Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 13229, 2024 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-38853162

RESUMO

X-linked dystonia parkinsonism (XDP) is a neurogenetic combined movement disorder involving both parkinsonism and dystonia. Complex, overlapping phenotypes result in difficulties in clinical rating scale assessment. We performed wearable sensor-based analyses in XDP participants to quantitatively characterize disease phenomenology as a potential clinical trial endpoint. Wearable sensor data was collected from 10 symptomatic XDP patients and 3 healthy controls during a standardized examination. Disease severity was assessed with the Unified Parkinson's Disease Rating Scale Part 3 (MDS-UPDRS) and Burke-Fahn-Marsden dystonia scale (BFM). We collected sensor data during the performance of specific MDS-UPDRS/BFM upper- and lower-limb motor tasks, and derived data features suitable to estimate clinical scores using machine learning (ML). XDP patients were at varying stages of disease and clinical severity. ML-based algorithms estimated MDS-UPDRS scores (parkinsonism) and dystonia-specific data features with a high degree of accuracy. Gait spatio-temporal parameters had high discriminatory power in differentiating XDP patients with different MDS-UPDRS scores from controls, XDP freezing of gait, and dystonic/non-dystonic gait. These analyses suggest the feasibility of using wearable sensor data for deriving reliable clinical score estimates associated with both parkinsonian and dystonic features in a complex, combined movement disorder and the utility of motion sensors in quantifying clinical examination.


Assuntos
Distúrbios Distônicos , Doenças Genéticas Ligadas ao Cromossomo X , Aprendizado de Máquina , Dispositivos Eletrônicos Vestíveis , Humanos , Distúrbios Distônicos/diagnóstico , Distúrbios Distônicos/fisiopatologia , Doenças Genéticas Ligadas ao Cromossomo X/diagnóstico , Doenças Genéticas Ligadas ao Cromossomo X/fisiopatologia , Masculino , Adulto , Pessoa de Meia-Idade , Transtornos Parkinsonianos/fisiopatologia , Transtornos Parkinsonianos/diagnóstico , Índice de Gravidade de Doença , Feminino , Marcha
2.
Gait Posture ; 113: 191-203, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38917666

RESUMO

BACKGROUND: Over the past decades, tremendous technological advances have emerged in human motion analysis (HMA). RESEARCH QUESTION: How has technology for analysing human motion evolved over the past decades, and what clinical applications has it enabled? METHODS: The literature on HMA has been extensively reviewed, focusing on three main approaches: Fully-Instrumented Gait Analysis (FGA), Wearable Sensor Analysis (WSA), and Deep-Learning Video Analysis (DVA), considering both technical and clinical aspects. RESULTS: FGA techniques relying on data collected using stereophotogrammetric systems, force plates, and electromyographic sensors have been dramatically improved providing highly accurate estimates of the biomechanics of motion. WSA techniques have been developed with the advances in data collection at home and in community settings. DVA techniques have emerged through artificial intelligence, which has marked the last decade. Some authors have considered WSA and DVA techniques as alternatives to "traditional" HMA techniques. They have suggested that WSA and DVA techniques are destined to replace FGA. SIGNIFICANCE: We argue that FGA, WSA, and DVA complement each other and hence should be accounted as "synergistic" in the context of modern HMA and its clinical applications. We point out that DVA techniques are especially attractive as screening techniques, WSA methods enable data collection in the home and community for extensive periods of time, and FGA does maintain superior accuracy and should be the preferred technique when a complete and highly accurate biomechanical data is required. Accordingly, we envision that future clinical applications of HMA would favour screening patients using DVA in the outpatient setting. If deemed clinically appropriate, then WSA would be used to collect data in the home and community to derive relevant information. If accurate kinetic data is needed, then patients should be referred to specialized centres where an FGA system is available, together with medical imaging and thorough clinical assessments.

3.
PLoS Comput Biol ; 18(12): e1010763, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36477028

RESUMO

Sensory information is conveyed by populations of neurons, and coding strategies cannot always be deduced when considering individual neurons. Moreover, information coding depends on the number of neurons available and on the composition of the population when multiple classes with different response properties are available. Here, we study population coding in human tactile afferents by employing a recently developed simulator of mechanoreceptor firing activity. First, we highlight the interplay of afferents within each class. We demonstrate that the optimal afferent density to convey maximal information depends on both the tactile feature under consideration and the afferent class. Second, we find that information is spread across different classes for all tactile features and that each class encodes both redundant and complementary information with respect to the other afferent classes. Specifically, combining information from multiple afferent classes improves information transmission and is often more efficient than increasing the density of afferents from the same class. Finally, we examine the importance of temporal and spatial contributions, respectively, to the joint spatiotemporal code. On average, destroying temporal information is more destructive than removing spatial information, but the importance of either depends on the stimulus feature analyzed. Overall, our results suggest that both optimal afferent innervation densities and the composition of the population depend in complex ways on the tactile features in question, potentially accounting for the variety in which tactile peripheral populations are assembled in different regions across the body.


Assuntos
Mecanorreceptores , Tato , Humanos , Potenciais de Ação/fisiologia , Tato/fisiologia , Mecanorreceptores/fisiologia , Neurônios , Neurônios Aferentes/fisiologia
4.
J Neurophysiol ; 124(4): 1229-1240, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32965159

RESUMO

The skin is our largest sensory organ and innervated by afferent fibers carrying tactile information to the spinal cord and onto the brain. The density with which different classes of tactile afferents innervate the skin is not constant but varies considerably across different body regions. However, precise estimates of innervation density are only available for some body parts, such as the hands, and estimates of the total number of tactile afferent fibers are inconsistent and incomplete. Here we reconcile different estimates and provide plausible ranges and best estimates for the number of different tactile fiber types innervating different regions of the skin, using evidence from dorsal root fiber counts, microneurography, histology, and psychophysics. We estimate that the skin across the whole body of young adults is innervated by ∼230,000 tactile afferent fibers (plausible range: 200,000-270,000), with a subsequent decrement of 5-8% every decade due to aging. Fifteen percent of fibers innervate the palmar skin of both hands and 19% the region surrounding the face and lips. Slowly and fast-adapting fibers are split roughly evenly, but this breakdown varies with skin region. Innervation density correlates well with psychophysical spatial acuity across different body regions, and, additionally, on hairy skin, with hair follicle density. Innervation density is also weakly correlated with the size of the cortical somatotopic representation but cannot fully account for the magnification of the hands and the face.


Assuntos
Pele/inervação , Percepção do Tato , Tato , Vias Aferentes/fisiologia , Animais , Humanos , Pele/citologia , Córtex Somatossensorial/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...