Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
J Sport Rehabil ; 33(7): 570-581, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39069291

RESUMO

CONTEXT: Horizontal hops can provide insight into how athletes can tolerate high-intensity single-leg stretch loads and are commonly used in athlete monitoring and injury management. Variables like flight, contact, and total time provide valuable diagnostic information to sports science professionals. However, gold-standard assessment tools (eg, 3-dimensional motion capture, force plates) require monetary and technological resources. Therefore, we used a tablet and free software to determine the between-rater, within-rater, and test-retest variability of the temporal events of multiple horizontal hop tests. DESIGN: Reliability study. METHODS: Nine healthy males (20.8 [1.3] y, 71.4 [9.8] kg, 171.7 [4.5] cm) across various university sports teams and clubs volunteered and performed several triple (3-Hop) and quintuple (5-Hop) horizontal hops over 3 testing sessions. Six raters detected temporal events from video to determine between-rater variability, while a single rater quantified within-session and test-retest variability. The temporal variables of flight time, ground contact time for each individual hop, and the total time of each hoping series were determined. The consistency of measures was interpreted using the coefficient of variation and interclass correlation coefficients (ICC). RESULTS: Good to excellent between-rater consistency was observed for all hops (ICC = .85-1.00). Absolute (coefficient of variation ≤ 2.0%) and relative consistency (ICC = .98-1.00) was excellent. Test-retest variability showed acceptable levels of absolute consistency (coefficient of variation ≤ 8.7%) and good to excellent consistency in 10/16 variables (ICC = .81-.93), especially those later in the hopping cycle. CONCLUSIONS: A tablet and free digitizing software are reliable in detecting temporal events during multiple horizontal hops, which could have exciting implications for power diagnostics and return-to-play decisions. Therefore, rehabilitation and performance professionals can confidently utilize the highly accessible equipment from this study to track multiple hop performances.


Assuntos
Gravação em Vídeo , Humanos , Masculino , Adulto Jovem , Reprodutibilidade dos Testes , Teste de Esforço/métodos , Teste de Esforço/normas , Desempenho Atlético/fisiologia , Fenômenos Biomecânicos
2.
Sports Med ; 54(6): 1399-1418, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38743173

RESUMO

BACKGROUND: The inclusion of skateboarding in the Olympics suggests that athletes and coaches are seeking ways to enhance their chances of succeeding on the world stage. Understanding what constitutes performance, and what physical, neuromuscular, and biomechanical capacities underlie it, is likely critical to success. OBJECTIVE: The aim was to overview the current literature and identify knowledge gaps related to competitive skateboarding performance and associated physical, technical, and tactical demands of Olympic skateboarding disciplines. METHODS: A systematic scoping review was performed considering the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (Extension for Scoping Reviews) guidelines. Data sources were MEDLINE (Ovid), Scopus, SPORTDiscus, and PubMed. We included all peer-reviewed literature after 1970 describing the physiological, neuromuscular, biomechanical, and/or tactical aspects of skateboarding. RESULTS: Nineteen original articles explored the physiological (n = 9), biomechanical (n = 8), and technical (n = 10) demands of skateboarding. No research explored the tactical demands of competition. Moreover, although competitive males (n = 2 studies) and females (n = 1 study) were recruited as participants, no research directly related skateboarding demands to performance success in competitive environments. CONCLUSIONS: Ultimately, what constitutes and distinguishes competitive skateboarding is unexplored. There is some evidence indicating aspects of the sport require flexibility and elevated and fast force output of the lower limbs, which may be valuable when attempting to maximise ollie height. Nonetheless, a lack of ecological validity, such as using static ollie tests as opposed to rolling, restricted our ability to provide practical recommendations, and inconsistency of terminology complicated delineating discipline-specific outcomes. Future researchers should first look to objectively identify what skaters do in competition before assessing what qualities enable their performance.


Assuntos
Desempenho Atlético , Comportamento Competitivo , Patinação , Humanos , Patinação/fisiologia , Desempenho Atlético/fisiologia , Fenômenos Biomecânicos , Força Muscular
3.
Healthc Technol Lett ; 11(1): 16-20, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38370163

RESUMO

The importance of hip adductor strength for injury prevention and performance benefits is well documented. The purpose of this study was to establish the intra- and inter-day variability of peak force (PF) of a groin squeeze protocol using a custom-designed compression strain gauge device. Sixteen semi-professional soccer players completed three trials over three separate testing occasions with at least 24-h rest between each session. The main findings were that the compression strain gauge was a reliable device for measuring PF within and between days. All intraclass correlations were higher than 0.80 and coefficients of variations were below 10% across the different sessions and trials. Due to the information gained through the compression strain gauge, the higher sampling frequency utilized, portability, and the relatively affordable price, this device offers an effective alternative for measuring maximal strength for hip adduction.

4.
J Strength Cond Res ; 38(1): 185-191, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38085628

RESUMO

ABSTRACT: Pichardo, AW, Neville, J, Tinwala, F, Cronin, JB, and Brown, SR. Validity and reliability of force-time characteristics using a portable load cell for the isometric midthigh pull. J Strength Cond Res 38(1): 185-191, 2024-Many practitioners use the isometric midthigh pull (IMTP) to assess maximal strength in a safe, time-effective manner. However, expensive, stationary force plates are not always practical in a large team setting. Therefore, the purpose of this study was to establish the validity and between-session reliability of peak force, rate of force development (RFD), and impulse during an IMTP using 2 experimental protocols: a traditional fixed bar with a force plate (BarFP) and a flexible chain measured with a force plate (ChainFP) and a load cell (ChainLC). After a familiarization session, 13 resistance-trained men performed 3 trials of the BarFP condition and 3 trials of the chain-based conditions. The identical procedures were replicated twice more, with a week between each testing session. The main findings were (a) no RFD or impulse measures were found to achieve acceptable reliability across all methodological approaches and testing occasions; (b) peak force was reliable across all methods, with coefficient of variation ranging from 4.6 to 8.3%, intraclass correlation coefficient ranging from 0.94 to 0.98, and the least variability associated with the ChainLC condition; and (c) the ChainFP method was found to significantly underrepresent peak force by 4.8% (p < 0.05), with no significant differences between the ChainLC and BarFP methods. Therefore, the ChainLC would seem a valid, reliable, portable, and cost-effective alternative to force plates when assessing maximal isometric strength in the IMTP.


Assuntos
Teste de Esforço , Força Muscular , Masculino , Humanos , Reprodutibilidade dos Testes , Teste de Esforço/métodos , Contração Isométrica , Correlação de Dados
5.
Appl Physiol Nutr Metab ; 48(11): 829-840, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37390497

RESUMO

Evaluating anatomical contributions to performance can increase understanding of muscle mechanics and guide physical preparation. While the impact of anatomy on muscular performance is well studied, the effects of regional quadriceps architecture on rapid torque or force expression are less clear. Regional (proximal, middle, and distal) quadriceps (vastus lateralis, rectus femoris, and vastus intermedius) thickness (MT), pennation angle (PA), and fascicle length (FL) of 24 males (48 limbs) were assessed via ultrasonography. Participants performed maximal isometric knee extensions at 40°, 70°, and 100° of knee flexion to evaluate rate of force development from 0 to 200 ms (RFD0-200). Measurements were repeated on three occasions with the greatest RFD0-200 and mean muscle architecture measures used for analysis. Linear regression models predicting angle-specific RFD0-200 from regional anatomy provided adjusted correlations (√adjR2) with bootstrapped compatibility limits. Mid-rectus femoris MT (√adjR2 = 0.41-0.51) and proximal vastus lateralis FL (√adjR2 = 0.42-0.48) were the best single predictors of RFD0-200, and the only measures to reach precision with 99% compatibility limits. Small simple correlations were found across all regions and joint angles between RFD0-200 and vastus lateralis MT (√adjR2 = 0.28 ± 0.13; mean ± SD), vastus lateralis FL (√adjR2 = 0.33 ± 0.10), rectus femoris MT (√adjR2 = 0.38 ± 0.10), and lateral vastus intermedius MT (√adjR2 = 0.24 ± 0.10). Between-correlation comparisons are reported within the article. Researchers should measure mid-region rectus femoris MT and vastus lateralis FL to efficiently and robustly evaluate potential anatomical contributions to rapid knee extension force changes, with distal and proximal measurements providing little additional value. However, correlations were generally small to moderate, suggesting that neurological factors may be critical in rapid force expression.


Assuntos
Articulação do Joelho , Músculo Quadríceps , Masculino , Humanos , Músculo Quadríceps/fisiologia , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/fisiologia , Ultrassonografia , Torque
6.
J Sports Sci ; 41(4): 326-332, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37183445

RESUMO

Lower-limb wearable resistance (WR) facilitates targeted resistance-based training during sports-specific movement tasks. The purpose of this study was to determine the effect of two different WR placements (thigh and shank) on joint kinematics during the acceleration phase of sprint running. Eighteen participants completed maximal effort sprints while unloaded and with 2% body mass thigh- or shank-placed WR. The main findings were as follows: 1) the increase to 10 m sprint time was small with thigh WR (effect size [ES] = 0.24), and with shank WR, the increase was also small but significant (ES = 0.33); 2) significant differences in peak joint angles between the unloaded and WR conditions were small (ES = 0.23-0.38), limited to the hip and knee joints, and <2° on average; 3) aside from peak hip flexion angles, no clear trends were observed in individual difference scores; and, 4) thigh and shank WR produced similar reductions in average hip flexion and extension angular velocities. The significant overload to hip flexion and extension velocity with both thigh- and shank-placed WR may be beneficial to target the flexion and extension actions associated with fast sprint running.


Assuntos
Treinamento Resistido , Corrida , Dispositivos Eletrônicos Vestíveis , Humanos , Extremidade Inferior , Aceleração , Fenômenos Biomecânicos
7.
J Sport Rehabil ; 32(1): 96-101, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36395761

RESUMO

CONTEXT: Intrasession reliabilities of isometric knee extension kinetics via portable strain gauge have been reported across several knee joint angles and constraints. However, intersession variabilities, which are more valuable, have yet to be determined. Therefore, we aimed to quantify the intersession variability of knee extension kinetics over 3 testing sessions using an affordable and portable strain gauge. DESIGN: Participants performed maximum voluntary isometric contractions of the knee extensors over 3 sessions. METHODS: Eleven (6 men and 5 women; 31 [6.4] y) volunteers performed maximum voluntary isometric contractions in constrained (isokinetic setup with thigh and chest straps) and unconstrained (treatment plinth) conditions. Peak force (PF), peak rate of force development, rate of force development (RFD), and impulse (IMP) from 20% to 80% of PF were assessed. Means, SDs, percentage changes, minimal detectable changes, coefficients of variation (CV), and intraclass correlation coefficients (ICC) were calculated and reported. RESULTS: PF had the lowest intersession variability regardless of condition (CV = 5.5%-13.8%, ICC = .67-.93). However, variability of peak rate of force development (CV [range] = 12.2%-24.7%, ICC = .50-.78), RFD (CV = 10.0%-26.8%, ICC = .48-.84), and IMP (CV = 15.2%-35.4%, ICC = .44-.88) was moderate at best. The constrained condition (CV [SD] = 14.1% [4.8%], ICC = .74 [.08]) had lower variability compared with the plinth (CV = 19.8% [7.9%], ICC = .68 [.15]). Variability improved from sessions 1 to 2 (CV = 20.4% [7.7%], ICC = .64 [.14]) and to sessions 2 to 3 (CV = 15.3% [6.4%], ICC = .76 [.10]). CONCLUSIONS: PF can be assessed regardless of setup. However, RFD and IMP changes across sessions should be approached with caution. Backrests and thigh straps improve RFD and IMP variability, and at least 1 familiarization session should be provided before relying on knee-extensor kinetics while utilizing a portable strain gauge.


Assuntos
Articulação do Joelho , Joelho , Masculino , Humanos , Feminino , Cinética , Reprodutibilidade dos Testes , Contração Isométrica , Força Muscular
8.
J Hum Kinet ; 85: 35-51, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36643836

RESUMO

Effective directional change in sport is imperative to success in key game situations. Change of direction (COD) ability is underpinned by various athletic qualities which can be developed through specific and non-specific training methods. This review examined the effect of specific and non-specific training methods on pro-agility performance, by analysing the intervention type and resulting magnitude of training effects on pro-agility shuttle performance. A total of 20 studies were included for review. Data from 638 subjects and 29 intervention groups involving seven different training methods were extracted and analysed in relation to training method classification and primary outcome measures. Interventions involving sprint training, plyometric training, resistance training, and combined resistance, plyometric, and sprint training were found to produce statistically significant positive change on pro-agility performance per session (p < 0.05). Sprint training (0.108 ES), plyometric training (0.092 ES), resistance training (0.087 ES), and combined resistance, plyometric, and sprint training (0.078 ES) methods were found to have the highest per session training effect. While total time is the typical unit of measure for this test, different types of training may lead to preferential improvements in either acceleration, deceleration, or COD phases of the pro-agility shuttle. Specifically, resisted or inclined sprinting may develop the linear acceleration phases, unilateral resistance training may promote increased strength to overcome the imposed forces during the deceleration and COD phases, multiplanar plyometrics can help enhance stretch-shortening cycle capabilities across different force vectors, and a combination of two or more of these methods may enable simultaneous development of each of these qualities.

9.
Sports Biomech ; 21(3): 239-254, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31070108

RESUMO

This systematic review aimed to quantify the acute and longitudinal effects that occur with weighted vests during sprint-running. PubMed, SPORTDiscus, and Web of Science were searched using the Boolean phrases (vest OR trunk) AND (sprint*) AND (resist* OR weight OR load*). From 170 articles retrieved, 11 studies (6 acute, 5 longitudinal) met the inclusion criteria. Vest loads (5-40% body mass) were found to significantly increase acute over-ground times (10-50 m 4.1-16.9%, effect sizes [ES] = 0.93-3.11) through significantly decreased velocity (-2.2% to -17.3%, ES = -0.41 to -3.19), horizontal force (-5.9% to -22.1%, ES = -0.85 to -3.30), maximal power (-4.3% to -35.6%, ES = -0.32 to -3.44), and flight times (-8.3% to -14.6%, ES = -0.88 to -1.03), while increasing contact times (14.7-19.6%, ES = 1.80-3.17). Treadmill sprints were less effected until loads >11% body mass were used. Improvements in velocity (1.2-1.3%, ES = 0.24-0.37) and times (10-50 m 1.2-9.4%, ES = 0.25-3.30) were found in longitudinal studies (5.6-18.9% body mass, 3-7 weeks). Future studies should focus on determining the optimum load and volume to clearly establish the training benefits of this form of resisted sprinting.


Assuntos
Desempenho Atlético , Treinamento Resistido , Corrida , Aceleração , Fenômenos Biomecânicos , Humanos , Levantamento de Peso
10.
Sports Biomech ; 21(3): 278-296, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31368410

RESUMO

The biomechanics of the rotational shot put is used to direct coaching to enhance throwing performance. Maximising shot put distance and velocity at the point of release through increasing momentum is of interest to coaches. This narrative review aimed to examine and summarise the critical kinematic variables within each of the six phases of rotational shot put associated with performance and release velocity. Databases were searched using 'shot put', 'biomechanics' and 'track and field throwing', from which 20 articles based on the inclusion criteria were reviewed. The results indicate that the magnitude of transverse thrower-shot angular momentum and thrower-shots path of translation are crucial to performance. In achieving high angular momentum, sweep leg and arm actions need to be well-timed, and their timings and movement likely determine key biomechanical events such as hip to shoulder separations. Generating high release velocities stems from the development and transference of momentum through each phase. Kinematics and kinetics within each phase are co-dependent within and across each phase; therefore, coaches should consider the biomechanics of an athlete through preceding phases when seeking biomechanical change within a given phase. Further research and consideration of kinetics and energy transfer would add value to kinematic observations.


Assuntos
Atletismo , Fenômenos Biomecânicos , Humanos , Movimento , Ombro , Extremidade Superior
11.
Sports Biomech ; 21(10): 1291-1302, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32460633

RESUMO

This study determined the acute changes in rotational work with thigh attached wearable resistance (WR) of 2% body mass during 50-m sprint-running. Fourteen athletes completed sprints with, and without, WR in a randomised order. Sprint times were measured via timing gates at 10-m and 50-m. Rotational kinematics were obtained over three phases (steps 1-2, 3-6 and 7-10) via inertial measurement unit attached to the left thigh. Quantification of thigh angular displacement and peak thigh angular velocity was subsequently derived to measure rotational work. The WR condition was found to increase sprint times at 10-m (1.4%, effect size [ES] 0.38, p 0.06) and 50-m (1.9%, ES 0.55, p 0.04). The WR condition resulted in trivial to small increases in angular displacement of the thigh during all phases (0.6-3.4%, ES 0.04-0.26, p 0.09-0.91). A significant decrease in angular velocity of the thigh was found in all step phases (-2.5% to -8.0%, ES 0.17-0.51, p < 0.001-0.04), except extension in step phase 1 with the WR. Rotational work was increased (9.8-18.8%, ES 0.35-0.53, p < 0.001) with WR in all phases of the sprint. Thigh attached WR provides a means to significantly increase rotational work specific to sprinting.


Assuntos
Desempenho Atlético , Corrida , Dispositivos Eletrônicos Vestíveis , Fenômenos Biomecânicos , Humanos , Coxa da Perna
12.
Sports Biomech ; 21(10): 1176-1188, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32308138

RESUMO

The aim of this acute cross-sectional study was to quantify the kinematic and kinetic changes that occur during sprint acceleration when lower body WR is worn. Fifteen male rugby athletes (19 years; 181 cm; 91 kg) were assessed during maximal effort over-ground and treadmill sprinting over 20 m under three different loading conditions: 0%, 3% and 5% body mass (BM) added weight attached to the lower body. Treadmill data provided a convenient estimate of kinetic changes in the absence of in-ground force plates. The loaded conditions resulted in significantly increased ground contact time (5 to 6%) and decreased step frequency (-2 to -3%) during sprint accelerations (effect size = 0.32-0.72). Moderate WR loading (3% BM) resulted in increased (9%; effect size = 0.66) theoretical maximum horizontal force (relative to BM) and unchanged 20 m sprint times (p > 0.05). Heavier WR loading (5% BM) resulted in a significant decrease (-4%) in vertical ground reaction forces (relative to total system mass) and slower (1 to 2%) 20 m sprint times (effect size = 0.38-0.70). Lower body WR loading up to 5% BM can provide specific sprint training overload, while affecting sprint acceleration biomechanics by ≤ 6%.


Assuntos
Desempenho Atlético , Corrida , Dispositivos Eletrônicos Vestíveis , Aceleração , Fenômenos Biomecânicos , Estudos Transversais , Humanos , Masculino
13.
Sports Biomech ; 21(10): 1234-1248, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32329417

RESUMO

Light wearable resistance is used in sprint training but the scientific evidence to guide its implementation is limited. This study investigated thigh and shank loading protocols which were matched based on the average increase in moment of inertia about the hip over a stride cycle. Seven university-level sprinters completed three counterbalanced conditions (unloaded, shank-loaded, thigh-loaded), and kinematic variables were measured between 30 and 40 m. Both thigh and shank loading led to small reductions in step velocity (mean change = -1.4% and -1.2%, respectively). This was due to small reductions in step frequency (-1.8%; -1.7%) because of small increases in contact time (+2.7%; +1.5%) in both conditions and a small increase in flight time (+2.0%) in the shank-loaded condition. Both conditions led to moderate increases in hip extension at toe-off (+2.7°; +1.4°), whilst thigh loading led to a small reduction in peak hip flexion angle during swing (-2.5°) and shank loading led to a small increase in peak biceps femoris muscle-tendon unit length (+0.4%). Thigh and shank loading can both be used to provide small reductions in sprint velocity, and each has specific overload effects which must be considered in the rationale for their implementation.


Assuntos
Corrida , Dispositivos Eletrônicos Vestíveis , Fenômenos Biomecânicos , Humanos , Extremidade Inferior , Coxa da Perna
14.
J Sport Rehabil ; 31(3): 313-318, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34929666

RESUMO

CONTEXT: Light lower-limb wearable resistance has little effect on running biomechanics. However, asymmetrical wearable resistance may potentially alter the kinetics and kinematics of high speed, enabling greater loading or unloading of an injured or rehabilitative lower limb. DESIGN: A cross-sectional study design was used to quantify the influence of asymmetric calf loading on the kinematics and kinetics during 90% maximum sprinting velocity. METHODS: Following a familiarization session, 12 (male = 7 and female = 5) physically active volunteers ran at 90% of maximal velocity. In random order, participants ran with zero (0) wearable resistance and with loads of 300 g (L300) and 600 g (L600) fixed to one shank. A nonmotorized treadmill quantified vertical and horizontal kinetics and step kinematics. The kinetics and kinematics of the loaded (L0, L300, and L600) and unloaded (UL; UL0, UL300, and UL600) limbs were compared. RESULTS: Vertical step ground reaction force of the loaded limb tended to increase between unloaded and 300 and 600 conditions (effect size [ES] = 0.48 to 0.76, all P ≤ .12), while the horizontal step force of the UL tended to decrease (ES = 0.54 to 1.32, all P ≤ .09) with greater external loading. Step length increased in the UL in 0 versus 300 and 600 conditions (ES = 0.60 to 0.70, all P ≤ .06). Step frequency decreased in the ULs in unloaded versus 300 and 600 conditions (ES = 0.73 to 1.10, all P ≤ .03). Mean step velocity tended to be greater in the ULs than the 300 and 600 conditions (ES = 0.52 to 1.01, all P ≤ .10). Only 4 of 16 variables were significantly different between the 300 and 600 conditions. CONCLUSIONS: Asymmetrical shank resistance could be used during high-speed running to reduce or increase the kinetic loading of an injured/rehabilitative limb during return to play protocols. Asymmetrical wearable resistance could also be used to alter step kinematics in runners with known asymmetries. Finally, meaningful alterations in high-speed running biomechanics can be achieved with only 300 g of shank loading.


Assuntos
Desempenho Atlético , Corrida , Fenômenos Biomecânicos , Estudos Transversais , Feminino , Humanos , Cinética , Extremidade Inferior , Masculino
15.
J Strength Cond Res ; 36(1): 284-288, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31593034

RESUMO

ABSTRACT: Oranchuk, DJ, Storey, AG, Nelson, AR, Neville, JG, and Cronin, JB. Variability of multiangle isometric force-time characteristics in trained men. J Strength Cond Res 36(1): 284-288, 2022-Measurements of isometric force, rate of force development (RFD), and impulse are widely reported. However, little is known about the variability and reliability of these measurements at multiple angles, over repeated testing occasions in a homogenous, resistance-trained population. Thus, understanding the intersession variability of multiangle isometric force-time characteristics provides the purpose of this article. Three sessions of isometric knee extensions at 40°, 70°, and 100° of flexion were performed by 26 subjects across 51 limbs. All assessments were repeated on 3 occasions separated by 5-8 days. Variability was qualified by doubling the typical error of measurement (TEM), with thresholds of 0.2-0.6 (small), 0.6-1.2 (moderate), 1.2-2.0 (large), 2.0-4.0 (very large), and >4.0 (extremely large). In addition, variability was deemed large when the intraclass correlation coefficient (ICC) was <0.67 and coefficient of variation (CV) >10%; moderate when ICC >0.67 or CV <10% (but not both); and small when both ICC >0.67 and CV <10%. Small to moderate between-session variability (ICC = 0.68-0.95, CV = 5.2-18.7%, TEM = 0.24-0.49) was associated with isometric peak force, regardless of angle. Moderate to large variability was seen in early-stage (0-50 ms) RFD and impulse (ICC = 0.60-0.80, CV = 22.4-63.1%, TEM = 0.62-0.74). Impulse and RFD at 0-100 ms, 0-200 ms, and 100-200 ms were moderately variable (ICC = 0.71-0.89, CV = 11.8-42.1%, TEM = 0.38-0.60) at all joint angles. Isometric peak force and late-stage isometric RFD and impulse measurements were found to have low intersession variability regardless of joint angle. However, practitioners need to exercise caution when making inferences about early-stage RFD and impulse measures due to moderate-large variability.


Assuntos
Contração Isométrica , Força Muscular , Humanos , Joelho , Articulação do Joelho , Masculino , Reprodutibilidade dos Testes
16.
J Sports Sci ; 39(22): 2517-2524, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34165047

RESUMO

Fusiform weighted garments enable specific loading strategies during sport-specific movements. Loading the arms over during accelerated sprinting from a 2-point start position is pertinent to a variety of sporting performances. Fourteen sprint-trained individuals (age = 20.61 ± 1.16 years; height = 1.73 m ± 3.85 cm; body mass 65.33 ± 4.86 kg; personal best 100-m race time 11.40 ± 0.39 s) performed unloaded/loaded wearable resistance (WR) sprints. Between-condition step kinematics and kinetics were compared over four acceleration phases: steps 1-4, 5-8, 9-12 and 13-16. Sprint performance did not differ between unloaded and loaded WR at 10-m (-1.41%; ES = -0.32), or 30-m (-0.76%; ES = -0.24). Sprinting with forearm WR significantly decreased step frequency during phase two (p < 0.05, -3.42%; ES = -0.81) and three (-3.60%; ES = -0.86) and step velocity during phase four of the 30 m sprinting task (p < 0.05, -3.61%; ES: 0.91) only. There were no significant differences (p ≤ 0.05) between step kinetics amongst the two conditions. Findings indicate that arm-loaded WR may provide specific sprinting overload for 2-point starting positions. This may be relevant to a wider sporting context such as field and team sport performances.


Assuntos
Desempenho Atlético , Corrida , Dispositivos Eletrônicos Vestíveis , Aceleração , Adulto , Fenômenos Biomecânicos , Antebraço , Humanos , Adulto Jovem
17.
J Sports Sci ; 39(17): 2015-2022, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33866940

RESUMO

Lower-limb wearable resistance (WR) provides a specific and targeted overload to the musculature involved in sprint running, however, it is unknown if greater impact forces occur with the additional limb mass. This study compared the contact times and ground reaction force waveforms between sprint running with no load and 2% body mass (BM) shank-positioned WR over 30 m. Fifteen male university-level sprint specialists completed two maximum effort sprints with each condition in a randomized order. Sprint running with shank WR resulted in trivial changes to contact times at 5 m, 10 m, and 20 m (effect size [ES] = <0.20, p > 0.05) and a small, significant increase to contact time at 30 m by 1.94% (ES = 0.25, p = 0.03). Significant differences in ground reaction force between unloaded and shank loaded sprint running were limited to the anterior-posterior direction and occurred between 20% and 30% of ground contact at 10 m, 20 m, and 30 m. Shank WR did not result in greater magnitudes of horizontal or vertical forces during the initial impact portion of ground contact. Practitioners can prescribe shank WR training with loads ≤2% BM without concern for increased risk of injurious impact forces.


Assuntos
Desempenho Atlético/fisiologia , Treinamento Resistido/instrumentação , Corrida/fisiologia , Suporte de Carga , Aceleração , Atletas , Humanos , Perna (Membro) , Masculino , Adulto Jovem
18.
Nutrients ; 13(4)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919779

RESUMO

Nutritional intake can influence exercise metabolism and performance, but there is a lack of research comparing protein-rich pre-exercise meals with endurance exercise performed both in the fasted state and following a carbohydrate-rich breakfast. The purpose of this study was to determine the effects of three pre-exercise nutrition strategies on metabolism and exercise capacity during cycling. On three occasions, seventeen trained male cyclists (VO2peak 62.2 ± 5.8 mL·kg-1·min-1, 31.2 ± 12.4 years, 74.8 ± 9.6 kg) performed twenty minutes of submaximal cycling (4 × 5 min stages at 60%, 80%, and 100% of ventilatory threshold (VT), and 20% of the difference between power at the VT and peak power), followed by 3 × 3 min intervals at 80% peak aerobic power and 3 × 3 min intervals at maximal effort, 30 min after consuming a carbohydrate-rich meal (CARB; 1 g/kg CHO), a protein-rich meal (PROTEIN; 0.45 g/kg protein + 0.24 g/kg fat), or water (FASTED), in a randomized and counter-balanced order. Fat oxidation was lower for CARB compared with FASTED at and below the VT, and compared with PROTEIN at 60% VT. There were no differences between trials for average power during high-intensity intervals (367 ± 51 W, p = 0.516). Oxidative stress (F2-Isoprostanes), perceived exertion, and hunger were not different between trials. Overall, exercising in the overnight-fasted state increased fat oxidation during submaximal exercise compared with exercise following a CHO-rich breakfast, and pre-exercise protein ingestion allowed similarly high levels of fat oxidation. There were no differences in perceived exertion, hunger, or performance, and we provide novel data showing no influence of pre-exercise nutrition ingestion on exercise-induced oxidative stress.


Assuntos
Ciclismo/fisiologia , Jejum/fisiologia , Refeições/fisiologia , Estresse Oxidativo/fisiologia , Adolescente , Adulto , Atletas , Desempenho Atlético/fisiologia , Carboidratos da Dieta/administração & dosagem , Proteínas Alimentares/administração & dosagem , Humanos , Fome/fisiologia , Metabolismo dos Lipídeos/fisiologia , Masculino , Oxirredução , Resistência Física/fisiologia , Esforço Físico/fisiologia , Adulto Jovem
19.
Sports Biomech ; : 1-14, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33666143

RESUMO

Eccentric quasi-isometric (EQI) contractions (maintaining a yielding contraction for as long as possible, beyond task failure) have gained interest in research and applied settings. However, little is known regarding the biomechanical profile of EQIs. Fourteen well-trained males performed four maximal effort knee-extensor EQIs, separated by 180 seconds. Angular impulse, velocity, and time-under-tension through the 30-100º range of motion (ROM), and in eight ROM brackets were quantified. Statistical parametric mapping, analyses of variance, and standardised effects (Hedges' g (ES), %Δ) detected between-contraction joint-angle-specific differences in time-normalised and absolute variables. Mean velocity was 1.34º·s-1 with most (62.5 ± 4.9%) of the angular impulse imparted between 40-70º. Most between-contraction changes occurred between 30-50º (p≤ 0.067, ES = 0.53 ± 0.31, 60 ± 52%), while measures remained constant between 50-100º (= 0.069-0.83, ES = 0.10 ± 0.26, 14.3 ± 24.6%). EQIs are a time-efficient means to impart high cumulative mechanical tension, especially at short to medium muscle lengths. However, angular impulse distribution shifts towards medium to long muscle lengths with repeat contractions. Practitioners may utilise EQIs to emphasize the initial portion of the ROM, and limit ROM, or apply EQIs in a fatigued state to emphasize longer muscle lengths.

20.
J Sports Sci ; 39(13): 1519-1527, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33583334

RESUMO

This study determined the effects of two wearable resistance (WR) placements (i.e. thigh and shank) on horizontal force-velocity and impulse measures during sprint running acceleration. Eleven male athletes performed 50 m sprints either unloaded or with WR of 2% body mass attached to the thigh or shank. In-ground force platforms were used to measure ground reaction forces and determine dependent variables of interest. The main findings were: 1) increases in sprint times and reductions in maximum velocity were trivial to small when using thigh WR (0.00-1.93%) and small to moderate with shank WR (1.56-3.33%); 2) athletes maintained or significantly increased horizontal force-velocity mechanical variables with WR (effect size = 0.32-1.23), except for theoretical maximal velocity with thigh WR, and peak power, theoretical maximal velocity and maximal ratio of force with shank WR; 3) greater increases to braking and vertical impulses were observed with shank WR (2.72-26.3% compared to unloaded) than with thigh WR (2.17-12.1% compared to unloaded) when considering the entire acceleration phase; and, 4) no clear trends were observed in many of the individual responses. These findings highlight the velocity-specific nature of this resistance training method and provide insight into what mechanical components are overloaded by lower-limb WR.


Assuntos
Desempenho Atlético/fisiologia , Extremidade Inferior/fisiologia , Treinamento Resistido/métodos , Corrida/fisiologia , Dispositivos Eletrônicos Vestíveis , Aceleração , Adolescente , Adulto , Fenômenos Biomecânicos , Humanos , Masculino , Treinamento Resistido/instrumentação , Suporte de Carga/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...