Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Mult Scler ; : 13524585241260977, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877721

RESUMO

BACKGROUND: While John Cunningham virus (JCV) is known to cause neuronal damage in progressive multifocal leukoencephalopathy (PML) among natalizumab-treated MS patients, its association with axonal loss in non-PML conditions remains unclear. METHODS: In a cohort of 128 natalizumab-treated MS patients, serum neurofilament (sNfL) levels and JCV antibody titres were measured. RESULTS: Among 128 patients (mean age = 38.4 years, 71.9% female), 51 (40%) were JCV positive. NfL levels increased by 15.3% for JCV index <0.7 (95% confidence interval [CI] = 0.963-1.381), by 18.6% for index 0.7-1.5 (95% CI = 1.009-1.394) and by 21.1% for index >1.5 (95% CI = 1.040-1.409) compared to JCV negative patients. CONCLUSION: These findings indicate a potential link between JCV burden and neuroaxonal degeneration in natalizumab-treated MS patients.

2.
Nat Neurosci ; 27(6): 1116-1124, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38637622

RESUMO

Alzheimer's disease (AD) and dementia in general are age-related diseases with multiple contributing factors, including brain inflammation. Microglia, and specifically those expressing the AD risk gene TREM2, are considered important players in AD, but their exact contribution to pathology remains unclear. In this study, using high-throughput mass cytometry in the 5×FAD mouse model of amyloidosis, we identified senescent microglia that express high levels of TREM2 but also exhibit a distinct signature from TREM2-dependent disease-associated microglia (DAM). This senescent microglial protein signature was found in various mouse models that show cognitive decline, including aging, amyloidosis and tauopathy. TREM2-null mice had fewer microglia with a senescent signature. Treating 5×FAD mice with the senolytic BCL2 family inhibitor ABT-737 reduced senescent microglia, but not the DAM population, and this was accompanied by improved cognition and reduced brain inflammation. Our results suggest a dual and opposite involvement of TREM2 in microglial states, which must be considered when contemplating TREM2 as a therapeutic target in AD.


Assuntos
Envelhecimento , Doença de Alzheimer , Encéfalo , Modelos Animais de Doenças , Glicoproteínas de Membrana , Microglia , Receptores Imunológicos , Animais , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Microglia/metabolismo , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Camundongos , Envelhecimento/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Camundongos Transgênicos , Senescência Celular/fisiologia , Senescência Celular/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout
3.
Science ; 380(6640): eabo7649, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37023203

RESUMO

Contemporary studies have completely changed the view of brain immunity from envisioning the brain as isolated and inaccessible to peripheral immune cells to an organ in close physical and functional communication with the immune system for its maintenance, function, and repair. Circulating immune cells reside in special niches in the brain's borders, the choroid plexus, meninges, and perivascular spaces, from which they patrol and sense the brain in a remote manner. These niches, together with the meningeal lymphatic system and skull microchannels, provide multiple routes of interaction between the brain and the immune system, in addition to the blood vasculature. In this Review, we describe current ideas about brain immunity and their implications for brain aging, diseases, and immune-based therapeutic approaches.


Assuntos
Encéfalo , Sistema Imunitário , Animais , Humanos , Encéfalo/irrigação sanguínea , Encéfalo/imunologia , Movimento Celular/imunologia , Sistema Imunitário/citologia , Sistema Linfático/imunologia , Meninges/imunologia , Células Mieloides/imunologia
4.
Nat Commun ; 14(1): 1293, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36894557

RESUMO

Systemic immunity supports lifelong brain function. Obesity posits a chronic burden on systemic immunity. Independently, obesity was shown as a risk factor for Alzheimer's disease (AD). Here we show that high-fat obesogenic diet accelerated recognition-memory impairment in an AD mouse model (5xFAD). In obese 5xFAD mice, hippocampal cells displayed only minor diet-related transcriptional changes, whereas the splenic immune landscape exhibited aging-like CD4+ T-cell deregulation. Following plasma metabolite profiling, we identified free N-acetylneuraminic acid (NANA), the predominant sialic acid, as the metabolite linking recognition-memory impairment to increased splenic immune-suppressive cells in mice. Single-nucleus RNA-sequencing revealed mouse visceral adipose macrophages as a potential source of NANA. In vitro, NANA reduced CD4+ T-cell proliferation, tested in both mouse and human. In vivo, NANA administration to standard diet-fed mice recapitulated high-fat diet effects on CD4+ T cells and accelerated recognition-memory impairment in 5xFAD mice. We suggest that obesity accelerates disease manifestation in a mouse model of AD via systemic immune exhaustion.


Assuntos
Doença de Alzheimer , Camundongos , Humanos , Animais , Doença de Alzheimer/metabolismo , Ácido N-Acetilneuramínico , Camundongos Transgênicos , Transtornos da Memória/etiologia , Obesidade/complicações , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças
5.
Cancer Discov ; 13(7): 1616-1635, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-36972357

RESUMO

Multiple studies have identified metabolic changes within the tumor and its microenvironment during carcinogenesis. Yet, the mechanisms by which tumors affect the host metabolism are unclear. We find that systemic inflammation induced by cancer leads to liver infiltration of myeloid cells at early extrahepatic carcinogenesis. The infiltrating immune cells via IL6-pSTAT3 immune-hepatocyte cross-talk cause the depletion of a master metabolic regulator, HNF4α, consequently leading to systemic metabolic changes that promote breast and pancreatic cancer proliferation and a worse outcome. Preserving HNF4α levels maintains liver metabolism and restricts carcinogenesis. Standard liver biochemical tests can identify early metabolic changes and predict patients' outcomes and weight loss. Thus, the tumor induces early metabolic changes in its macroenvironment with diagnostic and potentially therapeutic implications for the host. SIGNIFICANCE: Cancer growth requires a permanent nutrient supply starting from early disease stages. We find that the tumor extends its effect to the host's liver to obtain nutrients and rewires the systemic and tissue-specific metabolism early during carcinogenesis. Preserving liver metabolism restricts tumor growth and improves cancer outcomes. This article is highlighted in the In This Issue feature, p. 1501.


Assuntos
Fígado , Neoplasias Pancreáticas , Humanos , Fígado/metabolismo , Carcinogênese/patologia , Hepatócitos , Neoplasias Pancreáticas/patologia , Imunidade Inata , Microambiente Tumoral
6.
Nat Aging ; 2(1): 60-73, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-37118355

RESUMO

Microglia and monocyte-derived macrophages (MDM) are key players in dealing with Alzheimer's disease. In amyloidosis mouse models, activation of microglia was found to be TREM2 dependent. Here, using Trem2-/-5xFAD mice, we assessed whether MDM act via a TREM2-dependent pathway. We adopted a treatment protocol targeting the programmed cell death ligand-1 (PD-L1) immune checkpoint, previously shown to modify Alzheimer's disease via MDM involvement. Blockade of PD-L1 in Trem2-/-5xFAD mice resulted in cognitive improvement and reduced levels of water-soluble amyloid beta1-42 with no effect on amyloid plaque burden. Single-cell RNA sequencing revealed that MDM, derived from both Trem2-/- and Trem2+/+5xFAD mouse brains, express a unique set of genes encoding scavenger receptors (for example, Mrc1, Msr1). Blockade of monocyte trafficking using anti-CCR2 antibody completely abrogated the cognitive improvement induced by anti-PD-L1 treatment in Trem2-/-5xFAD mice and similarly, but to a lesser extent, in Trem2+/+5xFAD mice. These results highlight a TREM2-independent, disease-modifying activity of MDM in an amyloidosis mouse model.


Assuntos
Doença de Alzheimer , Amiloidose , Camundongos , Animais , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Camundongos Transgênicos , Macrófagos/metabolismo , Amiloidose/genética , Glicoproteínas de Membrana/genética , Receptores Imunológicos/genética
7.
Nat Immunol ; 22(9): 1083-1092, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34429552

RESUMO

For decades, it was commonly accepted that the brain is secluded from peripheral immune activity and is self-sufficient for its maintenance and repair. This simplistic perception was based on the presence of resident immune cells, the microglia, and barrier systems within the brain, and the assumption that the central nervous system (CNS) lacks lymphatic drainage. This view was revised with the discoveries that higher functions of the CNS, homeostasis and repair are supported by peripheral innate and adaptive immune cells. The findings of bone marrow-derived immune cells in specialized niches, and the renewed observation that a lymphatic drainage system exists within the brain, further contributed to this revised model. In this Review, we describe the immune niches within the brain, the contribution of professional immune cells to brain functions, the bidirectional relationships between the CNS and the immune system and the relevance of immune components to brain aging and neurodegenerative diseases.


Assuntos
Encéfalo/imunologia , Imunidade/fisiologia , Microglia/imunologia , Doenças Neurodegenerativas/imunologia , Envelhecimento/imunologia , Barreira Hematoencefálica/imunologia , Células da Medula Óssea/imunologia , Líquido Cefalorraquidiano/citologia , Líquido Cefalorraquidiano/imunologia , Humanos , Subpopulações de Linfócitos/imunologia , Macrófagos/imunologia
8.
Ann Neurol ; 90(2): 253-265, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34216397

RESUMO

OBJECTIVE: In vivo measures of myeloid activity are promising biomarkers in multiple sclerosis. We previously demonstrated that cerebrospinal fluid (CSF) myeloid microvesicles are markers of microglial/macrophage activity and neuroinflammation in multiple sclerosis. Here, we aimed at investigating the diagnostic and prognostic value of myeloid microvesicles in a clinical setting. METHODS: Six hundred one patients discharged with a diagnosis of neuroinflammatory, neurodegenerative, or no neurological disease were enrolled. Myeloid microvesicles were measured with flow cytometry as isolectin B4-positive events in fresh CSF. Clinical, demographical, and magnetic resonance imaging (MRI) data were collected at diagnosis (all patients) and during follow-up (n = 176). RESULTS: CSF myeloid microvesicles were elevated in neuroinflammatory patients compared to the neurodegenerative and control groups. In multiple sclerosis, microvesicles were higher in patients with MRI disease activity and their concentration increased along with the number of enhancing lesions (p < 0.0001, Jonckheere-Terpstra test). CSF myeloid microvesicles were also higher in patients with higher disease activity in the month and year preceding diagnosis. Microvesicles excellently discriminated between the relapsing-remitting and control groups (receiver operator characteristic curve, area under the curve = 0.939, p < 0.0001) and between radiologically isolated syndrome and unspecific brain lesions (0.942, p < 0.0001). Furthermore, microvesicles were independent predictors of prognosis for both the relapsing-remitting and progressive groups. Microvesicles independently predicted future disease activity in relapsing-remitting patients (hazard ratio [HR] = 1.967, 95% confidence interval [CI] = 1.147-3.372), correcting for prognostic factors of standard clinical use. In the progressive group, microvesicles were independent predictors of disability accrual (HR = 10.767, 95% CI = 1.335-86.812). INTERPRETATION: Our results confirm that CSF myeloid microvesicles are a clinically meaningful biomarker of neuroinflammation and microglial/macrophage activity in vivo. These findings may support a possible use in clinical practice during diagnostic workup and prognostic assessment. ANN NEUROL 2021;90:253-265.


Assuntos
Micropartículas Derivadas de Células/metabolismo , Progressão da Doença , Esclerose Múltipla Recidivante-Remitente/líquido cefalorraquidiano , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Células Mieloides/metabolismo , Adulto , Biomarcadores/líquido cefalorraquidiano , Estudos de Coortes , Feminino , Seguimentos , Humanos , Imageamento por Ressonância Magnética/tendências , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Prospectivos , Adulto Jovem
9.
Brain ; 144(3): 848-862, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33829250

RESUMO

Optical coherence tomography (OCT) is gaining increasing relevance in the assessment of patients with multiple sclerosis. Converging evidence point to the view that neuro-retinal changes, in eyes without acute optic neuritis, reflect inflammatory and neurodegenerative processes taking place throughout the CNS. The present study aims at exploring the usefulness of OCT as a marker of inflammation and disease burden in the earliest phases of the disease. Thus, a cohort of 150 consecutive patients underwent clinical, neurophysiological and brain MRI assessment as well as lumbar puncture as part of their diagnostic workup for a neurological episode suggestive of inflammatory CNS disorder; among those 32 patients had another previous misdiagnosed episode. For the present study, patients also received a visual pathway assessment (OCT, visual evoked potentials, visual acuity), measurement of CSF inflammatory markers (17 cytokines-chemokines, extracellular vesicles of myeloid origin), and dosage of plasma neurofilaments. Subclinical optic nerve involvement is frequently found in clinically isolated syndromes by visual evoked potentials (19.2%). OCT reveals ganglion cell layer asymmetries in 6.8% of patients; retinal fibre layer asymmetries, despite being more frequent (17.8%), display poor specificity. The presence of subclinical involvement is associated with a greater disease burden. Second, ganglion cell layer thinning reflects the severity of disease involvement even beyond the anterior optic pathway. In fact, the ganglion cell layer in eyes without evidence of subclinical optic involvement is correlated with Expanded Disability Status Scale, low contrast visual acuity, disease duration, brain lesion load, presence of gadolinium enhancing lesions, abnormalities along motor and somatosensory evoked potentials, and frequency of CSF-specific oligoclonal bands. Third, the inner nuclear layer thickens in a post-acute (1.1-3.7 months) phase after a relapse, and this phenomenon is counteracted by steroid treatment. Likewise, a longitudinal analysis on 65 patients shows that this swelling is transient and returns to normal values after 1 year follow-up. Notwithstanding, the clinical, MRI, serological and CSF markers of disease activity considered in the study are strictly associated with one another, but none of them are associated with the inner nuclear layer. Our findings challenge the current hypothesis that the inner nuclear layer is an acute phase marker of inflammatory activity. The present study suggests that instrumental evidence of subclinical optic nerve involvement is associated with a greater disease burden in clinically isolated syndrome. Neuro-retinal changes are present since the earliest phases of the disease and yield important information regarding the neurodegenerative and inflammatory processes occurring in the CNS.


Assuntos
Doenças Desmielinizantes/patologia , Esclerose Múltipla/patologia , Nervo Óptico/patologia , Adolescente , Adulto , Doenças Desmielinizantes/diagnóstico por imagem , Diagnóstico Precoce , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/diagnóstico por imagem , Nervo Óptico/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos , Vias Visuais/diagnóstico por imagem , Vias Visuais/patologia , Adulto Jovem
10.
J Neurol ; 268(2): 717-723, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33389030

RESUMO

BACKGROUND: The significance of neutrophil-to-lymphocyte ratio (NLR) has been explored in different diseases. Few studies addressed its role in patients with multiple sclerosis (MS), with promising results regarding its association with disease activity or disability. OBJECTIVES: We aimed at confirming the role of NLR as a marker of neuro-inflammation in a cohort of newly diagnosed MS and clinically isolated syndrome (CIS) patients. Furthermore, we compared the validity of NLR with established markers of neuro-inflammation, such as serum neurofilament light chain (Nfl), CSF microvesicles (CSF-MVs) and CSF IgG indices. METHODS: We retrospectively selected, from a prospectively collected cohort of newly diagnosed MS/CIS patients hospitalized for diagnostic work-up, 121 patients who underwent CSF examination, brain MRI and blood cell count within the time of hospitalization and did not receive steroid treatment before sample collection. Patients were grouped according to presence of gadolinium enhancement at brain MRI. RESULTS: No association was found between NLR and disease activity, nor with other clinical measures. Nfl, CSF-MVs, Link and Tourtellotte indices were significantly higher in patients with brain MRI activity. CONCLUSIONS: Our negative results do not support the use of NLR as a marker of disease activity and disability in patients with MS.


Assuntos
Esclerose Múltipla , Biomarcadores , Meios de Contraste , Gadolínio , Humanos , Inflamação , Linfócitos , Esclerose Múltipla/complicações , Esclerose Múltipla/diagnóstico por imagem , Proteínas de Neurofilamentos , Neutrófilos , Estudos Retrospectivos
11.
Mult Scler ; 27(10): 1606-1610, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33464186

RESUMO

BACKGROUND: Extracellular vesicles (EVs), a recently described mechanism of cell communication, are released from activated microglial cells and macrophages and are a candidate biomarker in diseases characterized by chronic inflammatory process such as multiple sclerosis (MS). METHODS: We explored cerebrospinal fluid extracellular vesicle (CSF EV) of myeloid origin (MEVs), cytokine and chemokine levels in patients with clinically isolated syndrome (CIS). RESULTS: We found that CSF MEVs were significantly higher in CIS patients than in controls and were inversely correlated to CSF CCL2 levels. MEVs level were significantly associated with an shorter time to evidence of disease activity (hazard ratio: 1.01, 95% confidence interval: 1.00-1.02, p < 0.01) independently from other known prognostic markers. CONCLUSION: After a first demyelinating event, CSF EVs may improve risk stratification of these patients and allow more targeted intervention strategies.


Assuntos
Doenças Desmielinizantes , Vesículas Extracelulares , Esclerose Múltipla , Biomarcadores , Humanos , Inflamação
13.
Mol Aspects Med ; 60: 52-61, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29137922

RESUMO

Extracellular vesicles (EVs) are released by all neural cells, including neurons, oligodendrocytes, astrocytes, and microglia. The lack of adequate technology has not halted neuroscientists from investigating EVs as a mean to decipher neurodegenerative disorders, still in search of comprehensible pathogenic mechanisms and efficient treatment. EVs are thought to be one of ways neurodegenerative pathologies spread in the brain, but also one of the ways the brain tries to displace toxic proteins, making their meaning in pathogenesis uncertain. EVs, however do reach biological fluids where they can be analyzed, and might therefore constitute clinically decisive biomarkers for neurodegenerative diseases in the future. Finally, if they constitute a physiological inter-cell communication system, they may represent also a very specific drug delivery tool for a difficult target such as the brain. We try to resume here available information on the role of EVs in neurodegeneration, with a special focus on Alzheimer's disease, progressive multiple sclerosis, amyotrophic lateral sclerosis, and Huntington's disease.


Assuntos
Vesículas Extracelulares/metabolismo , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/metabolismo , Animais , Biomarcadores , Progressão da Doença , Humanos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...