RESUMO
Dietary restriction (DR), the process of decreasing overall food consumption over an extended period of time, has been shown to increase longevity across evolutionarily diverse species and delay the onset of age-associated diseases in humans. In Caenorhabditis elegans, the Myc-family transcription factors (TFs) MXL-2 (Mlx) and MML-1 (MondoA/ChREBP), which function as obligate heterodimers, and PHA-4 (orthologous to FOXA) are both necessary for the full physiological benefits of DR. However, the adaptive transcriptional response to DR and the role of MML-1::MXL-2 and PHA-4 remains elusive. We identified the transcriptional signature of C. elegans DR, using the eat-2 genetic model, and demonstrate broad changes in metabolic gene expression in eat-2 DR animals, which requires both mxl-2 and pha-4. While the requirement for these factors in DR gene expression overlaps, we found many of the DR genes exhibit an opposing change in relative gene expression in eat-2;mxl-2 animals compared to wild-type, which was not observed in eat-2 animals with pha-4 loss. Surprisingly, we discovered more than 2000 genes synthetically dysregulated in eat-2;mxl-2, out of which the promoters of down-regulated genes were substantially enriched for PQM-1 and ELT-1/3 GATA TF binding motifs. We further show functional deficiencies of the mxl-2 loss in DR outside of lifespan, as eat-2;mxl-2 animals exhibit substantially smaller brood sizes and lay a proportion of dead eggs, indicating that MML-1::MXL-2 has a role in maintaining the balance between resource allocation to the soma and to reproduction under conditions of chronic food scarcity. While eat-2 animals do not show a significantly different metabolic rate compared to wild-type, we also find that loss of mxl-2 in DR does not affect the rate of oxygen consumption in young animals. The gene expression signature of eat-2 mutant animals is consistent with optimization of energy utilization and resource allocation, rather than induction of canonical gene expression changes associated with acute metabolic stress, such as induction of autophagy after TORC1 inhibition. Consistently, eat-2 animals are not substantially resistant to stress, providing further support to the idea that chronic DR may benefit healthspan and lifespan through efficient use of limited resources rather than broad upregulation of stress responses, and also indicates that MML-1::MXL-2 and PHA-4 may have distinct roles in promotion of benefits in response to different pro-longevity stimuli.
Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Restrição Calórica , Longevidade , Fatores de Transcrição , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Longevidade/genética , Longevidade/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Adaptação Fisiológica/genética , Regulação da Expressão Gênica , Receptores Nicotínicos , TransativadoresRESUMO
Dietary restriction (DR), the process of decreasing overall food consumption over an extended period of time, has been shown to increase longevity across evolutionarily diverse species and delay the onset of age-associated diseases in humans. In Caenorhabditis elegans, the Myc-family transcription factors (TFs) MXL-2 (Mlx) and MML-1 (MondoA/ChREBP), which function as obligate heterodimers, and PHA-4 (orthologous to forkhead box transcription factor A) are both necessary for the full physiological benefits of DR. However, the adaptive transcriptional response to DR and the role of MML-1::MXL-2 and PHA-4 remains elusive. We identified the transcriptional signature of C. elegans DR, using the eat-2 genetic model, and demonstrate broad changes in metabolic gene expression in eat-2 DR animals, which requires both mxl-2 and pha-4. While the requirement for these factors in DR gene expression overlaps, we found many of the DR genes exhibit an opposing change in relative gene expression in eat-2;mxl-2 animals compared to wild-type, which was not observed in eat-2 animals with pha-4 loss. We further show functional deficiencies of the mxl-2 loss in DR outside of lifespan, as eat-2;mxl-2 animals exhibit substantially smaller brood sizes and lay a proportion of dead eggs, indicating that MML-1::MXL-2 has a role in maintaining the balance between resource allocation to the soma and to reproduction under conditions of chronic food scarcity. While eat-2 animals do not show a significantly different metabolic rate compared to wild-type, we also find that loss of mxl-2 in DR does not affect the rate of oxygen consumption in young animals. The gene expression signature of eat-2 mutant animals is consistent with optimization of energy utilization and resource allocation, rather than induction of canonical gene expression changes associated with acute metabolic stress -such as induction of autophagy after TORC1 inhibition. Consistently, eat-2 animals are not substantially resistant to stress, providing further support to the idea that chronic DR may benefit healthspan and lifespan through efficient use of limited resources rather than broad upregulation of stress responses, and also indicates that MML-1::MXL-2 and PHA-4 may have different roles in promotion of benefits in response to different pro-longevity stimuli.
RESUMO
Aging and the age-associated decline of the proteome is determined in part through neuronal control of evolutionarily conserved transcriptional effectors, which safeguard homeostasis under fluctuating metabolic and stress conditions by regulating an expansive proteostatic network. We have discovered the Caenorhabditis elegans homeodomain-interacting protein kinase (HPK-1) acts as a key transcriptional effector to preserve neuronal integrity, function, and proteostasis during aging. Loss of hpk-1 results in drastic dysregulation in expression of neuronal genes, including genes associated with neuronal aging. During normal aging hpk-1 expression increases throughout the nervous system more broadly than any other kinase. Within the aging nervous system, hpk-1 induction overlaps with key longevity transcription factors, which suggests that hpk-1 expression mitigates natural age-associated physiological decline. Consistently, pan-neuronal overexpression of hpk-1 extends longevity, preserves proteostasis both within and outside of the nervous system, and improves stress resistance. Neuronal HPK-1 improves proteostasis through kinase activity. HPK-1 functions cell non-autonomously within serotonergic and γ-aminobutyric acid (GABA)ergic neurons to improve proteostasis in distal tissues by specifically regulating distinct components of the proteostatic network. Increased serotonergic HPK-1 enhances the heat shock response and survival to acute stress. In contrast, GABAergic HPK-1 induces basal autophagy and extends longevity, which requires mxl-2 (MLX), hlh-30 (TFEB), and daf-16 (FOXO). Our work establishes hpk-1 as a key neuronal transcriptional regulator critical for preservation of neuronal function during aging. Further, these data provide novel insight as to how the nervous system partitions acute and chronic adaptive response pathways to delay aging by maintaining organismal homeostasis.
Proteins are essential for nearly every cellular process to sustain a healthy organism. A complex network of pathways and signalling molecules regulates the proteins so that they work correctly in a process known as proteostasis. As the body ages, this network can become damaged, which leads to the production of faulty proteins. Many proteins end up being misfolded in other words, they are misshapen on the molecular level, which can be toxic for the cell. A build-up of such misfolded proteins is implicated in several neurological conditions, including Alzheimer's, Parkinson's and Huntington's disease. Cells have various ways to detect and respond to internal stressors, such as tissue or organ damage. For example, specific proteins in the nervous system can raise a 'central' alert when damage is detected, which then primes and coordinates the body's systems to respond in the peripheral cells and tissues. But exactly how this happens is still unclear. To find out more about the central coordination of stress responses, Lazaro-Pena et al. studied one such sensor protein, called HPK-1, in the roundworm C. elegans. They first overexpressed the protein in various tissues. This revealed that only when HPK-1 was overactive in nerve tissue, it protected proteins and prolonged the lifespan of the worms. An increased amount of HPK-1 improved the health span of the worms and older worms also moved better. However, genetically manipulated worms lacking HPK-1 in their nerve cells showed a faster decline in nervous system health as they aged, which could be reversed once HPK-1 was activated again. Lazaro-Pena et al. then measured the amount of HPK-1 in worms at different stages of their life. This showed that as the worms aged, the amount of HPK-1 increased in the nerve cells. The nerve cells in which HPK-1 levels increased overlapped with an increased expression of proteins associated with longevity. Moreover, when HPK-1 was overexpressed, it stimulated the release of other cell signals, which then triggered protective responses to prevent the misfolding and aggregation of proteins and to help degrade damaged proteins. This study shows for the first time that HPK-1 appears to play a protective role during normal ageing and that it may act as a key switch to stimulate other protective mechanisms. These findings may give rise to new insights into how the nervous system can coordinate many different stress responses, and ultimately delay ageing throughout the whole body.
Assuntos
Proteínas de Caenorhabditis elegans , Longevidade , Animais , Longevidade/genética , Caenorhabditis elegans/fisiologia , Proteínas Quinases/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Regulação da Expressão Gênica , Envelhecimento/genética , Homeostase , Neurônios GABAérgicos/metabolismoRESUMO
Aging and the age-associated decline of the proteome is determined in part through neuronal control of evolutionarily conserved transcriptional effectors, which safeguard homeostasis under fluctuating metabolic and stress conditions by regulating an expansive proteostatic network. We have discovered the Caenorhabditis elegans h omeodomain-interacting p rotein k inase (HPK-1) acts as a key transcriptional effector to preserve neuronal integrity, function, and proteostasis during aging. Loss of hpk-1 results in drastic dysregulation in expression of neuronal genes, including genes associated with neuronal aging. During normal aging hpk-1 expression increases throughout the nervous system more broadly than any other kinase. Within the aging nervous system, hpk-1 induction overlaps with key longevity transcription factors, which suggests hpk-1 expression mitigates natural age-associated physiological decline. Consistently, pan-neuronal overexpression of hpk-1 extends longevity, preserves proteostasis both within and outside of the nervous system, and improves stress resistance. Neuronal HPK-1 improves proteostasis through kinase activity. HPK-1 functions cell non-autonomously within serotonergic and GABAergic neurons to improve proteostasis in distal tissues by specifically regulating distinct components of the proteostatic network. Increased serotonergic HPK-1 enhances the heat shock response and survival to acute stress. In contrast, GABAergic HPK-1 induces basal autophagy and extends longevity, which requires mxl-2 (MLX), hlh-30 (TFEB), and daf-16 (FOXO). Our work establishes hpk-1 as a key neuronal transcriptional regulator critical for preservation of neuronal function during aging. Further, these data provide novel insight as to how the nervous system partitions acute and chronic adaptive response pathways to delay aging by maintaining organismal homeostasis.
RESUMO
Genomic analyses have revealed heterogeneity among glial progenitor cells (GPCs), but the compartment selectivity of human GPCs (hGPCs) is unclear. Here, we asked if GPCs of human grey and white brain matter are distinct in their architecture and associated gene expression. RNA profiling of NG2-defined hGPCs derived from adult human neocortex and white matter differed in their expression of genes involved in Wnt, NOTCH, BMP and TGFß signaling, suggesting compartment-selective biases in fate and self-renewal. White matter hGPCs over-expressed the BMP antagonists BAMBI and CHRDL1, suggesting their tonic suppression of astrocytic fate relative to cortical hGPCs, whose relative enrichment of cytoskeletal genes presaged their greater morphological complexity. In human glial chimeric mice, cortical hGPCs assumed larger and more complex morphologies than white matter hGPCs, and both were more complex than their mouse counterparts. These findings suggest that human grey and white matter GPCs comprise context-specific pools with distinct functional biases.
Assuntos
Substância Cinzenta , Substância Branca , Humanos , Adulto , Animais , Camundongos , Substância Cinzenta/metabolismo , Neuroglia/metabolismo , Células-Tronco/metabolismo , Astrócitos/metabolismo , Encéfalo/metabolismo , Substância Branca/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Olho/metabolismo , Proteínas do Tecido Nervoso/metabolismoRESUMO
The advent of feeding based RNAi in Caenorhabditis elegans led to an era of gene discovery in aging research. Hundreds of gerogenes were discovered, and many are evolutionarily conserved, raising the exciting possibility that the underlying genetic basis for healthy aging in higher vertebrates could be quickly deciphered. Yet, the majority of putative gerogenes have still only been cursorily characterized, highlighting the need for high-throughput, quantitative assessments of changes in aging. A widely used surrogate measure of aging is lifespan. The traditional way to measure mortality in C. elegans tracks the deaths of individual animals over time within a relatively small population. This traditional method provides straightforward, direct measurements of median and maximum lifespan for the sampled population. However, this method is time consuming, often underpowered, and involves repeated handling of a set of animals over time, which in turn can introduce contamination or possibly damage increasingly fragile, aged animals. We have previously developed an alternative "Replica Set" methodology, which minimizes handling and increases throughput by at least an order of magnitude. The Replica Set method allows changes in lifespan to be measured for over one hundred feeding-based RNAi clones by one investigator in a single experiment- facilitating the generation of large quantitative phenotypic datasets, a prerequisite for development of biological models at a systems level. Here, we demonstrate through analysis of lifespan experiments simulated in silico that the Replica Set method is at least as precise and accurate as the traditional method in evaluating and estimating lifespan, and requires many fewer total animal observations across the course of an experiment. Furthermore, we show that the traditional approach to lifespan experiments is more vulnerable than the Replica Set method to experimental and measurement error. We find no compromise in statistical power for Replica Set experiments, even for moderate effect sizes, or when simulated experimental errors are introduced. We compare and contrast the statistical analysis of data generated by the two approaches, and highlight pitfalls common with the traditional methodology. Collectively, our analysis provides a standard of measure for each method across comparable parameters, which will be invaluable in both experimental design and evaluation of published data for lifespan studies.
RESUMO
The ability to maintain proper function and folding of the proteome (protein homeostasis) declines during normal aging, facilitating the onset of a growing number of age-associated diseases. For instance, proteins with polyglutamine expansions are prone to aggregation, as exemplified with the huntingtin protein and concomitant onset of Huntington's disease. The age-associated deterioration of the proteome has been widely studied through the use of transgenic Caenorhabditis elegans expressing polyQ repeats fused to a yellow fluorescent protein (YFP). This polyQ::YFP transgenic animal model facilitates the direct quantification of the age-associated decline of the proteome through imaging the progressive formation of fluorescent foci (i.e., protein aggregates) and subsequent onset of locomotion defects that develop as a result of the collapse of the proteome. Further, the expression of the polyQ::YFP transgene can be driven by tissue-specific promoters, allowing the assessment of proteostasis across tissues in the context of an intact multicellular organism. This model is highly amenable to genetic analysis, thus providing an approach to quantify aging that is complementary to lifespan assays. We describe how to accurately measure polyQ::YFP foci formation within either neurons or body wall muscle during aging, and the subsequent onset of behavioral defects. Next, we highlight how these approaches can be adapted for higher throughput, and potential future applications using other emerging strategies for C. elegans genetic analysis.
Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteína Huntingtina , Longevidade , Proteoma , ProteostaseRESUMO
Glial pathology is a causal contributor to the striatal neuronal dysfunction of Huntington's disease (HD). We investigate mutant HTT-associated changes in gene expression by mouse and human striatal astrocytes, as well as in mouse microglia, to identify commonalities in glial pathobiology across species and models. Mouse striatal astrocytes are fluorescence-activated cell sorted (FACS) from R6/2 and zQ175 mice, which respectively express exon1-only or full-length mHTT, and human astrocytes are generated either from human embryonic stem cells (hESCs) expressing full-length mHTT or from fetal striatal astrocytes transduced with exon1-only mHTT. Comparison of differential gene expression across these conditions, all with respect to normal HTT controls, reveals cell-type-specific changes in transcription common to both species, yet with differences that distinguish glia expressing truncated mHTT versus full-length mHTT. These data indicate that the differential gene expression of glia expressing truncated mHTT may differ from that of cells expressing full-length mHTT, while identifying a conserved set of dysregulated pathways in HD glia.
Assuntos
Doença de Huntington/patologia , Neuroglia/patologia , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Vias Biossintéticas , Colesterol/biossíntese , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Camundongos Endogâmicos C57BL , Proteínas Mutantes/metabolismo , Neuroglia/metabolismo , Transcrição GênicaRESUMO
People living with HIV are at higher risk of atherosclerosis (AS). The pathogenesis of this risk is not fully understood. To assess the regulatory networks involved in AS we sequenced mRNA of the peripheral blood mononuclear cells (PBMCs) and measured cytokine and chemokine levels in the plasma of 13 persons living with HIV and 12 matched HIV-negative persons with and without AS. microRNAs (miRNAs) are known to play a role in HIV infection and may modulate gene regulation to drive AS. Hence, we further assessed miRNA expression in PBMCs of a subset of 12 HIV+ people with and without atherosclerosis. We identified 12 miRNAs differentially expressed between HIV+ AS+ and HIV+ , and validated 5 of those by RT-qPCR. While a few of these miRNAs have been implicated in HIV and atherosclerosis, others are novel. Integrating miRNA measurements with mRNA, we identified 27 target genes including SLC4A7, a critical sodium and bicarbonate transporter, that are potentially dysregulated during atherosclerosis. Additionally, we uncovered that levels of plasma cytokines were associated with transcription factor activity and miRNA expression in PBMCs. For example, BACH2 activity was associated with IL-1ß, IL-15, and MIP-1α. IP10 and TNFα levels were associated with miR-124-3p. Finally, integration of all data types into a single network revealed increased importance of miRNAs in network regulation of the HIV+ group in contrast with increased importance of cytokines in the HIV+ AS+ group.
Assuntos
Aterosclerose/genética , Infecções por HIV/genética , MicroRNAs/genética , RNA Mensageiro/genética , Aterosclerose/complicações , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Infecções por HIV/complicações , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-IdadeRESUMO
Lifespan is the most straightforward surrogate measure of aging, as it is easily quantifiable. A common approach to measure Caenorhabditis elegans lifespan is to follow a population of animals over time and score viability based on movement. We previously developed an alternative approach, called the Replica Set method, to quantitatively measure lifespan of C. elegans in a high-throughput manner. The replica set method allows a single investigator to screen more treatments or conditions in the same amount of time without loss of data quality. The method requires common equipment found in most laboratories working with C. elegans and is thus simple to adopt. Unlike traditional approaches, the Replica Set method centers on assaying independent samples of a population at each observation point, rather than a single sample over time as with "traditional" longitudinal methods. The protocols provided here describe both the traditional experimental approach and the Replica Set method, as well as practical considerations for each.
Assuntos
Envelhecimento/genética , Bioensaio/métodos , Caenorhabditis elegans/genética , Longevidade/genética , Animais , Caenorhabditis elegans/crescimento & desenvolvimentoRESUMO
OBJECTIVE: Benzo(ghi)perylene (BghiP) and 1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD) were elevated in serum from personnel deployed to sites with open burn pits. Here, we investigated the ability of BghiP and HpCDD to regulate microRNA (miRNA) expression through the aryl hydrocarbon receptor (AHR). METHODS: Human lung fibroblasts (HLFs) were exposed to BghiP and HpCDD. AHR activity was measured by reporter assay and gene expression. Deployment related miRNA were measured by quantitative polymerase chain reaction. AHR expression was depleted using siRNA. RESULTS: BghiP displayed weak AHR agonist activity. HpCDD induced AHR activity in a dose-dependent manner. Let-7d-5p, miR-103-3p, miR-107, and miR-144-3p levels were significantly altered by HpCDD. AHR knockdown attenuated these effects. CONCLUSIONS: These studies reveal that miRNAs previously identified in sera from personnel deployed to sites with open burn pits are altered by HpCDD exposure in HLFs.
Assuntos
Fibroblastos/efeitos dos fármacos , Pulmão/efeitos dos fármacos , MicroRNAs/metabolismo , Dibenzodioxinas Policloradas/efeitos adversos , Fibroblastos/metabolismo , Humanos , Exposição por Inalação/efeitos adversos , Pulmão/citologia , Pulmão/metabolismoRESUMO
DNA repair has been hypothesized to be a longevity determinant, but the evidence for it is based largely on accelerated aging phenotypes of DNA repair mutants. Here, using a panel of 18 rodent species with diverse lifespans, we show that more robust DNA double-strand break (DSB) repair, but not nucleotide excision repair (NER), coevolves with longevity. Evolution of NER, unlike DSB, is shaped primarily by sunlight exposure. We further show that the capacity of the SIRT6 protein to promote DSB repair accounts for a major part of the variation in DSB repair efficacy between short- and long-lived species. We dissected the molecular differences between a weak (mouse) and a strong (beaver) SIRT6 protein and identified five amino acid residues that are fully responsible for their differential activities. Our findings demonstrate that DSB repair and SIRT6 have been optimized during the evolution of longevity, which provides new targets for anti-aging interventions.
Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Longevidade/genética , Sirtuínas/metabolismo , Sequência de Aminoácidos , Animais , Peso Corporal , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Evolução Molecular , Fibroblastos/citologia , Fibroblastos/metabolismo , Técnicas de Inativação de Genes , Humanos , Cinética , Masculino , Mutagênese , Filogenia , Roedores/classificação , Alinhamento de Sequência , Sirtuínas/química , Sirtuínas/genética , Raios UltravioletaRESUMO
Huntington's disease (HD) is characterized by hypomyelination and neuronal loss. To assess the basis for myelin loss in HD, we generated bipotential glial progenitor cells (GPCs) from human embryonic stem cells (hESCs) derived from mutant Huntingtin (mHTT) embryos or normal controls and performed RNA sequencing (RNA-seq) to assess mHTT-dependent changes in gene expression. In human GPCs (hGPCs) derived from 3 mHTT hESC lines, transcription factors associated with glial differentiation and myelin synthesis were sharply downregulated relative to normal hESC GPCs; NKX2.2, OLIG2, SOX10, MYRF, and their downstream targets were all suppressed. Accordingly, when mHTT hGPCs were transplanted into hypomyelinated shiverer mice, the resultant glial chimeras were hypomyelinated; this defect could be rescued by forced expression of SOX10 and MYRF by mHTT hGPCs. The mHTT hGPCs also manifested impaired astrocytic differentiation and developed abnormal fiber architecture. White matter involution in HD is thus a product of the cell-autonomous, mHTT-dependent suppression of glial differentiation.
Assuntos
Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Células-Tronco Embrionárias Humanas/patologia , Proteína Huntingtina/genética , Doença de Huntington/patologia , Neuroglia/patologia , Células-Tronco/patologia , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Diferenciação Celular , Quimera , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/metabolismo , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Doença de Huntington/genética , Doença de Huntington/metabolismo , Camundongos , Mutação , Neurogênese , Neuroglia/metabolismo , Proteínas Nucleares , Células-Tronco/metabolismo , Fatores de TranscriçãoRESUMO
The Replica Set method is an approach to quantitatively measure lifespan or survival of Caenorhabditis elegans nematodes in a high-throughput manner, thus allowing a single investigator to screen more treatments or conditions over the same amount of time without loss of data quality. The method requires common equipment found in most laboratories working with C. elegans and is thus simple to adopt. The approach centers on assaying independent samples of a population at each observation point, rather than a single sample over time as with traditional longitudinal methods. Scoring entails adding liquid to the wells of a multi-well plate, which stimulates C. elegans to move and facilitates quantifying changes in healthspan. Other major benefits of the Replica Set method include reduced exposure of agar surfaces to airborne contaminants (e.g. mold or fungus), minimal handling of animals, and robustness to sporadic mis-scoring (such as calling an animal as dead when it is still alive). To appropriately analyze and visualize the data from a Replica Set style experiment, a custom software tool was also developed. Current capabilities of the software include plotting of survival curves for both Replica Set and traditional (Kaplan-Meier) experiments, as well as statistical analysis for Replica Set. The protocols provided here describe the traditional experimental approach and the Replica Set method, as well as an overview of the corresponding data analysis.
Assuntos
Bioensaio/métodos , Caenorhabditis elegans/química , Envelhecimento , Animais , Estudos de Avaliação como Assunto , Análise de SobrevidaRESUMO
An extensive proteostatic network comprised of molecular chaperones and protein clearance mechanisms functions collectively to preserve the integrity and resiliency of the proteome. The efficacy of this network deteriorates during aging, coinciding with many clinical manifestations, including protein aggregation diseases of the nervous system. A decline in proteostasis can be delayed through the activation of cytoprotective transcriptional responses, which are sensitive to environmental stress and internal metabolic and physiological cues. The homeodomain-interacting protein kinase (hipk) family members are conserved transcriptional co-factors that have been implicated in both genotoxic and metabolic stress responses from yeast to mammals. We demonstrate that constitutive expression of the sole Caenorhabditis elegans Hipk homolog, hpk-1, is sufficient to delay aging, preserve proteostasis, and promote stress resistance, while loss of hpk-1 is deleterious to these phenotypes. We show that HPK-1 preserves proteostasis and extends longevity through distinct but complementary genetic pathways defined by the heat shock transcription factor (HSF-1), and the target of rapamycin complex 1 (TORC1). We demonstrate that HPK-1 antagonizes sumoylation of HSF-1, a post-translational modification associated with reduced transcriptional activity in mammals. We show that inhibition of sumoylation by RNAi enhances HSF-1-dependent transcriptional induction of chaperones in response to heat shock. We find that hpk-1 is required for HSF-1 to induce molecular chaperones after thermal stress and enhances hormetic extension of longevity. We also show that HPK-1 is required in conjunction with HSF-1 for maintenance of proteostasis in the absence of thermal stress, protecting against the formation of polyglutamine (Q35::YFP) protein aggregates and associated locomotory toxicity. These functions of HPK-1/HSF-1 undergo rapid down-regulation once animals reach reproductive maturity. We show that HPK-1 fortifies proteostasis and extends longevity by an additional independent mechanism: induction of autophagy. HPK-1 is necessary for induction of autophagosome formation and autophagy gene expression in response to dietary restriction (DR) or inactivation of TORC1. The autophagy-stimulating transcription factors pha-4/FoxA and mxl-2/Mlx, but not hlh-30/TFEB or the nuclear hormone receptor nhr-62, are necessary for extended longevity resulting from HPK-1 overexpression. HPK-1 expression is itself induced by transcriptional mechanisms after nutritional stress, and post-transcriptional mechanisms in response to thermal stress. Collectively our results position HPK-1 at a central regulatory node upstream of the greater proteostatic network, acting at the transcriptional level by promoting protein folding via chaperone expression, and protein turnover via expression of autophagy genes. HPK-1 therefore provides a promising intervention point for pharmacological agents targeting the protein homeostasis system as a means of preserving robust longevity.
Assuntos
Envelhecimento/genética , Proteínas de Caenorhabditis elegans/genética , Longevidade/genética , Complexos Multiproteicos/genética , Proteínas Serina-Treonina Quinases/genética , Serina-Treonina Quinases TOR/genética , Fatores de Transcrição/genética , Envelhecimento/patologia , Animais , Autofagia/genética , Caenorhabditis elegans , Regulação da Expressão Gênica , Homeostase , Alvo Mecanístico do Complexo 1 de Rapamicina , Chaperonas Moleculares/genética , Processamento de Proteína Pós-Traducional , Transdução de Sinais/genética , Estresse Fisiológico/genéticaRESUMO
Astrocytes have in recent years become the focus of intense experimental interest, yet markers for their definitive identification remain both scarce and imperfect. Astrocytes may be recognized as such by their expression of glial fibrillary acidic protein, glutamine synthetase, glutamate transporter 1 (GLT1), aquaporin-4, aldehyde dehydrogenase 1 family member L1, and other proteins. However, these proteins may all be regulated both developmentally and functionally, restricting their utility. To identify a nuclear marker pathognomonic of astrocytic phenotype, we assessed differential RNA expression by FACS-purified adult astrocytes and, on that basis, evaluated the expression of the transcription factor SOX9 in both mouse and human brain. We found that SOX9 is almost exclusively expressed by astrocytes in the adult brain except for ependymal cells and in the neurogenic regions, where SOX9 is also expressed by neural progenitor cells. Transcriptome comparisons of SOX9+ cells with GLT1+ cells showed that the two populations of cells exhibit largely overlapping gene expression. Expression of SOX9 did not decrease during aging and was instead upregulated by reactive astrocytes in a number of settings, including a murine model of amyotrophic lateral sclerosis (SOD1G93A), middle cerebral artery occlusion, and multiple mini-strokes. We quantified the relative number of astrocytes using the isotropic fractionator technique in combination with SOX9 immunolabeling. The analysis showed that SOX9+ astrocytes constitute â¼10-20% of the total cell number in most CNS regions, a smaller fraction of total cell number than previously estimated in the normal adult brain.SIGNIFICANCE STATEMENT Astrocytes are traditionally identified immunohistochemically by antibodies that target cell-specific antigens in the cytosol or plasma membrane. We show here that SOX9 is an astrocyte-specific nuclear marker in all major areas of the CNS outside of the neurogenic regions. Based on SOX9 immunolabeling, we document that astrocytes constitute a smaller fraction of total cell number than previously estimated in the normal adult mouse brain.
Assuntos
Astrócitos/metabolismo , Fatores de Transcrição SOX9/metabolismo , Adulto , Envelhecimento , Animais , Biomarcadores , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/metabolismo , Neurogênese , RNA/biossíntese , Fatores de Transcrição SOX9/genética , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/metabolismo , Transcriptoma/genéticaRESUMO
Subpopulation growth rates and the probability of decline at current harvest levels were determined for 13 subpopulations of polar bears (Ursus maritimus) that are within or shared with Canada based on mark-recapture estimates of population numbers and vital rates, and harvest statistics using population viability analyses (PVA). Aboriginal traditional ecological knowledge (TEK) on subpopulation trend agreed with the seven stable/increasing results and one of the declining results, but disagreed with PVA status of five other declining subpopulations. The decline in the Baffin Bay subpopulation appeared to be due to over-reporting of harvested numbers from outside Canada. The remaining four disputed subpopulations (Southern Beaufort Sea, Northern Beaufort Sea, Southern Hudson Bay, and Western Hudson Bay) were all incompletely mark-recapture (M-R) sampled, which may have biased their survival and subpopulation estimates. Three of the four incompletely sampled subpopulations were PVA identified as nonviable (i.e., declining even with zero harvest mortality). TEK disagreement was nonrandom with respect to M-R sampling protocols. Cluster analysis also grouped subpopulations with ambiguous demographic and harvest rate estimates separately from those with apparently reliable demographic estimates based on PVA probability of decline and unharvested subpopulation growth rate criteria. We suggest that the correspondence between TEK and scientific results can be used to improve the reliability of information on natural systems and thus improve resource management. Considering both TEK and scientific information, we suggest that the current status of Canadian polar bear subpopulations in 2013 was 12 stable/increasing and one declining (Kane Basin). We do not find support for the perspective that polar bears within or shared with Canada are currently in any sort of climate crisis. We suggest that monitoring the impacts of climate change (including sea ice decline) on polar bear subpopulations should be continued and enhanced and that adaptive management practices are warranted.