RESUMO
OBJECTIVES: To understand severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission risks, perceived risks and the feasibility of risk mitigations from experimental mass cultural events before coronavirus disease 2019 (COVID-19) restrictions were lifted. DESIGN: Prospective, population-wide observational study. SETTING: Four events (two nightclubs, an outdoor music festival and a business conference) open to Liverpool City Region UK residents, requiring a negative lateral flow test (LFT) within the 36 h before the event, but not requiring social distancing or face-coverings. PARTICIPANTS: A total of 12,256 individuals attending one or more events between 28 April and 2 May 2021. MAIN OUTCOME MEASURES: SARS-CoV-2 infections detected using audience self-swabbed (5-7 days post-event) polymerase chain reaction (PCR) tests, with viral genomic analysis of cases, plus linked National Health Service COVID-19 testing data. Audience experiences were gathered via questionnaires, focus groups and social media. Indoor CO2 concentrations were monitored. RESULTS: A total of 12 PCR-positive cases (likely 4 index, 8 primary or secondary), 10 from the nightclubs. Two further cases had positive LFTs but no PCR. A total of 11,896 (97.1%) participants with scanned tickets were matched to a negative pre-event LFT: 4972 (40.6%) returned a PCR within a week. CO2 concentrations showed areas for improving ventilation at the nightclubs. Population infection rates were low, yet with a concurrent outbreak of >50 linked cases around a local swimming pool without equivalent risk mitigations. Audience anxiety was low and enjoyment high. CONCLUSIONS: We observed minor SARS-CoV-2 transmission and low perceived risks around events when prevalence was low and risk mitigations prominent. Partnership between audiences, event organisers and public health services, supported by information systems with real-time linked data, can improve health security for mass cultural events.
Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2 , Teste para COVID-19 , Dióxido de Carbono , Estudos Prospectivos , Medicina Estatal , Reino Unido/epidemiologiaRESUMO
A long-standing goal of amyloid research has been to characterize the structural basis of the rate-determining nucleating event. However, the ephemeral nature of nucleation has made this goal unachievable with existing biochemistry, structural biology, and computational approaches. Here, we addressed that limitation for polyglutamine (polyQ), a polypeptide sequence that causes Huntington's and other amyloid-associated neurodegenerative diseases when its length exceeds a characteristic threshold. To identify essential features of the polyQ amyloid nucleus, we used a direct intracellular reporter of self-association to quantify frequencies of amyloid appearance as a function of concentration, conformational templates, and rational polyQ sequence permutations. We found that nucleation of pathologically expanded polyQ involves segments of three glutamine (Q) residues at every other position. We demonstrate using molecular simulations that this pattern encodes a four-stranded steric zipper with interdigitated Q side chains. Once formed, the zipper poisoned its own growth by engaging naive polypeptides on orthogonal faces, in a fashion characteristic of polymer crystals with intramolecular nuclei. We further show that self-poisoning can be exploited to block amyloid formation, by genetically oligomerizing polyQ prior to nucleation. By uncovering the physical nature of the rate-limiting event for polyQ aggregation in cells, our findings elucidate the molecular etiology of polyQ diseases.
Diseases that typically occur later in life, such as Alzheimer's, are often caused by specific proteins clumping together into structures known as amyloids. Once the process starts, amyloids will continue to form, leading to worse symptoms that cannot be cured. The best way to treat these diseases is therefore to stop amyloids from arising in the first place. Amyloids initially develop by proteins coming together to create an unstable structure referred to as the nucleus. The instability of the nucleus means it cannot be observed directly, making it hard to study this nucleation process. To overcome this, Kandola, Venkatesan et al. investigated the simplest protein known to form an amyloid polyglutamine, which is made up of a chain of repeating building blocks known as amino acids. Polyglutamine forms only one type of amyloid which is associated with nine neurodegenerative diseases, including Huntington's disease. However, it only does this when its chain of amino acids exceeds a certain length, suggesting that a specific structure may be required for nucleation to begin. Kandola, Venkatesan et al. made alternative versions of the polyglutamine protein which each contained slightly different sequences of amino acids that will alter the way the protein folds. They then tested how well these different variants could form amyloids in yeast cells. This revealed that in order to join together into a nucleus, polyglutamine needs to be able to fold into a zipper shape made up of four interlocking strands. The length of the protein required to form this shape is also the same length that causes the amyloid associated with neurodegenerative diseases. Kandola, Venkatesan et al. also found that polyglutamine tends to bind to nuclei that have already formed in a way that hinders their growth. This 'self-poisoning' affect could potentially be exploited as a way to pre-emptively stop amyloids from initially arising. These findings have uncovered a potential therapeutic strategy for blocking amyloid formation that could eventually benefit people with or at risk of developing neurodegenerative diseases linked to polyglutamine. Additionally, this approach provides a blueprint for understanding how other proteins undergo amyloid nucleation, including those responsible for Alzheimer's, Parkinson's, and other diseases.
Assuntos
Peptídeos , Polímeros , Peptídeos/química , Amiloide/química , Proteínas AmiloidogênicasRESUMO
A long-standing goal of amyloid research has been to characterize the structural basis of the rate-determining nucleating event. However, the ephemeral nature of nucleation has made this goal unachievable with existing biochemistry, structural biology, and computational approaches. Here, we addressed that limitation for polyglutamine (polyQ), a polypeptide sequence that causes Huntington's and other amyloid-associated neurodegenerative diseases when its length exceeds a characteristic threshold. To identify essential features of the polyQ amyloid nucleus, we used a direct intracellular reporter of self-association to quantify frequencies of amyloid appearance as a function of concentration, conformational templates, and rational polyQ sequence permutations. We found that nucleation of pathologically expanded polyQ involves segments of three glutamine (Q) residues at every other position. We demonstrate using molecular simulations that this pattern encodes a four-stranded steric zipper with interdigitated Q side chains. Once formed, the zipper poisoned its own growth by engaging naive polypeptides on orthogonal faces, in a fashion characteristic of polymer crystals with intramolecular nuclei. We further show that self-poisoning can be exploited to block amyloid formation, by genetically oligomerizing polyQ prior to nucleation. By uncovering the physical nature of the rate-limiting event for polyQ aggregation in cells, our findings elucidate the molecular etiology of polyQ diseases.
RESUMO
To assess risk factors for COVID-19 transmission and address the closure of mass gathering events since March 2020, the UK Government ran the Events Research Programme (ERP), following which it reopened live events in sports, music, and culture in July 2021. We report the rapid post-occupancy evaluation of Indoor Air Quality (IAQ) and associated long-range airborne transmission risk conducted in the Environmental Study of the ERP. Ten large venues around the UK were monitored with CO2 sensors at a high spatial and temporal resolution during 90 events. An IAQ Index based on CO2 concentration was developed, and all monitored spaces were classified in bands from A to G based on their average and maximum CO2 concentrations from all events. High resolution monitoring and the IAQ Index depicted the overall state of ventilation at live events, and allowed identification of issues with ventilation effectiveness and distribution, and of spaces with poor ventilation and the settings in which long-range airborne transmission risk may be increased. In numerous settings, CO2 concentrations were found to follow patterns relating to event management and specific occupancy of spaces around the venues. Good ventilation was observed in 90% of spaces monitored for given occupancies. Practical applications: High-resolution monitoring of indoor CO2 concentrations is necessary to detect the spatial variation of indoor air quality (IAQ) in large mass gathering event venues. The paper summarises COVID-19 ventilation guidance for buildings and defines a methodology for measurement and rapid assessment of IAQ during occupancy at live events that can be implemented by venue managers. Comparisons of the CO2 concentrations measured during the events identified the spaces at high risk of long-range transmission of airborne pathogens. Building operators should be mindful of the ventilation strategies used relative to the total occupancy in different spaces and the occupant's activities.
RESUMO
Mass-gathering events were closed around the world in 2020 to minimise the spread of the SARS-CoV-2 virus. Emerging research on the transmission of SARS-CoV-2 emphasised the importance of sufficient ventilation. This paper presents the results of an indoor air quality (IAQ) monitoring study over 82 events in seven mechanically ventilated auditoria to support the UK government Events Research Programme. Indoor carbon dioxide concentration was measured at high resolution before, during, and after occupancy to allow for assessment of the ventilation systems. Generally, good indoor air quality was measured in all auditoria, with average IAQ found to be excellent or very good for 70% of spaces. In some auditoria, spatial variation in IAQ was identified, indicating poor mixing of the air. In addition, surface and air samples were taken and analysed for the presence of bacteria by culture and SARS-CoV-2 using RT-qPCR in one venue. SARS-CoV-2 RNA was detected on a small number of surfaces at very low copy numbers, which are unlikely to pose an infection risk. Under the ventilation strategies and occupancy levels investigated, it is likely that most theatres pose a low risk of long-range transmission of COVID-19.
RESUMO
A review of risk factors affecting airborne transmission of SARS-CoV-2 was synthesised into an 'easy-to-apply' visual framework. Using this framework, video footage from two cricket matches were visually analysed, one pre-COVID-19 pandemic and one 'COVID-19 aware' game in early 2020. The number of opportunities for one participant to be exposed to biological secretions belonging to another participant was recorded as an exposure, as was the estimated severity of exposure as defined from literature. Events were rated based upon distance between subjects, relative orientation of the subjects, droplet generating activity performed (e. g., talking) and event duration. In analysis we reviewed each risk category independently and the compound effect of an exposure i. e., the product of the scores across all categories. With the application of generic, non-cricket specific, social distancing recommendations and general COVID-19 awareness, the number of exposures per 100 balls was reduced by 70%. More impressive was the decrease in the most severe compound ratings (those with two or more categories scored with the highest severity) which was 98% and the reduction in exposures with a proximity <1 m, 96%. Analysis of the factors effecting transmission risk indicated that cricket was likely to present a low risk, although this conclusion was somewhat arbitrary omitting a comparison with a non-cricketing activity.
Assuntos
Microbiologia do Ar , COVID-19/transmissão , Críquete , Distanciamento Físico , Aerossóis , Tosse/virologia , Exposição Ambiental , Humanos , Pandemias , Respiração , Fatores de Risco , SARS-CoV-2 , Espirro , Interação SocialRESUMO
How can domestic housing be adapted to support people living with dementia staying in their own homes for as long as they choose? This paper describes the innovative practice of using evidence-based design personas in a building refurbishment project (Chris and Sally's House) with a multidisciplinary team of architects, ergonomists, psychologists and experts. A 100 sqm Victorian two bedroom house was adapted to help educate house builders, carers and relatives on how to better support those living with dementia to live in their own home for longer. The design principles include clear sight lines, mobility support and provision for overnight carers.
Assuntos
Demência , Cuidadores , Planejamento Ambiental , Arquitetura de Instituições de Saúde , HumanosRESUMO
Aneuploidy, which refers to unbalanced chromosome numbers, represents a class of genetic variation that is associated with cancer, birth defects and eukaryotic micro-organisms1-4. Whereas it is known that each aneuploid chromosome stoichiometry can give rise to a distinct pattern of gene expression and phenotypic profile4,5, it remains a fundamental question as to whether there are common cellular defects that are associated with aneuploidy. Here we show the existence in budding yeast of a common aneuploidy gene-expression signature that is suggestive of hypo-osmotic stress, using a strategy that enables the observation of common transcriptome changes of aneuploidy by averaging out karyotype-specific dosage effects in aneuploid yeast-cell populations with random and diverse chromosome stoichiometry. Consistently, aneuploid yeast exhibited increased plasma-membrane stress that led to impaired endocytosis, and this defect was also observed in aneuploid human cells. Thermodynamic modelling showed that hypo-osmotic-like stress is a general outcome of the proteome imbalance that is caused by aneuploidy, and also predicted a relationship between ploidy and cell size that was observed in yeast and aneuploid cancer cells. A genome-wide screen uncovered a general dependency of aneuploid cells on a pathway of ubiquitin-mediated endocytic recycling of nutrient transporters. Loss of this pathway, coupled with the endocytic defect inherent to aneuploidy, leads to a marked alteration of intracellular nutrient homeostasis.
Assuntos
Aneuploidia , Pressão Osmótica , Proteoma/genética , Proteoma/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Estresse Fisiológico , Membrana Celular/metabolismo , Membrana Celular/patologia , Proteínas de Ligação a DNA/metabolismo , Endocitose , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Homeostase , Humanos , Cariótipo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Termodinâmica , Fatores de Transcrição/metabolismo , Transcriptoma/genética , Ubiquitina/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismoRESUMO
When published, this article did not initially appear open access. This error has been corrected, and the open access status of the paper is noted in all versions of the paper. Additionally, affiliation 16 denoting equal contribution was missing from author Robb Krumlauf in the PDF originally published. This error has also been corrected.
RESUMO
Protein self-assemblies modulate protein activities over biological timescales that can exceed the lifetimes of the proteins or even the cells that harbor them. We hypothesized that these timescales relate to kinetic barriers inherent to the nucleation of ordered phases. To investigate nucleation barriers in living cells, we developed distributed amphifluoric FRET (DAmFRET). DAmFRET exploits a photoconvertible fluorophore, heterogeneous expression, and large cell numbers to quantify via flow cytometry the extent of a protein's self-assembly as a function of cellular concentration. We show that kinetic barriers limit the nucleation of ordered self-assemblies and that the persistence of the barriers with respect to concentration relates to structure. Supersaturation resulting from sequence-encoded nucleation barriers gave rise to prion behavior and enabled a prion-forming protein, Sup35 PrD, to partition into dynamic intracellular condensates or to form toxic aggregates. Our results suggest that nucleation barriers govern cytoplasmic inheritance, subcellular organization, and proteotoxicity.
Assuntos
Fatores de Terminação de Peptídeos/metabolismo , Proteínas Priônicas/metabolismo , Agregados Proteicos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Citometria de Fluxo , Fatores de Terminação de Peptídeos/genética , Proteínas Priônicas/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genéticaRESUMO
In the version of this article initially published, the present addresses for authors Dorit Hockman and Chris Amemiya were switched. The error has been corrected in the HTML and PDF versions of the article.
RESUMO
The sea lamprey (Petromyzon marinus) serves as a comparative model for reconstructing vertebrate evolution. To enable more informed analyses, we developed a new assembly of the lamprey germline genome that integrates several complementary data sets. Analysis of this highly contiguous (chromosome-scale) assembly shows that both chromosomal and whole-genome duplications have played significant roles in the evolution of ancestral vertebrate and lamprey genomes, including chromosomes that carry the six lamprey HOX clusters. The assembly also contains several hundred genes that are reproducibly eliminated from somatic cells during early development in lamprey. Comparative analyses show that gnathostome (mouse) homologs of these genes are frequently marked by polycomb repressive complexes (PRCs) in embryonic stem cells, suggesting overlaps in the regulatory logic of somatic DNA elimination and bivalent states that are regulated by early embryonic PRCs. This new assembly will enhance diverse studies that are informed by lampreys' unique biology and evolutionary/comparative perspective.
Assuntos
Reprogramação Celular/genética , Evolução Molecular , Genoma , Células Germinativas/metabolismo , Mutagênese/fisiologia , Petromyzon/genética , Vertebrados/genética , Animais , Montagem e Desmontagem da Cromatina/genética , Vertebrados/classificaçãoRESUMO
OBJECTIVES: Links between suicidality and depressed mood are well established. There is, however, little information about the emotional regulation processes that underlie the relationship between suicidality and current low mood, and how these processes differ between groups of never-suicidal (NS), suicidal ideators, and suicide attempters. As suicidality and depression are heterogeneous constructs, this study aimed to conduct within- and between-group comparisons of known suicide risk factors that are associated with emotion regulation (neuroticism, trait aggression, brooding, impulsivity, and overgeneral autobiographical memories). DESIGN: Correlational design using between- and within-group comparisons from self-report measures. METHODS: Inter- and intragroup differences were identified using Pearson's correlation coefficients and tests of difference. An analysis of indirect effects was used to investigate whether the relationship between suicidality and current low mood was mediated by neuroticism, trait aggression, brooding, impulsivity, and overgeneral autobiographical memories, and if this relationship varied according to group type. RESULTS: Brooding appeared to be a consistent feature of all three groups and was closely related to current low mood. Compared to the NS group, the relationship between suicide attempts and current low mood showed greater associations with brooding, trait aggression, and overgeneral autobiographical memories. Compared to the NS group, the suicidal ideation group showed stronger associations with neuroticism and impulsivity, but these factors did not correlate with low mood. CONCLUSION: These results suggest a need for larger studies to focus on heterogeneity within suicidal populations and consider how different combinations of risk factors may heighten or reduce suicide risk. PRACTITIONER POINTS: It is well known that the severity and intensity of suicide and depressed presentations vary because of underlying dispositional and contextual factors (Fried & Nesse, ) which, in turn, affect how events are interpreted and responded to. Despite this, there is little research about how these mechanisms operate in different types of suicide groups, and their influence on the relationship between suicidality and current low mood. Understanding interrelationships that affect current low mood is of clinical significance because past suicidal history and deteriorations in already negative mood are linked to repeated suicide attempts and completion. Our findings show that ruminative brooding, defined as a tendency to repeatedly think about emotional aspects of an event, consistently correlates with current low mood across different types of suicidal groups (NS, suicidal ideators, and suicide attempters), and across analyses. Findings also show that suicidal ideation and attempt groups were associated with specific personality characteristics that increased the propensity of emotional responding and interpretation compared to the NS group. The relationship between suicide attempt and current low mood had a higher propensity to be influenced by trait aggression, brooding, and overgenerality compared to the NS group. In contrast, although the suicidal ideation group correlated more strongly with neuroticism and impulsivity, these factors did not influence current low mood. In terms of clinical practice, these findings imply that specific styles of interpretation and thinking may maintain the relationship between suicidality and current low mood. Given the cross-sectional nature of the study, however, it is not possible to imply causality. Nevertheless, the findings obtained provide some support for transdiagnostic models of cognitive-behavioural processes that could be developed further.
Assuntos
Depressão/fisiopatologia , Emoções/fisiologia , Comportamento Impulsivo/fisiologia , Personalidade/fisiologia , Ruminação Cognitiva/fisiologia , Ideação Suicida , Tentativa de Suicídio/psicologia , Adulto , Estudos Transversais , Feminino , Humanos , Masculino , Neuroticismo , Fatores de RiscoRESUMO
SR proteins are a well-conserved class of RNA-binding proteins that are essential for regulation of splice-site selection, and have also been implicated as key regulators during other stages of RNA metabolism. For many SR proteins, the complexity of the RNA targets and specificity of RNA-binding location are poorly understood. It is also unclear if general rules governing SR protein alternative pre-mRNA splicing (AS) regulation uncovered for individual SR proteins on few model genes, apply to the activity of all SR proteins on endogenous targets. Using RNA-seq, we characterize the global AS regulation of the eight Drosophila SR protein family members. We find that a majority of AS events are regulated by multiple SR proteins, and that all SR proteins can promote exon inclusion, but also exon skipping. Most coregulated targets exhibit cooperative regulation, but some AS events are antagonistically regulated. Additionally, we found that SR protein levels can affect alternative promoter choices and polyadenylation site selection, as well as overall transcript levels. Cross-linking and immunoprecipitation coupled with high-throughput sequencing (iCLIP-seq), reveals that SR proteins bind a distinct and functionally diverse class of RNAs, which includes several classes of noncoding RNAs, uncovering possible novel functions of the SR protein family. Finally, we find that SR proteins exhibit positional RNA binding around regulated AS events. Therefore, regulation of AS by the SR proteins is the result of combinatorial regulation by multiple SR protein family members on most endogenous targets, and SR proteins have a broader role in integrating multiple layers of gene expression regulation.
Assuntos
Poliadenilação , Splicing de RNA , RNA Mensageiro/genética , Proteínas de Ligação a RNA/fisiologia , Animais , Sequência de Bases , Sítios de Ligação , Linhagem Celular , Sequência Consenso , Drosophila melanogaster , Regulação da Expressão Gênica , Regiões Promotoras Genéticas , Ligação Proteica , Estrutura Terciária de Proteína , Estabilidade de RNA , RNA Mensageiro/metabolismo , Transcrição GênicaRESUMO
BACKGROUND: Attention is important for the skilful execution of surgery. The surgeon's attention during surgery is divided between surgery and outside distractions. The effect of this divided attention has not been well studied previously. We aimed to compare the effect of dividing attention of novices and experts on a laparoscopic task performance. METHODS: Following ethical approval, 25 novices and 9 expert surgeons performed a standardised peg transfer task in a laboratory setup under three randomly assigned conditions: silent as control condition and two standardised auditory distracting tasks requiring response (easy and difficult) as study conditions. Human reliability assessment was used for surgical task analysis. Primary outcome measures were correct auditory responses, task time, number of surgical errors and instrument movements. Secondary outcome measures included error rate, error probability and hand specific differences. Non-parametric statistics were used for data analysis. RESULTS: 21109 movements and 9036 total errors were analysed. Novices had increased mean task completion time (seconds) (171 ± 44SD vs. 149 ± 34, p < 0.05), number of total movements (227 ± 27 vs. 213 ± 26, p < 0.05) and number of errors (127 ± 51 vs. 96 ± 28, p < 0.05) during difficult study conditions compared to control. The correct responses to auditory stimuli were less frequent in experts (68 %) compared to novices (80 %). There was a positive correlation between error rate and error probability in novices (r (2) = 0.533, p < 0.05) but not in experts (r (2) = 0.346, p > 0.05). CONCLUSION: Divided attention conditions in theatre environment require careful consideration during surgical training as the junior surgeons are less able to focus their attention during these conditions.
Assuntos
Atenção , Competência Clínica , Laparoscopia/educação , Cirurgiões/educação , Análise e Desempenho de Tarefas , Adulto , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Cirurgiões/psicologia , Adulto JovemRESUMO
The stimulation of trimethylation of histone H3 Lys4 (H3K4) by H2B monoubiquitination (H2Bub) has been widely studied, with multiple mechanisms having been proposed for this form of histone cross-talk. Cps35/Swd2 within COMPASS (complex of proteins associated with Set1) is considered to bridge these different processes. However, a truncated form of Set1 (762-Set1) is reported to function in H3K4 trimethylation (H3K4me3) without interacting with Cps35/Swd2, and such cross-talk is attributed to the n-SET domain of Set1 and its interaction with the Cps40/Spp1 subunit of COMPASS. Here, we used biochemical, structural, in vivo, and chromatin immunoprecipitation (ChIP) sequencing (ChIP-seq) approaches to demonstrate that Cps40/Spp1 and the n-SET domain of Set1 are required for the stability of Set1 and not the cross-talk. Furthermore, the apparent wild-type levels of H3K4me3 in the 762-Set1 strain are due to the rogue methylase activity of this mutant, resulting in the mislocalization of H3K4me3 from the promoter-proximal regions to the gene bodies and intergenic regions. We also performed detailed screens and identified yeast strains lacking H2Bub but containing intact H2Bub enzymes that have normal levels of H3K4me3, suggesting that monoubiquitination may not directly stimulate COMPASS but rather works in the context of the PAF and Rad6/Bre1 complexes. Our study demonstrates that the monoubiquitination machinery and Cps35/Swd2 function to focus COMPASS's H3K4me3 activity at promoter-proximal regions in a context-dependent manner.
Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Saccharomyces cerevisiae/enzimologia , Lisina/metabolismo , Proteínas de Membrana/metabolismo , Metilação , Monoéster Fosfórico Hidrolases/metabolismo , Estabilidade Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMO
Promoters of many developmentally regulated genes, in the embryonic stem cell state, have a bivalent mark of H3K27me3 and H3K4me3, proposed to confer precise temporal activation upon differentiation. Although Polycomb repressive complex 2 is known to implement H3K27 trimethylation, the COMPASS family member responsible for H3K4me3 at bivalently marked promoters was previously unknown. Here, we identify Mll2 (KMT2b) as the enzyme catalyzing H3K4 trimethylation at bivalentlymarked promoters in embryonic stem cells. Although H3K4me3 at bivalent genes is proposed to prime future activation, we detected no substantial defect in rapid transcriptional induction after retinoic acid treatment in Mll2-depleted cells. Our identification of the Mll2 complex as the COMPASS family member responsible for H3K4me3 marking bivalent promoters provides an opportunity to reevaluate and experimentally test models for the function of bivalency in the embryonic stem cell state and in differentiation.
Assuntos
Células-Tronco Embrionárias/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Regiões Promotoras Genéticas , Animais , Diferenciação Celular , Células Cultivadas , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Genes Homeobox , Histona-Lisina N-Metiltransferase , Histonas/química , Histonas/metabolismo , Metilação , Camundongos , Modelos Biológicos , Família Multigênica , Proteína de Leucina Linfoide-Mieloide/química , Proteína de Leucina Linfoide-Mieloide/genética , RNA Interferente Pequeno/genéticaRESUMO
Lampreys are representatives of an ancient vertebrate lineage that diverged from our own â¼500 million years ago. By virtue of this deeply shared ancestry, the sea lamprey (P. marinus) genome is uniquely poised to provide insight into the ancestry of vertebrate genomes and the underlying principles of vertebrate biology. Here, we present the first lamprey whole-genome sequence and assembly. We note challenges faced owing to its high content of repetitive elements and GC bases, as well as the absence of broad-scale sequence information from closely related species. Analyses of the assembly indicate that two whole-genome duplications likely occurred before the divergence of ancestral lamprey and gnathostome lineages. Moreover, the results help define key evolutionary events within vertebrate lineages, including the origin of myelin-associated proteins and the development of appendages. The lamprey genome provides an important resource for reconstructing vertebrate origins and the evolutionary events that have shaped the genomes of extant organisms.
Assuntos
Mapeamento Cromossômico , Evolução Molecular , Genoma , Petromyzon/genética , Vertebrados/genética , Animais , Filogenia , Sequências Repetitivas de Ácido Nucleico , Análise de Sequência de DNARESUMO
This article explores the relationship between the previous UK government's initiative to rebuild and renew secondary schools, and the requirement for improved education for sustainable development in the UK. The documented research utilized a number of mechanisms to engage with pupils in Leicester city schools to increase their awareness, knowledge and understanding of the science and engineering associated with the design and operation of low-energy school buildings. Workshops, discussions with energy and sustainable development experts and inspirational visits to existing low-energy buildings were employed to develop an appreciation for the importance of energy efficiency and best design practice. The results demonstrate an increase in pupils' knowledge and understanding of low-energy school design and additionally a rise in those pupils who are interested in science and would consider it as a career option.