Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(4)2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32093197

RESUMO

Autophagy and senescence, predominant responses that may dictate cell fate after chemotherapy or radiation, often occur in tandem. Cells in states of senescence and/or autophagy are frequently growth arrested. We have previously reported that tumor cells induced into senescence by therapy can re-emerge from the growth-arrested state, a phenomenon termed proliferative recovery. The current work shows that, while tumor cells collaterally induced into senescence and autophagy by etoposide, doxorubicin, or radiation undergo proliferative recovery, neither pharmacological nor genetic inhibition of early autophagy alter the extent of senescence or the ability of cells to recover from senescence. These findings confirm and extend our previous observations, essentially dissociating senescence from autophagy, and further indicate that re-emergence from senescence does not appear to be facilitated by or dependent on autophagy. Our results also provide additional evidence for the promotion of the non-protective form of autophagy by both chemotherapeutic drugs and radiation, which may complicate current efforts to inhibit autophagy for therapeutic benefit.


Assuntos
Autofagia , Senescência Celular , Quimiorradioterapia , Neoplasias , Células HCT116 , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapia
2.
J Thromb Haemost ; 17(11): 1827-1837, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31322812

RESUMO

BACKGROUND: Fluid resuscitation plays a prominent role in stabilizing trauma patients with hemorrhagic shock yet there remains uncertainty with regard to optimal administration time, volume, and fluid composition (e.g., whole blood, component, colloids) leading to complications such as trauma-induced coagulopathies (TIC), acidosis, and poor oxygen transport. Synthetic fluids in combination with antioxidants (e.g., vitamin C) may resolve some of these problems. OBJECTIVES: We applied quantitative mass spectrometry-based proteomics [liquid chromatography-mass spectrometry (LC-MS/MS)] to map the effects of fluid resuscitation and intravenous vitamin C (VitC) in a pig model of polytrauma (hemorrhagic shock, tissue injury, liver reperfusion, hypothermia, and comminuted bone fracture). The goal was to determine the effects of VitC on plasma protein expression, with respect to changes associated with coagulation and trauma-induced coagulopathy (TIC). METHODS: Longitudinal blood samples were drawn from nine male Sinclair pigs at baseline, 2 h post trauma, and 0.25, 2, and 4 h post fluid resuscitation with 500 mL hydroxyethyl starch. Pigs were treated intravenously (N = 3/treatment group) with saline, 50 mg VitC/kg (Lo-VitC), or 200 mg VitC/kg (Hi-VitC) during fluid resuscitation. RESULTS: A total of 436 plasma proteins were quantified of which 136 changed following trauma and resuscitation; 34 were associated with coagulation, complement cascade, and glycolysis. Unexpectedly, Lo-VitC and Hi-VitC treatments stabilized ADAMTS13 levels by ~4-fold (P = .056) relative to saline and enhanced ADAMTS13/von Willebrand factor (VWF) cleavage efficiency based on LC-MS/MS evidence for the semitryptic VWF cleavage product (VWF1275-1286 ). CONCLUSIONS: This study provides the first comprehensive map of trauma-induced changes to the plasma proteome, especially with respect to proteins driving the development of TIC.


Assuntos
Antioxidantes/administração & dosagem , Ácido Ascórbico/administração & dosagem , Coagulação Sanguínea , Proteínas Sanguíneas/metabolismo , Hidratação , Traumatismo Múltiplo/terapia , Ressuscitação , Choque Hemorrágico/terapia , Administração Intravenosa , Animais , Biomarcadores/sangue , Cromatografia Líquida , Modelos Animais de Doenças , Masculino , Traumatismo Múltiplo/sangue , Proteômica , Choque Hemorrágico/sangue , Sus scrofa , Espectrometria de Massas em Tandem , Fatores de Tempo
3.
Radiat Res ; 190(5): 538-557, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30132722

RESUMO

Studies of radiation interaction with tumor cells often focus on apoptosis as an end point; however, clinically relevant doses of radiation also promote autophagy and senescence. Moreover, functional p53 has frequently been implicated in contributing to radiation sensitivity through the facilitation of apoptosis. To address the involvement of apoptosis, autophagy, senescence and p53 status in the response to radiation, the current studies utilized isogenic H460 non-small cell lung cancer cells that were either p53-wild type (H460wt) or null (H460crp53). As anticipated, radiosensitivity was higher in the H460wt cells than in the H460crp53 cell line; however, this differential radiation sensitivity did not appear to be a consequence of apoptosis. Furthermore, radiosensitivity did not appear to be reduced in association with the promotion of autophagy, as autophagy was markedly higher in the H460wt cells. Despite radiosensitization by chloroquine in the H460wt cells, the radiation-induced autophagy proved to be essentially nonprotective, as inhibition of autophagy via 3-methyl adenine (3-MA), bafilomycin A1 or ATG5 silencing failed to alter radiation sensitivity or promote apoptosis in either the H460wt or H460crp53 cells. Radiosensitivity appeared to be most closely associated with senescence, which occurred earlier and to a greater extent in the H460wt cells. This finding is consistent with the in-depth proteomics analysis on the secretomes from the H460wt and H460crp53 cells (with or without radiation exposure) that showed no significant association with radioresistance-related proteins, whereas several senescence-associated secretory phenotype (SASP) factors were upregulated in H460wt cells relative to H460crp53 cells. Taken together, these findings indicate that senescence, rather than apoptosis, plays a central role in determination of radiosensitivity; furthermore, autophagy is likely to have minimal influence on radiosensitivity under conditions where autophagy takes the nonprotective form.


Assuntos
Apoptose/genética , Apoptose/efeitos da radiação , Autofagia/efeitos da radiação , Carcinoma Pulmonar de Células não Pequenas/patologia , Genes p53 , Neoplasias Pulmonares/patologia , Tolerância a Radiação/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Humanos , Neoplasias Pulmonares/genética , Macrolídeos/farmacologia , Tolerância a Radiação/efeitos dos fármacos , Espectrometria de Massas em Tandem
4.
Front Oncol ; 8: 164, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29868482

RESUMO

In addition to promoting various forms of cell death, most conventional anti-tumor therapies also promote senescence. There is now extensive evidence that therapy-induced senescence (TIS) might be transient, raising the concern that TIS could represent an undesirable outcome of therapy by providing a mechanism for tumor dormancy and eventual disease recurrence. The senescence-associated secretory phenotype (SASP) is a hallmark of TIS and may contribute to aberrant effects of cancer therapy. Here, we propose that the SASP may also serve as a major driver of escape from senescence and the re-emergence of proliferating tumor cells, wherein factors secreted from the senescent cells contribute to the restoration of tumor growth in a non-cell autonomous fashion. Accordingly, anti-SASP therapies might serve to mitigate the deleterious outcomes of TIS. In addition to providing an overview of the putative actions of the SASP, we discuss recent efforts to identify and eliminate senescent tumor cells.

5.
Proteomics ; 17(20)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28902446

RESUMO

Autophagy, a conserved cellular process by which cells recycle their contents either to maintain basal homeostasis or in response to external stimuli, has for the past two decades become one of the most studied physiological processes in cell biology. The 2016 Nobel Prize in Medicine and Biology awarded to Dr. Ohsumi Yoshinori, one of the first scientists to characterize this cellular mechanism, attests to its importance. The induction and consequent completion of the process of autophagy results in wide ranging changes to the cellular proteome as well as the secretome. MS-based proteomics affords the ability to measure, in an unbiased manner, the ubiquitous changes that occur when autophagy is initiated and progresses in the cell. The continuous improvements and advances in mass spectrometers, especially relating to ionization sources and detectors, coupled with advances in proteomics experimental design, has made it possible to study autophagy, among other process, in great detail. Innovative labeling strategies and protein separation techniques as well as complementary methods including immuno-capture/blotting/staining have been used in proteomics studies to provide more specific protein identification. In this review, we will discuss recent advances in proteomics studies focused on autophagy.


Assuntos
Autofagossomos/química , Autofagia/fisiologia , Proteoma/análise , Proteômica/métodos , Animais , Biomarcadores , Células/metabolismo , Homeostase/fisiologia , Humanos , Lisossomos/química , Espectrometria de Massas/tendências , Prêmio Nobel , Peptídeos/análise , Peptídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...