Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 35(34): e2107986, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35332957

RESUMO

Fluorescence-based biosensors have widely been used in the life-sciences and biomedical applications due to their low limit of detection and a diverse selection of fluorophores that enable simultaneous measurements of multiple biomarkers. Recent research effort has been made to implement fluorescent biosensors into the exploding field of point-of-care testing (POCT), which uses cost-effective strategies for rapid and affordable diagnostic testing. However, fluorescence-based assays often suffer from their feeble signal at low analyte concentrations, which often requires sophisticated, costly, and bulky instrumentation to maintain high detection sensitivity. Metal- and metal oxide-based nanostructures offer a simple solution to increase the output signal from fluorescent biosensors due to the generation of high field enhancements close to a metal or metal oxide surface, which has been shown to improve the excitation rate, quantum yield, photostability, and radiation pattern of fluorophores. This article provides an overview of existing biosensors that employ various strategies for fluorescence enhancement via nanostructures and have demonstrated the potential for use as POCT. Biosensors using nanostructures such as planar substrates, freestanding nanoparticles, and metal-dielectric-metal nanocavities are discussed with an emphasis placed on technologies that have shown promise towards POCT applications without the need for centralized laboratories.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Sistemas Automatizados de Assistência Junto ao Leito , Metais/química , Nanoestruturas/química , Corantes Fluorescentes/química , Óxidos
2.
Pharmaceuticals (Basel) ; 15(10)2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36297338

RESUMO

Controlled drug delivery systems can provide sustained release profiles, favorable pharmacokinetics, and improved patient adherence. Here, a reservoir-style implant comprising a biodegradable polymer, poly(ε-caprolactone) (PCL), was developed to deliver drugs subcutaneously. This work addresses a key challenge when designing these implantable drug delivery systems, namely the accurate prediction of drug release profiles when using different formulations or form factors of the implant. The ability to model and predict the release behavior of drugs from an implant based on their physicochemical properties enables rational design and optimization without extensive and laborious in vitro testing. By leveraging experimental observations, we propose a mathematical model that predicts the empirical parameters describing the drug diffusion and partitioning processes based on the physicochemical properties of the drug. We demonstrate that the model enables an adequate fit predicting empirical parameters close to experimental values for various drugs. The model was further used to predict the release performance of new drug formulations from the implant, which aligned with experimental results for implants exhibiting zero-order release kinetics. Thus, the proposed empirical models provide useful tools to inform the implant design to achieve a target release profile.

3.
Sci Transl Med ; 13(588)2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33827978

RESUMO

Ebola virus (EBOV) hemorrhagic fever outbreaks have been challenging to deter due to the lack of health care infrastructure in disease-endemic countries and a corresponding inability to diagnose and contain the disease at an early stage. EBOV vaccines and therapies have improved disease outcomes, but the advent of an affordable, easily accessed, mass-produced rapid diagnostic test (RDT) that matches the performance of more resource-intensive polymerase chain reaction (PCR) assays would be invaluable in containing future outbreaks. Here, we developed and demonstrated the performance of a new ultrasensitive point-of-care immunoassay, the EBOV D4 assay, which targets the secreted glycoprotein of EBOV. The EBOV D4 assay is 1000-fold more sensitive than the U.S. Food and Drug Administration-approved RDTs and detected EBOV infection earlier than PCR in a standard nonhuman primate model. The EBOV D4 assay is suitable for low-resource settings and may facilitate earlier detection, containment, and treatment during outbreaks of the disease.


Assuntos
Doença pelo Vírus Ebola , Sistemas Automatizados de Assistência Junto ao Leito , Animais , Ebolavirus , Glicoproteínas , Doença pelo Vírus Ebola/diagnóstico , Imunoensaio , Reação em Cadeia da Polimerase
4.
Nano Lett ; 20(6): 4330-4336, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32375003

RESUMO

Fluorescence-based microarrays are promising diagnostic tools due to their high throughput, small sample volume requirements, and multiplexing capabilities. However, their low fluorescence output has limited their implementation for in vitro diagnostics applications in point-of-care (POC) settings. Here, by integration of a sandwich immunoassay microarray within a plasmonic nanogap cavity, we demonstrate strongly enhanced fluorescence which is critical for readout by inexpensive POC detectors. The immunoassay consists of inkjet-printed antibodies on a polymer brush which is grown on a gold film. Colloidally synthesized silver nanocubes are placed on top and interact with the underlying gold film creating high local electromagnetic field enhancements. By varying the thickness of the brush from 5 to 20 nm, up to a 151-fold increase in fluorescence and 14-fold improvement in the limit-of-detection is observed for the cardiac biomarker B-type natriuretic peptide (BNP) compared to the unenhanced assay, paving the way for a new generation of POC clinical diagnostics.


Assuntos
Bioimpressão , Ouro , Imunoensaio , Prata , Humanos , Nanotecnologia , Testes Imediatos , Polímeros
5.
Soft Matter ; 13(18): 3296-3306, 2017 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-28405662

RESUMO

Hard spheres are an important benchmark of our understanding of natural and synthetic systems. In this work, colloidal experiments and Monte Carlo simulations examine the equilibrium and out-of-equilibrium assembly of hard spheres of diameter σ within cylinders of diameter σ≤D≤ 2.82σ. Although phase transitions formally do not exist in such systems, marked structural crossovers can nonetheless be observed. Over this range of D, we find in simulations that structural crossovers echo the structural changes in the sequence of densest packings. We also observe that the out-of-equilibrium self-assembly depends on the compression rate. Slow compression approximates equilibrium results, while fast compression can skip intermediate structures. Crossovers for which no continuous line-slip exists are found to be dynamically unfavorable, which is the main source of this difference. Results from colloidal sedimentation experiments at low diffusion rate are found to be consistent with the results of fast compressions, as long as appropriate boundary conditions are used.

6.
J Vis Exp ; (109)2016 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-27022681

RESUMO

Acoustophoresis refers to the displacement of suspended objects in response to directional forces from sound energy. Given that the suspended objects must be smaller than the incident wavelength of sound and the width of the fluidic channels are typically tens to hundreds of micrometers across, acoustofluidic devices typically use ultrasonic waves generated from a piezoelectric transducer pulsating at high frequencies (in the megahertz range). At characteristic frequencies that depend on the geometry of the device, it is possible to induce the formation of standing waves that can focus particles along desired fluidic streamlines within a bulk flow. Here, we describe a method for the fabrication of acoustophoretic devices from common materials and clean room equipment. We show representative results for the focusing of particles with positive or negative acoustic contrast factors, which move towards the pressure nodes or antinodes of the standing waves, respectively. These devices offer enormous practical utility for precisely positioning large numbers of microscopic entities (e.g., cells) in stationary or flowing fluids for applications ranging from cytometry to assembly.


Assuntos
Separação Celular/métodos , Microfluídica/métodos , Nanopartículas , Sonicação/métodos , Separação Celular/instrumentação , Microfluídica/instrumentação , Sonicação/instrumentação , Som
7.
Soft Matter ; 12(3): 717-28, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26558940

RESUMO

The precise arrangement of microscopic objects is critical to the development of functional materials and ornately patterned surfaces. Here, we present an acoustics-based method for the rapid arrangement of microscopic particles into organized and programmable architectures, which are periodically spaced within a square assembly chamber. This macroscale device employs two-dimensional bulk acoustic standing waves to propel particles along the base of the chamber toward pressure nodes or antinodes, depending on the acoustic contrast factor of the particle, and is capable of simultaneously creating thousands of size-limited, isotropic and anisotropic assemblies within minutes. We pair experiments with Brownian dynamics simulations to model the migration kinetics and assembly patterns of spherical microparticles. We use these insights to predict and subsequently validate the onset of buckling of the assemblies into three-dimensional clusters by experiments upon increasing the acoustic pressure amplitude and the particle concentration. The simulations are also used to inform our experiments for the assembly of non-spherical particles, which are then recovered via fluid evaporation and directly inspected by electron microscopy. This method for assembly of particles offers several notable advantages over other approaches (e.g., magnetics, electrokinetics and optical tweezing) including simplicity, speed and scalability and can also be used in concert with other such approaches for enhancing the types of assemblies achievable.


Assuntos
Acústica/instrumentação , Coloides/química , Anisotropia , Simulação por Computador , Cristalização , Desenho de Equipamento , Modelos Químicos , Movimento (Física) , Tamanho da Partícula , Som
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...