Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Exp Med ; 221(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38748084

RESUMO

The need to empower people to understand their health and well-being has never been greater. However, current research culture does not necessarily prioritize public involvement and engagement, and many scientists are left under-equipped to reap its benefits. Here, we outline both the positive need for purposeful public involvement and engagement in biomedical research and major systemic challenges. While some of our examples stem from the UK, we believe the learnings from them have global significance.


Assuntos
Pesquisa Biomédica , Participação da Comunidade , Humanos , Reino Unido , Cultura
2.
Am J Trop Med Hyg ; 106(2): 685-694, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35008056

RESUMO

Schistosomiasis control requires multisectoral approaches including praziquantel treatment, access to safe water, sanitation and hygiene, and health education. Community input can help ensure health education programs are culturally appropriate to effectively direct protective behavior change. This study reports on the three-stage development of an education program for Malagasy children, with an impact evaluation on their knowledge, attitudes, and practices (KAP) related to intestinal schistosomiasis. A cross-sectional study took place in 2017 with follow-up in 2018 in the hard-to-reach Marolambo district, Madagascar. A novel schistosomiasis education program (SEP) was designed in collaboration with researchers, stakeholders, and local community and included cartoon books, games, songs, puzzles, and blackboard lessons, costing $10 USD per school. KAP questionnaires were completed by 286 children pre-SEP and 273 children post-SEP in 2017, and by 385 and 337 children pre-SEP and post-SEP, respectively, in 2018. Improvements were observed in responses to all questions between pre- and post-education answers in 2017 (53-77%, P < 0.0001) and 2018 (72-98%, P < 0.0001) and in the pre-education answers between years (53-72%, P < 0.0001). Praziquantel mass drug administration attendance improved, rising from 64% to 91% (P < 0.0001), alongside improved latrine use, from 89% to 96% (P = 0.005). This community-consulted and -engaged SEP resulted in substantial improvements in children's understanding of schistosomiasis, with improvements in praziquantel uptake and latrine use. Socioculturally tailored education programs can help gain schistosomiasis control. Continued investment in SEP will help promote the future well-being of children through increased participation in control and treatment activities.


Assuntos
Saúde da Criança/etnologia , Participação da Comunidade/métodos , Educação em Saúde/métodos , Conhecimentos, Atitudes e Prática em Saúde , Avaliação de Programas e Projetos de Saúde , Esquistossomose/prevenção & controle , Adolescente , Criança , Pré-Escolar , Estudos Transversais , Feminino , Seguimentos , Humanos , Madagáscar , Masculino
3.
J Invest Dermatol ; 142(4): 1206-1216.e8, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34710388

RESUMO

Nonhealing wounds are a major area of unmet clinical need remaining problematic to treat. Improved understanding of prohealing mechanisms is invaluable. The enzyme arginase1 (ARG1) is involved in prohealing responses, with its role in macrophages best characterized. ARG1 is also expressed by keratinocytes; however, ARG1 function in these critical wound repair cells is not understood. We characterized ARG1 expression in keratinocytes during normal cutaneous repair and reveal de novo temporal and spatial expression at the epidermal wound edge. Interestingly, epidermal ARG1 expression was decreased in both human and murine delayed healing wounds. We therefore generated a keratinocyte-specific ARG1-null mouse model (K14-cre;Arg1fl/fl) to explore arginase function. Wound repair, linked to changes in keratinocyte proliferation, migration, and differentiation, was significantly delayed in K14-cre;Arg1fl/fl mice. Similarly, using the arginase inhibitor N(omega)-hydroxy-nor-L-arginine, human in vitro and ex vivo models further confirmed this finding, revealing the importance of the downstream polyamine pathway in repair. Indeed, restoring the balance in ARG1 activity through the addition of putrescine proved beneficial in wound closure. In summary, we show that epidermal ARG1 plays, to our knowledge, a previously unreported intrinsic role in cutaneous healing, highlighting epidermal ARG1 and the downstream mediators as potential targets for the therapeutic modulation of wound repair.


Assuntos
Arginase , Anormalidades da Pele , Animais , Arginase/genética , Arginase/metabolismo , Epiderme/metabolismo , Queratinócitos/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Pele/metabolismo , Anormalidades da Pele/metabolismo
4.
Front Mol Biosci ; 8: 773866, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34778380

RESUMO

Arginase (ARG) represents an important evolutionarily conserved enzyme that is expressed by multiple cell types in the skin. Arg acts as the mediator of the last step of the urea cycle, thus providing protection against excessive ammonia under homeostatic conditions through the production of L-ornithine and urea. L-ornithine represents the intersection point between the ARG-dependent pathways and the urea cycle, therefore contributing to cell detoxification, proliferation and collagen production. The ARG pathways help balance pro- and anti-inflammatory responses in the context of wound healing. However, local and systemic dysfunctionalities of the ARG pathways have been shown to contribute to the hindrance of the healing process and the occurrence of chronic wounds. This review discusses the functions of ARG in macrophages and fibroblasts while detailing the deleterious implications of a malfunctioning ARG enzyme in chronic skin conditions such as leg ulcers. The review also highlights how ARG links with the microbiota and how this impacts on infected chronic wounds. Lastly, the review depicts chronic wound treatments targeting the ARG pathway, alongside future diagnosis and treatment perspectives.

5.
Int J Parasitol ; 51(10): 797-807, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34216623

RESUMO

Parasitic infections can be challenging to study because two dimensional light and electron microscopy are often limited in visualising complex and inaccessible attachment sites. Exemplifying this, Trichuris spp. inhabit a tunnel of epithelial cells within the host caecum and colon. A significant global burden of this infection persists, partly because available anthelminthics lack efficacy, although the mechanisms underlying this remain unknown. Consequently, there is a need to pioneer new approaches to better characterize the parasite niche within the host and investigate how variation in its morphology and integrity may contribute to resistance to therapeutic intervention. To address these aims, we exploited three-dimensional X-ray micro-computed tomography (microCT) to image the mouse whipworm, Trichuris muris, in caeca of wild-type C57BL/6 and SCID mice ex vivo. Using osmium tetroxide staining to effectively enhance the contrast of worms, we found that a subset exhibited preferential positioning towards the bases of the intestinal crypts. Moreover, in one rare event, we demonstrated whipworm traversal of the lamina propria. This morphological variability contradicts widely accepted conclusions from conventional microscopy of the parasite niche, showing Trichuris in close contact with the host proliferative and immune compartments that may facilitate immunomodulation. Furthermore, by using a skeletonization-based approach we demonstrate considerable variation in tunnel length and integrity. The qualitative and quantitative observations provide a new morphological point of reference for future in vitro study of host-Trichuris interactions, and highlight the potential of microCT to characterise enigmatic host-parasite interactions more accurately.


Assuntos
Tricuríase , Trichuris , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Mucosa , Microtomografia por Raio-X
6.
Front Immunol ; 12: 670471, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33936115

RESUMO

Mucosal surfaces, as a first barrier with the environment are especially susceptible to damage from both pathogens and physical trauma. Thus, these sites require tightly regulated repair programs to maintain barrier function in the face of such insults. Barrier sites are also enriched for unconventional lymphocytes, which lack rearranged antigen receptors or express only a limited range of such receptors, such as ILCs (Innate Lymphoid Cells), γδ T Cells and MAIT (Mucosal-Associated Invariant T Cells). Recent studies have uncovered critical roles for unconventional lymphocytes in regulating mucosal barrier function, and, in particular, have highlighted their important involvement in barrier repair. The production of growth factors such as amphiregulin by ILC2, and fibroblast growth factors by γδ T cells have been shown to promote tissue repair at multiple barrier sites. Additionally, MAIT cells have been shown to exhibit pro-repair phenotypes and demonstrate microbiota-dependent promotion of murine skin healing. In this review we will discuss how immune responses at mucosal sites are controlled by unconventional lymphocytes and the ways in which these cells promote tissue repair to maintain barrier integrity in the skin, gut and lungs.


Assuntos
Imunidade nas Mucosas/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Humanos , Células T Invariantes Associadas à Mucosa/imunologia
7.
Sci Rep ; 11(1): 9841, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972615

RESUMO

Findings from gut microbiome studies are strongly influenced by both experimental and analytical factors that can unintentionally bias their interpretation. Environment is also critical. Both co-housing and maternal effects are expected to affect microbiomes and have the potential to confound other manipulated factors, such as genetics. We therefore analysed microbiome data from a mouse experiment using littermate controls and tested differences among genotypes (wildtype versus colitis prone-mdr1a-/-), gut niches (stool versus mucus), host ages (6 versus 18 weeks), social groups (co-housed siblings of different genotypes) and maternal influence. We constructed a 16S phylogenetic tree from bacterial communities, fitting random forest models using all 428,234 clades identified. Models discriminated all criteria except host genotype, where no community differences were found. Host social groups differed in abundant, low-level, taxa whereas intermediate phylogenetic and abundance scales distinguished ages and niches. Thus, a carefully controlled experiment treating evolutionary clades of microbes equivalently without reference to taxonomy, clearly identifies whether and how gut microbial communities are distinct across ecologically important factors (niche and host age) and other experimental factors, notably cage effects and maternal influence. These findings highlight the importance of considering such environmental factors in future microbiome studies.


Assuntos
Colite/microbiologia , Microbioma Gastrointestinal , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Adolescente , Adulto , Fatores Etários , Animais , Colite/genética , Colo/microbiologia , DNA Bacteriano/isolamento & purificação , Modelos Animais de Doenças , Fezes/microbiologia , Humanos , Mucosa Intestinal/microbiologia , Masculino , Camundongos , Camundongos Knockout , Filogenia , RNA Ribossômico 16S/genética
8.
Am J Trop Med Hyg ; 104(5): 1841-1850, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33684064

RESUMO

Schistosomiasis is a major public health problem in Madagascar. The WHO recommends preventive chemotherapy by mass drug administration (MDA) with praziquantel as the primary approach to control Schistosoma mansoni-related morbidity in endemic populations, alongside complementary interventions such as health education. The impact of annual MDA and health education programs was assessed in the hard-to-reach Marolambo district of eastern Madagascar, an area endemic for S. mansoni. Repeated cross-sectional studies undertaken 2015-2019 examined between 300 and 381 school-aged children (aged 5-14 years) annually. The prevalence and infection intensity of S. mansoni were assessed by urine-circulating cathodic antigen (CCA) dipsticks and coproscopy using Kato-Katz (KK) methodologies. After four rounds of annual MDA, a reduction in S. mansoni prevalence was seen in CCA (93.9% in year 1-87.7% in year 5; P = 0.007) and KK (73.9% in year 1-59.4% in year 5; P < 0.0001). The prevalence of heavy-intensity infections roughly halved from 23.7% to 10.1% (P < 0.0001), and the mean intensity of infection fell by 55.0% (480.2-216.3 eggs per gram of feces). A malacological survey found Biomphalaria pfeifferi snail intermediate hosts in multiple water contact sites including rice paddies, streams, and Nosivolo River. Despite reductions in infection prevalence and intensity, schistosomiasis still poses a significant public health challenge in Marolambo district. Twice yearly MDA cycles and/or community-wide MDA are suggested to better reduce infections. Expanding health education, improving standards of water, sanitation and hygiene, and attention on snail-related control will also be important, especially in rice paddy irrigated areas.


Assuntos
Esquistossomose mansoni/epidemiologia , Esquistossomose mansoni/patologia , Adolescente , Animais , Anti-Helmínticos/administração & dosagem , Anti-Helmínticos/uso terapêutico , Criança , Pré-Escolar , Doença Crônica , Feminino , Humanos , Madagáscar/epidemiologia , Masculino , Administração Massiva de Medicamentos , Praziquantel/administração & dosagem , Praziquantel/uso terapêutico , Prevalência , Schistosoma mansoni/fisiologia , Esquistossomose mansoni/tratamento farmacológico
9.
Sci Rep ; 10(1): 5846, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32246000

RESUMO

The parasitic nematode Trichuris trichiura is a significant burden on public health in developing countries, and currently available drugs exhibit a poor cure rate. Worms live within a specialised tunnel of host intestinal epithelial cells and have anterior-ventral projections of the cuticle termed "cuticular inflations", which are thought to be involved in host-parasite interactions. This work aimed to characterise structure and suggest a function of cuticular inflations in the most tractable and widely-used model of trichuriasis, Trichuris muris. Using scanning electron microscopy, we show for the first time that most cuticular inflations develop between the second and third larval moults. Correlative X-ray computed tomography (CT)-steered Serial Block Face Scanning Electron Microscopy (SBF-SEM) and transmission electron microscopy enabled ultrastructural imaging of cuticular inflations, and showed the presence of an additional, web-like layer of cuticle between the median and cortical layers of the inflation. Additionally, we characterised variation in inflation morphology, resolving debate as to the inflations' true shape in situ. Cells underlying the inflations had many mitochondria, and we highlight their potential capacity for active transport as an area for future investigation. Overall, insights from the powerful imaging techniques used provide an excellent basis for future study of cuticular inflation function.


Assuntos
Trichuris/crescimento & desenvolvimento , Animais , Interações Hospedeiro-Parasita , Microscopia Eletrônica de Varredura , Tomografia Computadorizada por Raios X , Trichuris/ultraestrutura
10.
Inflamm Bowel Dis ; 26(3): 360-368, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-31840738

RESUMO

BACKGROUND: Identifying the factors that contribute to chronicity in inflamed colitic tissue is not trivial. However, in mouse models of colitis, we can investigate at preclinical timepoints. We sought to validate murine Trichuris muris infection as a model for identification of factors that promote development of chronic colitis. METHODS: We compared preclinical changes in mice with a resolving immune response to T. muris (resistant) vs mice that fail to expel the worms and develop chronic colitis (susceptible). Findings were then validated in healthy controls and patients with suspected or confirmed IBD. RESULTS: The receptor for advanced glycation end products (RAGE) was highly dysregulated between resistant and susceptible mice before the onset of any pathological signs. Increased soluble RAGE (sRAGE) in the serum and feces of resistant mice correlated with reduced colitis scores. Mouse model findings were validated in a preliminary clinical study: fecal sRAGE was differentially expressed in patients with active IBD compared with IBD in remission, patients with IBD excluded, or healthy controls. CONCLUSIONS: Preclinical changes in mouse models can identify early pathways in the development of chronic inflammation that human studies cannot. We identified the decoy receptor sRAGE as a potential mechanism for protection against chronic inflammation in colitis in mice and humans. We propose that the RAGE pathway is clinically relevant in the onset of chronic colitis and that further study of sRAGE in IBD may provide a novel diagnostic and therapeutic target.


Assuntos
Colite/imunologia , Enteropatias Parasitárias/imunologia , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Tricuríase/imunologia , Animais , Antígenos de Neoplasias , Biomarcadores/metabolismo , Doença Crônica , Colite/parasitologia , Colite/patologia , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Humanos , Tolerância Imunológica/genética , Imunofenotipagem , Mediadores da Inflamação/metabolismo , Enteropatias Parasitárias/patologia , Masculino , Camundongos , Camundongos Endogâmicos AKR , Camundongos Endogâmicos BALB C , Proteínas Quinases Ativadas por Mitógeno , RNA Mensageiro/genética , Linfócitos T Auxiliares-Indutores/patologia , Tricuríase/patologia , Trichuris
11.
Immunology ; 158(3): 194-205, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31433857

RESUMO

The gut has the largest commensal bacterial population in the body and its composition can be impacted by host factors such as production of immunoglobulin A (IgA). Eosinophils in the gut have been implicated in the production of antibacterial factors and maintenance of IgA-secreting plasma cells. We used an eosinophil-deficient mouse (∆dblGATA-1-/- ) and littermate controls to investigate the role of eosinophils in the regulation of the microbiota, with particular emphasis on mucus-resident species in the small and large intestine. We found no differences in IgA production or IgA-expressing plasma cells between naive littermates in the small or large intestine. However, denaturing gel gradient electrophoresis revealed differences in the bacterial communities of the mucus and stools between wild-type mice and ∆dblGATA-1-/- mice, with the greatest separation between the mucus microbial communities. Mucus-resident bacteria in ∆dblGATA-1-/- mice had reduced diversity in the mucus compared with the stools. A quantitative PCR panel of selected bacteria showed that the most significant differences in the microbiota were between mucus-resident bacteria and those in stool, such as the abundance of Clostridiales and Bacteroides. Our data implicate eosinophils in the regulation of the microbiota, especially the bacteria most hyperlocal to the gut barrier. Although we see differences between host genotypes in the overall microbial communities, further work is required to establish specifically which bacteria are different between these groups. Most importantly, the data revealed that the mucus and stool microbiota are discrete communities. Stool analysis alone may be insufficient to comprehensively explore and define the role of the gut microbiota in health and disease.


Assuntos
Eosinófilos/imunologia , Microbioma Gastrointestinal/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Animais , Humanos , Imunoglobulina A/imunologia , Mucosa Intestinal/patologia , Camundongos , Camundongos Knockout , Plasmócitos/imunologia
13.
Proc Natl Acad Sci U S A ; 115(28): 7404-7409, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29954866

RESUMO

Cerebral malaria (CM) is a serious neurological complication caused by Plasmodium falciparum infection. Currently, the only treatment for CM is the provision of antimalarial drugs; however, such treatment by itself often fails to prevent death or development of neurological sequelae. To identify potential improved treatments for CM, we performed a nonbiased whole-brain transcriptomic time-course analysis of antimalarial drug chemotherapy of murine experimental CM (ECM). Bioinformatics analyses revealed IL33 as a critical regulator of neuroinflammation and cerebral pathology that is down-regulated in the brain during fatal ECM and in the acute period following treatment of ECM. Consistent with this, administration of IL33 alongside antimalarial drugs significantly improved the treatment success of established ECM. Mechanistically, IL33 treatment reduced inflammasome activation and IL1ß production in microglia and intracerebral monocytes in the acute recovery period following treatment of ECM. Moreover, treatment with the NLRP3-inflammasome inhibitor MCC950 alongside antimalarial drugs phenocopied the protective effect of IL33 therapy in improving the recovery from established ECM. We further showed that IL1ß release from macrophages was stimulated by hemozoin and antimalarial drugs and that this was inhibited by MCC950. Our results therefore demonstrate that manipulation of the IL33-NLRP3 axis may be an effective therapy to suppress neuroinflammation and improve the efficacy of antimalarial drug treatment of CM.


Assuntos
Antimaláricos/farmacologia , Encéfalo/parasitologia , Sistemas de Liberação de Medicamentos/métodos , Interleucina-33/metabolismo , Malária Cerebral/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Plasmodium falciparum/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Hemeproteínas/metabolismo , Interleucina-1beta/biossíntese , Interleucina-33/antagonistas & inibidores , Macrófagos/metabolismo , Macrófagos/patologia , Malária Cerebral/metabolismo , Malária Cerebral/patologia , Malária Falciparum/metabolismo , Malária Falciparum/patologia , Masculino , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Transcriptoma/efeitos dos fármacos
14.
J Invest Dermatol ; 138(10): 2264-2274, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29723492

RESUMO

Chronic wounds cause significant patient morbidity and mortality. A key factor in their etiology is microbial infection, yet skin host-microbiota interactions during wound repair remain poorly understood. Microbiome profiles of noninfected human chronic wounds are associated with subsequent healing outcome. Furthermore, poor clinical healing outcome was associated with increased local expression of the pattern recognition receptor NOD2. To investigate NOD2 function in the context of cutaneous healing, we treated mice with the NOD2 ligand muramyl dipeptide and analyzed wound repair parameters and expression of antimicrobial peptides. Muramyl dipeptide treatment of littermate controls significantly delayed wound repair associated with reduced re-epithelialization, heightened inflammation, and up-regulation of murine ß-defensins 1, 3, and particularly 14. We postulated that although murine ß-defensin 14 might affect local skin microbial communities, it may further affect other healing parameters. Indeed, exogenously administered murine ß-defensin 14 directly delayed mouse primary keratinocyte scratch wound closure in vitro. To further explore the role of murine ß-defensin 14 in wound repair, we used Defb14-/- mice and showed they had a global delay in healing in vivo, associated with alterations in wound microbiota. Taken together, these studies suggest a key role for NOD2-mediated regulation of local skin microbiota, which in turn affects chronic wound etiology.


Assuntos
Microbiota/genética , Proteína Adaptadora de Sinalização NOD2/genética , RNA/genética , Regulação para Cima , Cicatrização/genética , Ferimentos e Lesões/genética , beta-Defensinas/genética , Adulto , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Interações entre Hospedeiro e Microrganismos , Humanos , Queratinócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Adaptadora de Sinalização NOD2/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Ativação Transcricional , Ferimentos e Lesões/metabolismo , Ferimentos e Lesões/patologia , beta-Defensinas/metabolismo
15.
Parasitology ; 145(7): 848-854, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29179788

RESUMO

X-ray micro-computed tomography (µCT) is a technique which can obtain three-dimensional images of a sample, including its internal structure, without the need for destructive sectioning. Here, we review the capability of the technique and examine its potential to provide novel insights into the lifestyles of parasites embedded within host tissue. The current capabilities and limitations of the technology in producing contrast in soft tissues are discussed, as well as the potential solutions for parasitologists looking to apply this technique. We present example images of the mouse whipworm Trichuris muris and discuss the application of µCT to provide unique insights into parasite behaviour and pathology, which are inaccessible to other imaging modalities.


Assuntos
Imageamento Tridimensional , Parasitos/anatomia & histologia , Microtomografia por Raio-X , Animais , Camundongos , Tricuríase/diagnóstico por imagem , Trichuris/anatomia & histologia
16.
PLoS One ; 12(9): e0185151, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28934299

RESUMO

Anthropogenic disturbance via resource acquisition, habitat fragmentation and climate change, amongst other factors, has led to catastrophic global biodiversity losses and species extinctions at an accelerating rate. Amphibians are currently one of the worst affected classes with at least a third of species categorised as being threatened with extinction. At the same time, they are also critically important for many habitats and provide man with a powerful proxy for ecosystem health by acting as a bioindicator group. Whilst the causes of synchronised amphibian losses are varied recent research has begun to highlight a growing role that macroparasites are playing in amphibian declines. However, diagnosing parasite infection in the field can be problematic, principally relying on collection and euthanasia of hosts, followed by necropsy and morphological identification of parasites in situ. The current study developed a non-invasive PCR-based methodology for sensitive detection and identification of parasitic nematode DNA released in the faeces of infected amphibians as egg or tissue fragments (environmental DNA). A DNA extraction protocol optimised for liberation of DNA from resilient parasite eggs was developed alongside the design of a novel, nematode universal, degenerate primer pair, thus avoiding the difficulties of using species specific primers in situations where common parasite species are unknown. Used in conjunction this protocol and primer pair was tested on a wide range of faecal samples from captive and wild amphibians. The primers and protocol were validated and detected infections, including a Railletnema nematode infection in poison dart frogs from ZSL London Zoo and Mantella cowani frogs in the wild. Furthermore, we demonstrate the efficacy of our PCR-based protocol for detecting nematode infection in other hosts, such as the presence of pinworm (Aspiculuris) in two tortoise species and whipworm (Trichuris muris) in mice. Our environmental DNA approach mitigates problems associated with microscopic identification and can be applied to detect nematode parasitoses in wild and captive hosts for infection surveillance and maintenance of healthy populations.


Assuntos
Anfíbios/parasitologia , Técnicas de Diagnóstico Molecular/métodos , Nematoides/genética , Nematoides/fisiologia , Infecções por Nematoides/diagnóstico , Répteis/parasitologia , Animais , DNA/análise , DNA/genética , Primers do DNA/genética , Fezes/parasitologia , Camundongos
17.
J Invest Dermatol ; 137(11): 2427-2436, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28647345

RESUMO

The skin microbiome exists in dynamic equilibrium with the host, but when the skin is compromised, bacteria can colonize the wound and impair wound healing. Thus, the interplay between normal skin microbial interactions versus pathogenic microbial interactions in wound repair is important. Bacteria are recognized by innate host pattern recognition receptors, and we previously showed an important role for the pattern recognition receptor NOD2 in skin wound repair. NOD2 is implicated in changes in the composition of the intestinal microbiota in Crohn's disease, but its role on skin microbiota is unknown. Nod2-deficient (Nod2-/-) mice had an inherently altered skin microbiome compared with wild-type controls. Furthermore, we found that Nod2-/- skin microbiome dominated and caused impaired healing, shown in cross-fostering experiments of wild-type pups with Nod2-/- pups, which then acquired altered cutaneous bacteria and delayed healing. High-throughput sequencing and quantitative real-time PCR showed a significant compositional shift, specifically in the genus Pseudomonas in Nod2-/- mice. To confirm whether Pseudomonas species directly impair wound healing, wild-type mice were infected with Pseudomonas aeruginosa biofilms and, akin to Nod2-/- mice, were found to exhibit a significant delay in wound repair. Collectively, these studies show the importance of the microbial communities in skin wound healing outcome.


Assuntos
Microbiota/genética , Proteína Adaptadora de Sinalização NOD2/genética , Pseudomonas aeruginosa/patogenicidade , Dermatopatias Bacterianas/patologia , Cicatrização/genética , Animais , Biofilmes , Biópsia por Agulha , Modelos Animais de Doenças , Regulação da Expressão Gênica , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Reação em Cadeia da Polimerase em Tempo Real/métodos , Dermatopatias Bacterianas/genética , Cicatrização/fisiologia
18.
Inflamm Bowel Dis ; 23(6): 912-922, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28498157

RESUMO

BACKGROUND: Inflammatory bowel disease (IBD) is associated with an inappropriate immune response to the gut microbiota. Notably, patients with IBD reportedly have alterations in fecal microbiota. However, the colonic microbiota occupies both the gut lumen and the mucus covering the epithelium. Thus, information about mucus-resident microbiota fails to be conveyed in the routine microbiota analyses of stool samples. Further, studies analyzing microbiota in IBD have mainly focused on stool samples taken after onset of inflammation. Our objective was to investigate both temporal and spatial changes in colonic microbiota communities preceding the onset of colitis. METHODS: We studied mucus and stool microbiota using a spontaneous model of colitis, the mdr1a mouse, and their respective wild-type littermate controls in a time series mode. RESULTS: Using this approach we have shown that microbial dysbiosis was evident in the mucus but not stools, with reduced abundance of Clostridiales evident in the mucus but not stools, of colitis-prone mice mdr1a mice 12 weeks before the onset of detectable inflammation. This altered microbial composition was coupled with a significantly thinner mucus layer. On emergence of inflammation, dysbiosis was evident in the stools and at this time point, the spatial segregation between microbiota and host tissue was also disrupted, correlating with worsened inflammation. Our results reveal that microbial dysbiosis is detectable before changes in the stools. Importantly, dysbiosis in the mucus layer preceded development of colitis. CONCLUSIONS: Our data reveal the importance of mucus sampling for understanding the underlying etiology of IBD and fundamental processes underlying disease progression.


Assuntos
Colite/microbiologia , Colo/patologia , Disbiose/diagnóstico , Microbioma Gastrointestinal , Inflamação/microbiologia , Muco/microbiologia , Animais , Bactérias/isolamento & purificação , Colite/induzido quimicamente , DNA Bacteriano/genética , Modelos Animais de Doenças , Fezes/microbiologia , Masculino , Camundongos , Camundongos Knockout , RNA Ribossômico 16S/genética
19.
PLoS Pathog ; 13(3): e1006267, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28273147

RESUMO

The murine model of experimental cerebral malaria (ECM) has been utilised extensively in recent years to study the pathogenesis of human cerebral malaria (HCM). However, it has been proposed that the aetiologies of ECM and HCM are distinct, and, consequently, no useful mechanistic insights into the pathogenesis of HCM can be obtained from studying the ECM model. Therefore, in order to determine the similarities and differences in the pathology of ECM and HCM, we have performed the first spatial and quantitative histopathological assessment of the ECM syndrome. We demonstrate that the accumulation of parasitised red blood cells (pRBCs) in brain capillaries is a specific feature of ECM that is not observed during mild murine malaria infections. Critically, we show that individual pRBCs appear to occlude murine brain capillaries during ECM. As pRBC-mediated congestion of brain microvessels is a hallmark of HCM, this suggests that the impact of parasite accumulation on cerebral blood flow may ultimately be similar in mice and humans during ECM and HCM, respectively. Additionally, we demonstrate that cerebrovascular CD8+ T-cells appear to co-localise with accumulated pRBCs, an event that corresponds with development of widespread vascular leakage. As in HCM, we show that vascular leakage is not dependent on extensive vascular destruction. Instead, we show that vascular leakage is associated with alterations in transcellular and paracellular transport mechanisms. Finally, as in HCM, we observed axonal injury and demyelination in ECM adjacent to diverse vasculopathies. Collectively, our data therefore shows that, despite very different presentation, and apparently distinct mechanisms, of parasite accumulation, there appear to be a number of comparable features of cerebral pathology in mice and in humans during ECM and HCM, respectively. Thus, when used appropriately, the ECM model may be useful for studying specific pathological features of HCM.


Assuntos
Encéfalo/patologia , Encéfalo/parasitologia , Modelos Animais de Doenças , Malária Cerebral/patologia , Malária Cerebral/parasitologia , Animais , Eritrócitos/parasitologia , Feminino , Imunofluorescência , Humanos , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Plasmodium berghei
20.
Sci Rep ; 7: 44571, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28303919

RESUMO

Obesity impairs the relaxant capacity of adipose tissue surrounding the vasculature (PVAT) and has been implicated in resultant obesity-related hypertension and impaired glucose intolerance. Resident immune cells are thought to regulate adipocyte activity. We investigated the role of eosinophils in mediating normal PVAT function. Healthy PVAT elicits an anti-contractile effect, which was lost in mice deficient in eosinophils, mimicking the obese phenotype, and was restored upon eosinophil reconstitution. Ex vivo studies demonstrated that the loss of PVAT function was due to reduced bioavailability of adiponectin and adipocyte-derived nitric oxide, which was restored after eosinophil reconstitution. Mechanistic studies demonstrated that adiponectin and nitric oxide are released after activation of adipocyte-expressed ß3 adrenoceptors by catecholamines, and identified eosinophils as a novel source of these mediators. We conclude that adipose tissue eosinophils play a key role in the regulation of normal PVAT anti-contractile function.


Assuntos
Tecido Adiposo/metabolismo , Eosinófilos/metabolismo , Hipertensão/metabolismo , Obesidade/metabolismo , Adipócitos/metabolismo , Adiponectina/genética , Adiponectina/metabolismo , Tecido Adiposo/patologia , Animais , Aorta/metabolismo , Aorta/patologia , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patologia , Catecolaminas/metabolismo , Dieta Hiperlipídica , Humanos , Hipertensão/complicações , Hipertensão/patologia , Camundongos , Óxido Nítrico/metabolismo , Obesidade/complicações , Obesidade/patologia , Receptores Adrenérgicos beta 3/genética , Receptores Adrenérgicos beta 3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...