Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Vet Immunol Immunopathol ; 272: 110757, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723459

RESUMO

The dynamics that develop between cells and molecules in the host against infection by Mycobacterium bovis, leads to the formation of granulomas mainly present in the lungs and regional lymph nodes in cattle. Cell death is one of the main features in granuloma organization, however, it has not been characterized in granulomatous lesions caused by M. bovis. In this study we aimed to identify the profiles of cell death in the granuloma stages and its relationship with the accumulation of bacteria. We identified necrosis, activated caspase-3, LC3B/p62 using immunohistochemistry and digital pathology analysis on 484 granulomatous lesions in mediastinal lymph nodes from 23 naturally infected cattle. Conclusions: greater amounts of mycobacterial antigens were identified in granulomas from calves compared with adult cattle. The highest percentage of necrosis and quantity of mycobacterial antigens were identified in granuloma stages (III/IV) from adults. The LC3B/p62 profile was heterogeneous in granulomas between adults and calves. Our data suggest that necrosis is associated with a higher amount of mycobacterial antigens in the late stages of granuloma and the development of autophagy appears to play an heterogeneous effector response against infection in adults and calves. These results represent one of the first approaches in the identification of cell death in the four stages of granulomas in bovine tuberculosis.


Assuntos
Antígenos de Bactérias , Granuloma , Mycobacterium bovis , Necrose , Tuberculose Bovina , Animais , Bovinos , Granuloma/veterinária , Granuloma/imunologia , Granuloma/microbiologia , Granuloma/patologia , Mycobacterium bovis/imunologia , Mycobacterium bovis/patogenicidade , Necrose/veterinária , Necrose/imunologia , Necrose/microbiologia , Tuberculose Bovina/imunologia , Tuberculose Bovina/microbiologia , Tuberculose Bovina/patologia , Antígenos de Bactérias/imunologia , Linfonodos/microbiologia , Linfonodos/imunologia , Linfonodos/patologia , Caspase 3/imunologia , Imuno-Histoquímica/veterinária
2.
Biology (Basel) ; 11(8)2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-36009811

RESUMO

Paratuberculosis is a disease caused by Mycobacterium avium subsp. paratuberculosis (MAP). It is of great interest to better understand the proteins involved in the pathogenicity of this organism in order to be able to identify potential therapeutic targets and design new vaccines. The protein of interest-MAP3773c-was investigated, and molecular modeling in silico, docking, cloning, expression, purification, and partial characterization of the recombinant protein were achieved. In the in silico study, it was shown that MAP3773c of MAP has 34% sequence similarity with Mycobacterium tuberculosis (MTB) FurB, which is a zinc uptake regulator (Zur) protein. The docking data showed that MAP3773c exhibits two metal-binding sites. The presence of structural Zn2+ in the purified protein was confirmed by SDS-PAGE PAR staining. The purification showed one band that corresponded to a monomer, which was confirmed by liquid chromatography-mass spectrometry (LC-MS). The presence of a monomer was verified by analyzing the native protein structure through BN-SDS-PAGE (Native Blue (BN) Two-Dimensional Electrophoresis) and BN-Western blotting. The MAP3773c protein contains structural zinc. In conclusion, our results show that MAP3773c displays the features of a Fur-type protein with two metal-binding sites, one of them coordinating structural Zn2+.

3.
Transbound Emerg Dis ; 68(6): 3360-3365, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33249779

RESUMO

Mycobacterium bovis is the main cause of bovine tuberculosis (BTB) in cattle and can also infect humans. Zebu cattle are considered more resistant to some infectious diseases compared with Holstein-Friesian (HF) cattle, including BTB. However, epidemiological studies may not take into account usage differences of the two types of cattle. HF cattle may suffer greater metabolic stress due to their more or less exclusive dairy use, whereas Zebu cattle are mainly used for beef production. In experiments conducted so far, the number of animals has been too small to draw statistically robust conclusions on the resistance differences between these cattle breeds. Here, we used a BCG challenge model to compare the ability of naïve and vaccinated Zebu and HF cattle to control/kill mycobacteria. Young cattle of both breeds with similar ages were housed in the same accommodation for the duration of the experiment. After correcting for multiple comparisons, we found no difference between naïve HF and Zebu (ρ = 0.862) cattle. However, there was a trend for vaccinated HF cattle to have lower cfu numbers than non-vaccinated HF cattle (ρ = 0.057); no such trend was observed between vaccinated and non-vaccinated Zebu cattle (ρ = 0.560). Evaluation of antigen-specific IFNγ secretion by PBMC indicated that Zebu and HF cattle differed in their response to mycobacteria. Thus, whilst there may be difference in immune responses, our data indicate that with the number of animals included in the study and under the conditions used in this work, we were unable to measure any differences between Zebu and HF cattle in the overall control of mycobacteria. Whilst determination of different susceptibilities between Zebu and HF cattle using the BCG challenge model will require larger numbers of animals than the number of animals used in this experiment, these data should inform future experiments.


Assuntos
Doenças dos Bovinos , Mycobacterium bovis , Tuberculose Bovina , Animais , Vacina BCG , Bovinos , Imunidade , Interferon gama , Leucócitos Mononucleares , Tuberculose Bovina/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...