Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 14(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38891616

RESUMO

Bottlenose dolphins (Tursiops truncatus) are long-lived marine mammals, upper-level predators, and they inhabit near-shore environments, which increases their exposure to pollution. Mercury is a ubiquitous and persistent metal pollutant that can bioaccumulate and biomagnify up the food chain. Dolphins are known to accumulate mercury, and limited research has shown that mercury exposure can weaken the immune system of dolphins. The objectives of this study were to assess the mercury concentrations in the tissues (muscle, small intestine, liver) of stranded bottlenose dolphins and to compare the tissue mercury levels in dolphins that were stranded during the 2013-2015 morbillivirus Unusual Mortality Event (UME; immunosuppressed individuals) with the levels of those that were stranded at a normal rate (2016-2021). Selenium has been shown to reduce mercury toxicity in many animals; therefore, tissue selenium concentration and the molar ratio of selenium to mercury were also assessed. The tissue mercury (muscle, liver) and selenium (liver) concentrations increased with the age of the dolphins, with the liver accumulating the highest concentrations. No sex differences were observed in the mercury and selenium concentrations. While differences in tissue mercury concentrations were not observed due to the UME, the selenium accumulation profiles were significantly different between the two time periods. These results suggest that selenium may not have been as protective against mercury toxicity in the bottlenose dolphins that were stranded during the UME, possibly due to infection with morbillivirus.

2.
Environ Toxicol Chem ; 43(6): 1260-1273, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38546224

RESUMO

Microplastics (<5 mm in diameter) are ubiquitous in the oceanic environment, yet microplastic accumulation in marine mammals is vastly understudied. In recent years, efforts have been made to document microplastic profiles in odontocetes. The objective of the present study was to describe and quantify microplastics in the gastrointestinal (GI) tracts of deceased odontocetes that stranded in the southeastern United States. Our study included 24 bottlenose dolphins (Tursiops truncatus), two pygmy sperm whales (Kogia breviceps), one pantropical spotted dolphin (Stenella attenuata), one short-snouted spinner dolphin (Stenella clymene), one Risso's dolphin (Grampus griseus), and one dwarf sperm whale (Kogia sima) obtained from stranding networks in Texas, Alabama, Florida, and Puerto Rico. Contents found in the GI tracts, namely, the stomach and portions of the intestinal tract, were subjected to a laboratory procedure to isolate microplastics. The physical characteristics of microparticles were analyzed with a stereomicroscope, and microplastics were classified by polymer type via Fourier-transform infrared spectroscopy. There was an average of 47.6 ± 41.4 microparticles, ranging from 1 to 193 items per stomach. More specifically, there was an average of 5.6 ± 4.7 microplastics per stomach. The predominant morphologies, colors, and polymer types were fibers, white-colored items, and polyester, respectively. This research contributes to the current knowledge of microplastic exposure in top marine mammal predators and sets the stage for further exploration into the associated risks of microplastics in odontocetes within the United States and worldwide. Environ Toxicol Chem 2024;43:1260-1273. © 2024 SETAC.


Assuntos
Monitoramento Ambiental , Trato Gastrointestinal , Microplásticos , Poluentes Químicos da Água , Animais , Microplásticos/análise , Poluentes Químicos da Água/análise , Trato Gastrointestinal/metabolismo , Sudeste dos Estados Unidos , Baleias/metabolismo , Golfinhos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...