RESUMO
In this paper, we leveraged Large Language Models(LLMs) to accelerate data wrangling and automate labor-intensive aspects of data discovery and harmonization. This work promotes interoperability standards and enhances data discovery, facilitating AI-readiness in biomedical science with the generation of Common Data Elements (CDEs) as key to harmonizing multiple datasets. Thirty-one studies, various ontologies, and medical coding systems served as source material to create CDEs from which available metadata and context was sent as an API request to 4th-generation OpenAI GPT models to populate each metadata field. A human-in-the-loop (HITL) approach was used to assess quality and accuracy of the generated CDEs. To regulate CDE generation, we employed ElasticSearch and HITL to avoid duplicate CDEs and instead, added them as potential aliases for existing CDEs. The generated CDEs are foundational to assess the interoperability potential of datasets by determining how many data set column headers can be correctly mapped to CDEs as well as quantifying compliance with permissible values and data types. Subject matter experts reviewed generated CDEs and determined that 94.0% of generated metadata fields did not require manual revisions. Data tables from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the Global Parkinson's Genetic Program (GP2) were used as test cases for interoperability assessments. Column headers from all test cases were successfully mapped to generated CDEs at a rate of 32.4% via elastic search.The interoperability score, a metric for dataset compatibility to CDEs and other connected datasets, based on relevant criteria such as data field completeness and compliance with common harmonization standards averaged 53.8 out of 100 for test cases. With this project, we aim to automate the most tedious aspects of data harmonization, enhancing efficiency and scalability in biomedical research while decreasing activation energy for federated research.
RESUMO
BACKGROUND: Brain vascular pathology is an important comorbidity in Alzheimer's disease (AD), with white matter damage independently predicting cognitive impairment. However, it is still unknown how vascular pathology differentially impacts primary age-related tauopathy (PART) compared to AD. Therefore, our objectives were to compare the brain microangiopathic burden in patients with PART and AD, evaluated by MRI, while assessing its relation with neuropathological findings, patterns of brain atrophy and degree of clinical impairment. METHODS: Clinical information, brain MRI (T1 and T2-FLAIR) and neuropathological data were obtained from the National Alzheimer's Coordinating Centre ongoing study, with a total sample of 167 patients identified, that were divided according to the presence of neuritic plaques in Consortium to Establish a Registry for Alzheimer's disease (CERAD) 0 to 3. Microangiopathic burden and brain atrophy were evaluated by two certified neuroradiologists, using, respectively, the Fazekas score and previously validated visual rating scales to assess brain regional atrophy. RESULTS: Significant correlations were found between the Fazekas score and atrophy in the fronto-insular and medial temporal regions on both groups, with PART showing overall stronger positive correlations than in AD, especially in the fronto-insular region. For this specific cohort, no significant correlations were found between the Fazekas score and the degree of clinical impairment. CONCLUSION: Our results show that PART presents different pathological consequences at the brain microvascular level compared with AD and further supports PART as an independent pathological entity from AD.
RESUMO
Progressive supranuclear palsy (PSP), a rare Parkinsonian disorder, is characterized by problems with movement, balance, and cognition. PSP differs from Alzheimer's disease (AD) and other diseases, displaying abnormal microtubule-associated protein tau by both neuronal and glial cell pathologies. Genetic contributors may mediate these differences; however, the genetics of PSP remain underexplored. Here we conduct the largest genome-wide association study (GWAS) of PSP which includes 2779 cases (2595 neuropathologically-confirmed) and 5584 controls and identify six independent PSP susceptibility loci with genome-wide significant (P < 5 × 10-8) associations, including five known (MAPT, MOBP, STX6, RUNX2, SLCO1A2) and one novel locus (C4A). Integration with cell type-specific epigenomic annotations reveal an oligodendrocytic signature that might distinguish PSP from AD and Parkinson's disease in subsequent studies. Candidate PSP risk gene prioritization using expression quantitative trait loci (eQTLs) identifies oligodendrocyte-specific effects on gene expression in half of the genome-wide significant loci, and an association with C4A expression in brain tissue, which may be driven by increased C4A copy number. Finally, histological studies demonstrate tau aggregates in oligodendrocytes that colocalize with C4 (complement) deposition. Integrating GWAS with functional studies, epigenomic and eQTL analyses, we identify potential causal roles for variation in MOBP, STX6, RUNX2, SLCO1A2, and C4A in PSP pathogenesis.
Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Paralisia Supranuclear Progressiva , Proteínas tau , Humanos , Paralisia Supranuclear Progressiva/genética , Paralisia Supranuclear Progressiva/patologia , Paralisia Supranuclear Progressiva/metabolismo , Idoso , Masculino , Feminino , Proteínas tau/genética , Proteínas tau/metabolismo , Transcriptoma , Polimorfismo de Nucleotídeo Único , Neuroglia/metabolismo , Neuroglia/patologia , Idoso de 80 Anos ou mais , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Pessoa de Meia-Idade , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Estudos de Casos e Controles , Proteínas da MielinaRESUMO
BACKGROUND: Progressive supranuclear palsy (PSP) is a rare neurodegenerative disease characterized by the accumulation of aggregated tau proteins in astrocytes, neurons, and oligodendrocytes. Previous genome-wide association studies for PSP were based on genotype array, therefore, were inadequate for the analysis of rare variants as well as larger mutations, such as small insertions/deletions (indels) and structural variants (SVs). METHOD: In this study, we performed whole genome sequencing (WGS) and conducted association analysis for single nucleotide variants (SNVs), indels, and SVs, in a cohort of 1,718 cases and 2,944 controls of European ancestry. Of the 1,718 PSP individuals, 1,441 were autopsy-confirmed and 277 were clinically diagnosed. RESULTS: Our analysis of common SNVs and indels confirmed known genetic loci at MAPT, MOBP, STX6, SLCO1A2, DUSP10, and SP1, and further uncovered novel signals in APOE, FCHO1/MAP1S, KIF13A, TRIM24, TNXB, and ELOVL1. Notably, in contrast to Alzheimer's disease (AD), we observed the APOE ε2 allele to be the risk allele in PSP. Analysis of rare SNVs and indels identified significant association in ZNF592 and further gene network analysis identified a module of neuronal genes dysregulated in PSP. Moreover, seven common SVs associated with PSP were observed in the H1/H2 haplotype region (17q21.31) and other loci, including IGH, PCMT1, CYP2A13, and SMCP. In the H1/H2 haplotype region, there is a burden of rare deletions and duplications (P = 6.73 × 10-3) in PSP. CONCLUSIONS: Through WGS, we significantly enhanced our understanding of the genetic basis of PSP, providing new targets for exploring disease mechanisms and therapeutic interventions.
Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Paralisia Supranuclear Progressiva , Sequenciamento Completo do Genoma , Humanos , Paralisia Supranuclear Progressiva/genética , Predisposição Genética para Doença/genética , Masculino , Feminino , Idoso , Polimorfismo de Nucleotídeo Único/genética , Pessoa de Meia-Idade , Idoso de 80 Anos ou maisRESUMO
Progressive supranuclear palsy (PSP) is a neurodegenerative movement and cognitive disorder characterized by abnormal accumulation of the microtubule-associated protein tau in the brain. Biochemically, inclusions in PSP are enriched for tau proteoforms with four microtubule-binding domain repeats (4R), an isoform that arises from alternative tau pre-mRNA splicing. While preferential aggregation and reduced degradation of 4R tau protein is thought to play a role in inclusion formation and toxicity, an alternative hypothesis is that altered expression of tau mRNA isoforms plays a causal role. This stems from the observation that PSP is associated with common variation in the tau gene (MAPT) at the 17q21.31 locus which contains low copy number repeats flanking a large recurrent genomic inversion. The complex genomic structural changes at the locus give rise to two dominant haplotypes, termed H1 and H2, that have the potential to markedly influence gene expression. Here, we explored haplotype-dependent differences in gene expression using a bulk RNA-seq dataset derived from human post-mortem brain tissue from PSP (n = 84) and controls (n = 77) using a rigorous computational pipeline, including alternative pre-mRNA splicing. We found 3579 differentially expressed genes in the temporal cortex and 10,011 in the cerebellum. We also found 7214 differential splicing events in the temporal cortex and 18,802 in the cerebellum. In the cerebellum, total tau mRNA levels and the proportion of transcripts encoding 4R tau were significantly increased in PSP compared to controls. In the temporal cortex, the proportion of reads that expressed 4R tau was increased in cases compared to controls. 4R tau mRNA levels were significantly associated with the H1 haplotype in the temporal cortex. Further, we observed a marked haplotype-dependent difference in KANSL1 expression that was strongly associated with H1 in both brain regions. These findings support the hypothesis that sporadic PSP is associated with haplotype-dependent increases in 4R tau mRNA that might play a causal role in this disorder.
Assuntos
Haplótipos , Paralisia Supranuclear Progressiva , Transcriptoma , Proteínas tau , Humanos , Paralisia Supranuclear Progressiva/genética , Paralisia Supranuclear Progressiva/patologia , Paralisia Supranuclear Progressiva/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Idoso , Masculino , Feminino , Idoso de 80 Anos ou mais , Encéfalo/metabolismo , Encéfalo/patologia , Pessoa de Meia-IdadeRESUMO
Background: LRRK2 variants have been associated with immune dysregulation as well as immune-related disorders such as IBD. A possible relationship between multiple sclerosis (MS) and LRRK2 PD has also been suggested. Further, neuropathologic studies of homozygous LRRK2 G2019S carriers with Parkinson's disease (PD) are rare, and there are no systematic reports of clinical features in those cases. Methods: We investigated the co-occurrence of PD and MS in our research cohort and report on two cases of MS in LRRK2 PD as well as neuropathological findings for one. Results: MS preceded PD in 1.4% (2/138) of participants with LRRK2 G2019S variants, and in none (0/638) with idiopathic PD (p = 0.03). One case with MS and PD was a LRRK2 G2019S homozygous carrier, and neuropathology showed evidence of substantia nigra pars compacta degeneration and pallor without Lewy deposition, as well as multiple white matter lesions consistent with MS-related demyelination. Discussion: The increased prevalence of MS in LRRK2 PD further supports an important role for immune function for LRRK2 PD. This co-occurrence, while rare, suggests that MS may be an expression of the LRRK2 G2019S variant that includes both MS and PD, with MS predating features diagnostic of PD. The neuropathology suggests that the MS-related effects occurred independent of synuclein deposition. Importantly, and in addition, the neuropathological results not only support the MS diagnosis, but provide further evidence that Lewy body pathology may be absent even in homozygote LRRK2 carriers.
RESUMO
Importance: Parkinsonism is associated with traumatic brain injury and chronic traumatic encephalopathy (CTE), a neurodegenerative disease associated with repetitive head impact (RHI) exposure, but the neuropathologic substrates that underlie parkinsonism in individuals with CTE are yet to be defined. Objective: To evaluate the frequency of parkinsonism in individuals with CTE and the association of RHI and neuropathologic substrates with parkinsonism in these individuals. Design, Setting, and Participants: This cross-sectional study included brain donors with neuropathologically diagnosed CTE without other significant neurodegenerative disease and with information on parkinsonism from the Understanding Neurologic Injury and Traumatic Encephalopathy brain bank between July 2015 and May 2022. Exposure: Years of contact sports participation as a proxy for RHI. Main Outcomes and Measures: The main outcomes were frequency of parkinsonism in individuals with CTE and associations between (1) RHI with substantia nigra (SN) Lewy bodies (LBs) and neurofibrillary tangles (NFTs); (2) LBs, NFTs, and arteriolosclerosis with SN neuronal loss; and (3) SN neuronal loss, LBs, NFTs, and arteriolosclerosis with parkinsonism, tested by age-adjusted logistic regressions. Results: Of 481 male brain donors with neuropathologically diagnosed CTE, parkinsonism occurred frequently in individuals with CTE (119 [24.7%]; 362 [75.3%] did not have parkinsonism). Participants with parkinsonism had a higher mean (SD) age at death (71.5 [13.0] years) than participants without parkinsonism (54.1 [19.3] years) (P < .001) and higher rates of dementia (104 [87.4%] vs 105 [29.0%]), visual hallucinations (45 [37.8%] vs 51 [14.1%]), and probable rapid eye movement sleep behavior disorder (52 [43.7%] vs 58 [16.0%]) (P < .001 for all). Participants with parkinsonism had a more severe CTE stage (eg, stage IV: 35 [29.4%] vs 39 [10.8%]) and nigral pathology than those without parkinsonism (NFTs: 50 of 117 [42.7%] vs 103 of 344 [29.9%]; P = .01; neuronal loss: 61 of 117 [52.1%] vs 59 of 344 [17.1%]; P < .001; and LBs: 28 of 116 [24.1%] vs 20 of 342 [5.8%]; P < .001). Years of contact sports participation were associated with SN NFTs (adjusted odds ratio [AOR], 1.04; 95% CI, 1.00-1.07; P = .03) and neuronal loss (AOR, 1.05; 95% CI, 1.01-1.08; P = .02). Nigral neuronal loss (AOR, 2.61; 95% CI, 1.52-4.47; P < .001) and LBs (AOR, 2.29; 95% CI, 1.15-4.57; P = .02) were associated with parkinsonism. However, SN neuronal loss was associated with SN LBs (AOR, 4.48; 95% CI, 2.25-8.92; P < .001), SN NFTs (AOR, 2.51; 95% CI, 1.52-4.15; P < .001), and arteriolosclerosis (AOR, 2.27; 95% CI, 1.33-3.85; P = .002). In American football players, regression analysis demonstrated that SN NFTs and neuronal loss mediated the association between years of play and parkinsonism in the context of CTE (ß, 0.012; 95% CI, 0.001-0.038). Conclusions and Relevance: In this cross-sectional study of contact sports athletes with CTE, years of contact sports participation were associated with SN tau pathology and neuronal loss, and these pathologies were associated with parkinsonism. Repetitive head impacts may incite neuropathologic processes that lead to symptoms of parkinsonism in individuals with CTE.
Assuntos
Encefalopatia Traumática Crônica , Transtornos Parkinsonianos , Substância Negra , Humanos , Encefalopatia Traumática Crônica/patologia , Encefalopatia Traumática Crônica/etiologia , Masculino , Substância Negra/patologia , Pessoa de Meia-Idade , Estudos Transversais , Transtornos Parkinsonianos/patologia , Transtornos Parkinsonianos/epidemiologia , Transtornos Parkinsonianos/etiologia , Feminino , Idoso , Adulto , Emaranhados Neurofibrilares/patologia , Traumatismos em Atletas/complicações , Traumatismos em Atletas/patologia , Corpos de Lewy/patologia , EsportesRESUMO
Communication between glial cells has a profound impact on the pathophysiology of Alzheimer's disease (AD). We reveal here that reactive astrocytes control cell distancing in peri-plaque glial nets, which restricts microglial access to amyloid deposits. This process is governed by guidance receptor Plexin-B1 (PLXNB1), a network hub gene in individuals with late-onset AD that is upregulated in plaque-associated astrocytes. Plexin-B1 deletion in a mouse AD model led to reduced number of reactive astrocytes and microglia in peri-plaque glial nets, but higher coverage of plaques by glial processes, along with transcriptional changes signifying reduced neuroinflammation. Additionally, a reduced footprint of glial nets was associated with overall lower plaque burden, a shift toward dense-core-type plaques and reduced neuritic dystrophy. Altogether, our study demonstrates that Plexin-B1 regulates peri-plaque glial net activation in AD. Relaxing glial spacing by targeting guidance receptors may present an alternative strategy to increase plaque compaction and reduce neuroinflammation in AD.
Assuntos
Doença de Alzheimer , Proteínas do Tecido Nervoso , Neuroglia , Placa Amiloide , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Neuroglia/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/genética , Humanos , Astrócitos/metabolismo , Camundongos Transgênicos , Microglia/metabolismo , Peptídeos beta-Amiloides/metabolismo , Masculino , Camundongos Knockout , FemininoRESUMO
Fluid preservation is nearly universally used in brain banking to store fixed tissue specimens for future research applications. However, the effects of long-term immersion on neural circuitry and biomolecules are not well characterized. As a result, there is a need to synthesize studies investigating fluid preservation of brain tissue. We searched PubMed and other databases to identify studies measuring the effects of fluid preservation in nervous system tissue. We categorized studies based on the fluid preservative used: formaldehyde solutions, buffer solutions, alcohol solutions, storage after tissue clearing, and cryoprotectant solutions. We identified 91 studies containing 197 independent observations of the effects of long-term storage on cellular morphology. Most studies did not report any significant alterations due to long-term storage. When present, the most frequent alteration was decreased antigenicity, commonly attributed to progressive crosslinking by aldehydes that renders biomolecules increasingly inaccessible over time. To build a mechanistic understanding, we discuss biochemical aspects of long-term fluid preservation. A subset of lipids appears to be chemical altered or extracted over time due to incomplete retention in the crosslinked gel. Alternative storage fluids mitigate the problem of antigen masking but have not been extensively characterized and may have other downsides. We also compare fluid preservation to cryopreservation, paraffin embedding, and resin embedding. Overall, existing evidence suggests that fluid preservation provides maintenance of neural architecture for decades, including precise structural details. However, to avoid the well-established problem of overfixation caused by storage in high concentration formaldehyde solutions, fluid preservation procedures can use an initial fixation step followed by an alternative long-term storage fluid. Further research is warranted on optimizing protocols and characterizing the generalizability of the storage artifacts that have been identified.
RESUMO
Repetitive head impacts (RHIs) from football are associated with the neurodegenerative tauopathy chronic traumatic encephalopathy (CTE). It is unclear whether a history of traumatic brain injury (TBI) is sufficient to precipitate CTE neuropathology. We examined the association between TBI and CTE neuropathology in 580 deceased individuals exposed to RHIs from football. TBI history was assessed using a modified version of the Ohio State University TBI Identification Method Short Form administered to informants. There were 22 donors who had no TBI, 213 who had at least one TBI without loss of consciousness (LOC), 345 who had TBI with LOC, and, of those with a history of TBI with LOC, 36 who had at least one moderate-to-severe TBI (msTBI, LOC >30 min). CTE neuropathology was diagnosed in 405. There was no association between CTE neuropathology status or severity and TBI with LOC (odds ratio [OR] = 0.95, 95% confidence interval [CI] = 0.64-1.41; OR = 1.22, 95% CI = 0.71-2.09) or msTBI (OR = 0.70, 95% CI = 0.33-1.50; OR = 1.01, 95% CI = 0.30-3.41). There were no associations with other neurodegenerative or cerebrovascular pathologies examined. TBI with LOC and msTBI were not associated with CTE neuropathology in this sample of brain donors exposed to RHIs from American football.
Assuntos
Lesões Encefálicas Traumáticas , Encefalopatia Traumática Crônica , Humanos , Masculino , Encefalopatia Traumática Crônica/patologia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/patologia , Feminino , Pessoa de Meia-Idade , Adulto , Idoso , Futebol Americano/lesões , Idoso de 80 Anos ou mais , Adulto JovemRESUMO
Neurodegenerative pathologies such as Alzheimer disease neuropathologic change (ADNC), Lewy body disease (LBD), limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC), and cerebrovascular disease (CVD) frequently coexist, but little is known about the exact contribution of each pathology to cognitive decline and dementia in subjects with mixed pathologies. We explored the relative cognitive impact of concurrent common and rare neurodegenerative pathologies employing multivariate logistic regression analysis adjusted for age, gender, and level of education. We analyzed a cohort of 6,262 subjects from the National Alzheimer's Coordinating Center database, ranging from 0 to 6 comorbid neuropathologic findings per individual, where 95.7% of individuals had at least 1 neurodegenerative finding at autopsy and 75.5% had at least 2 neurodegenerative findings. We identified which neuropathologic entities correlate most frequently with one another and demonstrated that the total number of pathologies per individual was directly correlated with cognitive performance as assessed by Clinical Dementia Rating (CDR®) and Mini-Mental State Examination (MMSE). We show that ADNC, LBD, LATE-NC, CVD, hippocampal sclerosis, Pick disease, and FTLD-TDP significantly impact overall cognition as independent variables. More specifically, ADNC significantly affected all assessed cognitive domains, LBD affected attention, processing speed, and language, LATE-NC primarily affected tests related to logical memory and language, while CVD and other less common pathologies (including Pick disease, progressive supranuclear palsy, and corticobasal degeneration) had more variable neurocognitive effects. Additionally, ADNC, LBD, and higher numbers of comorbid neuropathologies were associated with the presence of at least one APOE ε4 allele, and ADNC and higher numbers of neuropathologies were inversely correlated with APOE ε2 alleles. Understanding the mechanisms by which individual and concomitant neuropathologies affect cognition and the degree to which each contributes is an imperative step in the development of biomarkers and disease-modifying therapeutics, particularly as these medical interventions become more targeted and personalized.
Assuntos
Doença de Alzheimer , Doenças Cardiovasculares , Demência , Demência Frontotemporal , Doença por Corpos de Lewy , Doença de Pick , Proteinopatias TDP-43 , Humanos , Doença de Pick/patologia , Encéfalo/patologia , Doença de Alzheimer/patologia , Doença por Corpos de Lewy/complicações , Doença por Corpos de Lewy/patologia , Demência Frontotemporal/patologia , CogniçãoRESUMO
Psychosis in Alzheimer's Disease (AD) is prevalent and indicates poor prognosis. However, the neuropathological, cognitive and brain atrophy patterns underlying these symptoms have not been fully elucidated. In this study, we evaluated 178 patients with AD neuropathological change (ADNC) and ante-mortem volumetric brain magnetic resonance imaging (MRI). Presence of psychosis was determined using the Neuropsychiatric Inventory Questionnaire. Clinical Dementia Rating Sum-of-boxes (CDR-SB) was longitudinally compared between groups with a follow-up of 3000 days using mixed-effects multiple linear regression. Neuropsychological tests closest to the time of MRI and brain regional volumes were cross-sectionally compared. Psychosis was associated with lower age of death, higher longitudinal CDR-SB scores, multi-domain cognitive deficits, higher neuritic plaque severity, Braak stage, Lewy Body pathology (LB) and right temporal lobe regional atrophy. Division according to the presence of LB showed differential patterns of AD-typical pathology, cognitive deficits and regional atrophy. In conclusion, psychosis in ADNC with and without LB has clinical value and associates with subgroup patterns of neuropathology, cognition and regional atrophy.
Assuntos
Doença de Alzheimer , Transtornos Psicóticos , Humanos , Doença de Alzheimer/diagnóstico , Cognição , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Transtornos Psicóticos/diagnóstico por imagem , Atrofia/patologiaRESUMO
BACKGROUND: Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease characterized by hyperphosphorylated tau (p-tau) accumulation. The clinical features associated with CTE pathology are unclear. In brain donors with autopsy-confirmed CTE, we investigated the association of CTE p-tau pathology density and location with cognitive, functional, and neuropsychiatric symptoms. METHODS: In 364 brain donors with autopsy confirmed CTE, semi-quantitative p-tau severity (range: 0-3) was assessed in 10 cortical and subcortical regions. We summed ratings across regions to form a p-tau severity global composite (range: 0-30). Informants completed standardized scales of cognition (Cognitive Difficulties Scale, CDS; BRIEF-A Metacognition Index, MI), activities of daily living (Functional Activities Questionnaire), neurobehavioral dysregulation (BRIEF-A Behavioral Regulation Index, BRI; Barratt Impulsiveness Scale, BIS-11), aggression (Brown-Goodwin Aggression Scale), depression (Geriatric Depression Scale-15, GDS-15), and apathy (Apathy Evaluation Scale, AES). Ordinary least squares regression models examined associations between global and regional p-tau severity (separate models for each region) with each clinical scale, adjusting for age at death, racial identity, education level, and history of hypertension, obstructive sleep apnea, and substance use treatment. Ridge regression models that incorporated p-tau severity across all regions in the same model assessed which regions showed independent effects. RESULTS: The sample was predominantly American football players (333; 91.2%); 140 (38.5%) had low CTE and 224 (61.5%) had high CTE. Global p-tau severity was associated with higher (i.e., worse) scores on the cognitive and functional scales: MI ([Formula: see text] standardized = 0.02, 95%CI = 0.01-0.04), CDS ([Formula: see text] standardized = 0.02, 95%CI = 0.01-0.04), and FAQ ([Formula: see text] standardized = 0.03, 95%CI = 0.01-0.04). After false-discovery rate correction, p-tau severity in the frontal, inferior parietal, and superior temporal cortex, and the amygdala was associated with higher CDS ([Formula: see text] sstandardized = 0.17-0.29, ps < 0.01) and FAQ ([Formula: see text] sstandardized = 0.21-0.26, ps < 0.01); frontal and inferior parietal cortex was associated with higher MI ([Formula: see text] sstandardized = 0.21-0.29, ps < 0.05); frontal cortex was associated with higher BRI ([Formula: see text] standardized = 0.21, p < 0.01). Regions with effects independent of other regions included frontal cortex (CDS, MI, FAQ, BRI), inferior parietal cortex (CDS) and amygdala (FAQ). P-tau explained 13-49% of variance in cognitive and functional scales and 6-14% of variance in neuropsychiatric scales. CONCLUSION: Accumulation of p-tau aggregates, especially in the frontal cortex, are associated with cognitive, functional, and certain neurobehavioral symptoms in CTE.
Assuntos
Encefalopatia Traumática Crônica , Doenças Neurodegenerativas , Humanos , Atividades Cotidianas , Autopsia , Encéfalo/metabolismo , Encefalopatia Traumática Crônica/patologia , Cognição , Doenças Neurodegenerativas/patologia , Proteínas tau/metabolismoRESUMO
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease caused by repetitive head impacts (RHI) and pathologically defined as neuronal phosphorylated tau aggregates around small blood vessels and concentrated at sulcal depths. Cross-sectional studies suggest that tau inclusions follow a stereotyped pattern that begins in the neocortex in low stage disease, followed by involvement of the medial temporal lobe and subcortical regions with significant neocortical burden in high stage CTE. Here, we define a subset of brain donors with high stage CTE and with a low overall cortical burden of tau inclusions (mean semiquantitative value ≤1) and classify them as cortical-sparing CTE (CSCTE). Of 620 brain donors with pathologically diagnosed CTE, 66 (11%) met criteria for CSCTE. Compared to typical high stage CTE, those with CSCTE had a similar age at death and years of contact sports participation and were less likely to carry apolipoprotein ε4 (p < 0.05). CSCTE had less overall tau pathology severity, but a proportional increase of disease burden in medial temporal lobe and brainstem regions compared to the neocortex (p's < 0.001). CSCTE also had lower prevalence of comorbid neurodegenerative disease. Clinically, CSCTE participants were less likely to have dementia (p = 0.023) and had less severe cognitive difficulties (as reported by informants using the Functional Activities Questionnaire (FAQ); p < 0.001, meta-cognitional index T score; p = 0.002 and Cognitive Difficulties Scale (CDS); p < 0.001,) but had an earlier onset age of behavioral (p = 0.006) and Parkinsonian motor (p = 0.013) symptoms when compared to typical high stage CTE. Other comorbid tauopathies likely contributed in part to these differences: when cases with concurrent Alzheimer dementia or frontal temporal lobar degeneration with tau pathology were excluded, differences were largely retained, but only remained significant for FAQ (p = 0.042), meta-cognition index T score (p = 0.014) and age of Parkinsonian motor symptom onset (p = 0.046). Overall, CSCTE appears to be a distinct subtype of high stage CTE with relatively greater involvement of subcortical and brainstem regions and less severe cognitive symptoms.
Assuntos
Doença de Alzheimer , Encefalopatia Traumática Crônica , Doenças Neurodegenerativas , Humanos , Estudos Transversais , EncéfaloRESUMO
INTRODUCTION: The pace of innovation has accelerated in virtually every area of tau research in just the past few years. METHODS: In February 2022, leading international tau experts convened to share selected highlights of this work during Tau 2022, the second international tau conference co-organized and co-sponsored by the Alzheimer's Association, CurePSP, and the Rainwater Charitable Foundation. RESULTS: Representing academia, industry, and the philanthropic sector, presenters joined more than 1700 registered attendees from 59 countries, spanning six continents, to share recent advances and exciting new directions in tau research. DISCUSSION: The virtual meeting provided an opportunity to foster cross-sector collaboration and partnerships as well as a forum for updating colleagues on research-advancing tools and programs that are steadily moving the field forward.
Assuntos
Doença de Alzheimer , Tauopatias , Humanos , Proteínas tauRESUMO
Background: Progressive supranuclear palsy (PSP) is a rare neurodegenerative disease characterized by the accumulation of aggregated tau proteins in astrocytes, neurons, and oligodendrocytes. Previous genome-wide association studies for PSP were based on genotype array, therefore, were inadequate for the analysis of rare variants as well as larger mutations, such as small insertions/deletions (indels) and structural variants (SVs). Method: In this study, we performed whole genome sequencing (WGS) and conducted association analysis for single nucleotide variants (SNVs), indels, and SVs, in a cohort of 1,718 cases and 2,944 controls of European ancestry. Of the 1,718 PSP individuals, 1,441 were autopsy-confirmed and 277 were clinically diagnosed. Results: Our analysis of common SNVs and indels confirmed known genetic loci at MAPT, MOBP, STX6, SLCO1A2, DUSP10, and SP1, and further uncovered novel signals in APOE, FCHO1/MAP1S, KIF13A, TRIM24, TNXB, and ELOVL1. Notably, in contrast to Alzheimer's disease (AD), we observed the APOE ε2 allele to be the risk allele in PSP. Analysis of rare SNVs and indels identified significant association in ZNF592 and further gene network analysis identified a module of neuronal genes dysregulated in PSP. Moreover, seven common SVs associated with PSP were observed in the H1/H2 haplotype region (17q21.31) and other loci, including IGH, PCMT1, CYP2A13, and SMCP. In the H1/H2 haplotype region, there is a burden of rare deletions and duplications (P = 6.73×10-3) in PSP. Conclusions: Through WGS, we significantly enhanced our understanding of the genetic basis of PSP, providing new targets for exploring disease mechanisms and therapeutic interventions.
RESUMO
Parkinson's disease (PD) is characterized pathologically by the loss of dopaminergic (DA) neurons in the substantia nigra (SN). Whether cell types beyond DA neurons in the SN show vulnerability in PD remains unclear. Through transcriptomic profiling of 315,867 high-quality single nuclei in the SN from individuals with and without PD, we identified cell clusters representing various neuron types, glia, endothelial cells, pericytes, fibroblasts, and T cells and investigated cell type-dependent alterations in gene expression in PD. Notably, a unique neuron cluster marked by the expression of RIT2, a PD risk gene, also displayed vulnerability in PD. We validated RIT2-enriched neurons in midbrain organoids and the mouse SN. Our results demonstrated distinct transcriptomic signatures of the RIT2-enriched neurons in the human SN and implicated reduced RIT2 expression in the pathogenesis of PD. Our study sheds light on the diversity of cell types, including DA neurons, in the SN and the complexity of molecular and cellular changes associated with PD pathogenesis.
Assuntos
Células Endoteliais , Doença de Parkinson , Humanos , Animais , Camundongos , Doença de Parkinson/genética , Substância Negra , Neurônios Dopaminérgicos , NeurogliaRESUMO
Accumulation of advanced glycation end products (AGEs) on biopolymers accompanies cellular aging and drives poorly understood disease processes. Here, we studied how AGEs contribute to development of early onset Parkinson's Disease (PD) caused by loss-of-function of DJ1, a protein deglycase. In induced pluripotent stem cell (iPSC)-derived midbrain organoid models deficient for DJ1 activity, we find that lysosomal proteolysis is impaired, causing AGEs to accumulate, α-synuclein (α-syn) phosphorylation to increase, and proteins to aggregate. We demonstrated these processes are at least partly driven by astrocytes, as DJ1 loss reduces their capacity to provide metabolic support and triggers acquisition of a pro-inflammatory phenotype. Consistently, in co-cultures, we find that DJ1-expressing astrocytes are able to reverse the proteolysis deficits of DJ1 knockout midbrain neurons. In conclusion, astrocytes' capacity to clear toxic damaged proteins is critical to preserve neuronal function and their dysfunction contributes to the neurodegeneration observed in a DJ1 loss-of-function PD model.