm UVPD and ETD HD producing a new record sequence coverage of ∼40% for TD MS experiments. The addition of EThcD for the >25 kDa products from MD strategies generated up to 90% of complete sequence information in six LC runs. Importantly, we determined an optimal signal-to-noise threshold for fragment ion deconvolution to suppress false positives yet maximize sequence coverage and implemented a systematic validation of this process using the new software TDValidator. This rigorous data analysis should elevate confidence for assignment of dense MS2 spectra and represents a purposeful step toward the application of TD and MD MS for deep sequencing of monoclonal antibodies.


Assuntos
Antineoplásicos Imunológicos/química , Imunoglobulina G/química , Espectrometria de Massas/métodos , Rituximab/química , Análise de Sequência de Proteína/métodos , Sequência de Aminoácidos , Anticorpos Monoclonais/química , Cromatografia Líquida/métodos , Íons/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...