Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 312
Filtrar
1.
Heliyon ; 10(20): e38586, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39449707

RESUMO

Narrow-linewidth semiconductor lasers are highly valued in scientific research and industrial applications owing to their high coherence and low phase noise characteristics, particularly in high-performance optical communications, sensing, and microwave photonic systems. Accuracy, a key objective of many application systems, is determined by the noise of the light source. As system accuracy improves, the requirements for the light source become more stringent, with linewidth reduction and noise reduction being the top priorities. Currently, extensive attention and research are focused on suppressing noise generated by narrow-linewidth lasers. This paper presents noise measurement methods, analyses of the mechanisms for noise suppression, and recent research progress in low-noise semiconductor lasers, focusing on material optimization, structural design, and feedback control. The limitations of current technological solutions are discussed, and future scientific trends are outlined.

2.
J Chem Phys ; 161(15)2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39431446
3.
J Phys Chem B ; 128(41): 9976-10042, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39303207

RESUMO

Since its inception nearly a half century ago, CHARMM has been playing a central role in computational biochemistry and biophysics. Commensurate with the developments in experimental research and advances in computer hardware, the range of methods and applicability of CHARMM have also grown. This review summarizes major developments that occurred after 2009 when the last review of CHARMM was published. They include the following: new faster simulation engines, accessible user interfaces for convenient workflows, and a vast array of simulation and analysis methods that encompass quantum mechanical, atomistic, and coarse-grained levels, as well as extensive coverage of force fields. In addition to providing the current snapshot of the CHARMM development, this review may serve as a starting point for exploring relevant theories and computational methods for tackling contemporary and emerging problems in biomolecular systems. CHARMM is freely available for academic and nonprofit research at https://academiccharmm.org/program.


Assuntos
Teoria Quântica , Simulação de Dinâmica Molecular , Software
5.
Foods ; 13(18)2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39335906

RESUMO

Food proteins and peptides are generally considered a source of dietary antioxidants. The aim of this study was to investigate the antioxidant activity, allergenicity, and peptide profiles of whey protein hydrolysates (WPHs) using different hydrolysis methods. The results demonstrated that the degrees of hydrolysis of the hydrolysates with one-step (O-AD) and two-step (T-AD) methods reached 16.25% and 17.64%, respectively. The size exclusion chromatography results showed that the O-AD had a higher content of >5 and <0.3 kDa, and the distribution of peptide profiles for the two hydrolysates was significantly different. Furthermore, 5 bioactive peptides and 15 allergenic peptides were identified using peptidomics. The peptide profiles and the composition of the master proteins of the O-AD and T-AD were different. The DPPH and ABTS radical scavenging abilities of WPHs were measured, and hydrolysates were found to exhibit a strong radical scavenging ability after being treated using different hydrolysis methods. An enzyme-linked immunosorbent assay showed that the sensitization of WPHs was significantly reduced. This study may provide useful information regarding the antioxidant properties and allergenicity of WPHs.

6.
J Neural Eng ; 21(5)2024 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-39178906

RESUMO

Objective. The decline in the performance of electromyography (EMG)-based silent speech recognition is widely attributed to disparities in speech patterns, articulation habits, and individual physiology among speakers. Feature alignment by learning a discriminative network that resolves domain offsets across speakers is an effective method to address this problem. The prevailing adversarial network with a branching discriminator specializing in domain discrimination renders insufficiently direct contribution to categorical predictions of the classifier.Approach. To this end, we propose a simplified discrepancy-based adversarial network with a streamlined end-to-end structure for EMG-based cross-subject silent speech recognition. Highly aligned features across subjects are obtained by introducing a Nuclear-norm Wasserstein discrepancy metric on the back end of the classification network, which could be utilized for both classification and domain discrimination. Given the low-level and implicitly noisy nature of myoelectric signals, we devise a cascaded adaptive rectification network as the front-end feature extraction network, adaptively reshaping the intermediate feature map with automatically learnable channel-wise thresholds. The resulting features effectively filter out domain-specific information between subjects while retaining domain-invariant features critical for cross-subject recognition.Main results. A series of sentence-level classification experiments with 100 Chinese sentences demonstrate the efficacy of our method, achieving an average accuracy of 89.46% tested on 40 new subjects by training with data from 60 subjects. Especially, our method achieves a remarkable 10.07% improvement compared to the state-of-the-art model when tested on 10 new subjects with 20 subjects employed for training, surpassing its result even with three times training subjects.Significance. Our study demonstrates an improved classification performance of the proposed adversarial architecture using cross-subject myoelectric signals, providing a promising prospect for EMG-based speech interactive application.


Assuntos
Eletromiografia , Humanos , Eletromiografia/métodos , Masculino , Feminino , Redes Neurais de Computação , Adulto , Interface para o Reconhecimento da Fala , Adulto Jovem , Reconhecimento Automatizado de Padrão/métodos , Fala/fisiologia
7.
Sci Adv ; 10(34): eadq0294, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39167637

RESUMO

Real-time tracking of intracellular carbohydrates remains challenging. While click chemistry allows bio-orthogonal tagging with fluorescent probes, the reaction permanently alters the target molecule and only allows a single snapshot. Here, we demonstrate click-free mid-infrared photothermal (MIP) imaging of azide-tagged carbohydrates in live cells. Leveraging the micromolar detection sensitivity for 6-azido-trehalose (TreAz) and the 300-nm spatial resolution of MIP imaging, the trehalose recycling pathway in single mycobacteria, from cytoplasmic uptake to membrane localization, is directly visualized. A peak shift of azide in MIP spectrum further uncovers interactions between TreAz and intracellular protein. MIP mapping of unreacted azide after click reaction reveals click chemistry heterogeneity within a bacterium. Broader applications of azido photothermal probes to visualize the initial steps of the Leloir pathway in yeasts and the newly synthesized glycans in mammalian cells are demonstrated.


Assuntos
Azidas , Química Click , Azidas/química , Química Click/métodos , Humanos , Trealose/metabolismo , Trealose/química , Carboidratos/química , Corantes Fluorescentes/química , Transporte Biológico
8.
Chem Sci ; 15(34): 13788-13799, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39211498

RESUMO

Self-organization of biomolecules can lead to the formation of liquid droplets, hydrogels, and irreversible aggregates that bear immense significance in biology and diseases. Despite the considerable number of studies conducted on biomolecular condensation in bulk solution, there is still a lack of understanding of how different surfaces regulate the condensation process. In this context, recent studies showed that, in contrast to zwitterionic lipid membranes, anionic membranes promoted the production of liquid droplets of FUsed in Sarcoma Low Complexity domain (FUS-LC) despite exhibiting no specific protein-lipid interactions. Moreover, the air-water interface led to a solid fibril-like aggregate of FUS-LC. The molecular mechanism of condensation/aggregation of proteins in response to surfaces of various charged states or levels of hydrophobicity remains to be better elucidated. Here, we provide initial insights into this question by investigating the stability of a small ß fibril state of FUS-LC in bulk solution vs. membrane- and air-water interfaces. We perform multiple independent molecular dynamics simulations with distinct starting conformations for each system to demonstrate the statistical significance of our findings. Our study demonstrates the stability of the FUS-LC fibril in the presence of anionic membranes on the µs timescale while the fibril falls apart in bulk solution. We observe that a zwitterionic membrane does not enhance the stability of the fibril and 1,2-dioleoyl-sn-glycero-3-phospho-l-serine (DOPS) has a higher propensity to stabilize the fibril than dioleoylphosphatidylglycerol (DOPG), in qualitative agreement with experiments. We further show that the fibril becomes more stable at the air-water interface. We pinpoint interfacial solvation at the membrane- and air-water interfaces as a key factor that contributes to the stabilization of the peptide assembly.

9.
PNAS Nexus ; 3(8): pgae305, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39108303

RESUMO

Curvature-generating proteins that direct membrane trafficking assemble on the surface of lipid bilayers to bud transport intermediates, which move protein and lipid cargoes from one cellular compartment to another. However, it remains unclear what controls the overall shape of the membrane bud once curvature induction has begun. In vitro experiments showed that excessive concentrations of the COPII protein Sar1 promoted the formation of membrane tubules from synthetic vesicles, while COPII-coated transport intermediates in cells are generally more spherical or lobed in shape. To understand the origin of these morphological differences, we employ atomistic, coarse-grained (CG), and continuum mesoscopic simulations of membranes in the presence of multiple curvature-generating proteins. We first characterize the membrane-bending ability of amphipathic peptides derived from the amino terminus of Sar1, as a function of interpeptide angle and concentration using an atomistic bicelle simulation protocol. Then, we employ CG simulations to reveal that Sec23 and Sec24 control the relative spacing between Sar1 protomers and form the inner-coat unit through an attachment with Sar1. Finally, using dynamical triangulated surface simulations based on the Helfrich Hamiltonian, we demonstrate that the uniform distribution of spacer molecules among curvature-generating proteins is crucial to the spherical budding of the membrane. Overall, our analyses suggest a new role for Sec23, Sec24, and cargo proteins in COPII-mediated membrane budding process in which they act as spacers to preserve a dispersed arrangement of Sar1 protomers and help determine the overall shape of the membrane bud.

11.
iScience ; 27(6): 110126, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38947511

RESUMO

The aviation industry's emissions have had a significant impact on global climate change. This study focuses on carbon emission trading schemes, sustainable aviation fuels (SAFs), and hydrogen energy, as vital means for the aviation industry to reduce emissions. To evaluate the climate effects of global routes under four scenarios (24 sub-scenarios) until 2100, this study proposes the Aviation-FAIR (Aviation-Finite Amplitude Impulse Response) method. The findings reveal that while CO2 emissions and concentrations are significant, other emissions, such as N2O and CH4, have a greater effective radiative forcing (ERF) and contribute significantly to climate change. Moreover, SAFs are more effective in mitigating airline pollutant emissions than relying solely on carbon trading schemes. The effectiveness of hydrogen fuel cells may be hindered by technical limitations compared to hydrogen turbine engines. The findings of this study provide reference for the global aviation industry to adopt emission reduction measures.

12.
J Phys Chem Lett ; 15(29): 7436-7441, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39008088

RESUMO

In the hydrophobic gating mechanism proposed for some ion channels, ion permeation is not blocked by the physical dimension of the channel pore but by its dewetted state which constitutes the energetic bottleneck. A major source of uncertainty in the mechanism is that the dewetted state was not observed in experiments and only probed in simulations using nonpolarizable force fields, which do not accurately represent the properties of confined water. Here we analyze hydration of the central cavity in the pore-gate domain of the Big Potassium channel using molecular dynamics and grand canonical Monte Carlo simulations with enhanced sampling techniques. Including polarization leads to a much drier dewetted state and a higher barrier for the transition to the wet state, suggesting more effective hydrophobic gating. The simulations also identify two backbone carbonyls at the bottom of the selectivity filter as good candidates for characterizing the dewetted state using infrared spectroscopies.

13.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124816, 2024 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-39032232

RESUMO

The variety and quality of corn seeds are crucial factors affecting crop yield and farmers' economic benefits. This study adopts an innovative method based on a hyperspectral imaging system combined with stacked ensemble learning, aiming to achieve varieties classification and mildew detection of sweet-waxy corn seeds. First, data interference is eliminated by extracting the spectral and texture information of each corn sample and preprocessing the data. Secondly, a stacked ensemble learning model (Stack) was constructed by stacking base models and meta-models. Its results were compared with those of the base models, including Gradient Boosting Decision Tree (GBDT), Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), and Random Forest (RF).Finally, the overall performance of the model is improved through the information fusion strategy of hyperspectral data and texture information. The research results indicate that the GBDT-Stack model, which integrates spectral and texture data, demonstrated optimal performance in the comprehensive classification of both corn seed varieties and mold detection. On the test set, the model achieved an average prediction accuracy of 97.01%. Specifically, the model achieved a test set accuracy ranging from 94.49% to 97.58% for different corn seed varieties and a test set accuracy of 98.89% for mildew detection. This model not only classifies corn seed varieties but also accurately detects mildew, demonstrating its wide applicability. The method has huge potential and is of great significance for improving crop yield and quality.


Assuntos
Sementes , Zea mays , Zea mays/microbiologia , Zea mays/química , Sementes/microbiologia , Sementes/química , Doenças das Plantas/microbiologia , Aprendizado de Máquina , Imageamento Hiperespectral/métodos
14.
Elife ; 122024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836839

RESUMO

New experimental findings continue to challenge our understanding of protein allostery. Recent deep mutational scanning study showed that allosteric hotspots in the tetracycline repressor (TetR) and its homologous transcriptional factors are broadly distributed rather than spanning well-defined structural pathways as often assumed. Moreover, hotspot mutation-induced allostery loss was rescued by distributed additional mutations in a degenerate fashion. Here, we develop a two-domain thermodynamic model for TetR, which readily rationalizes these intriguing observations. The model accurately captures the in vivo activities of various mutants with changes in physically transparent parameters, allowing the data-based quantification of mutational effects using statistical inference. Our analysis reveals the intrinsic connection of intra- and inter-domain properties for allosteric regulation and illustrate epistatic interactions that are consistent with structural features of the protein. The insights gained from this study into the nature of two-domain allostery are expected to have broader implications for other multi-domain allosteric proteins.


Assuntos
Mutação , Proteínas Repressoras , Termodinâmica , Regulação Alostérica , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Domínios Proteicos , Modelos Moleculares
15.
Sci Data ; 11(1): 542, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796572

RESUMO

Global maritime emissions, a 3% contributor to greenhouse gases, anticipate a surge of 90-130% by 2050. Regulatory challenges persist due to international governance gaps. Legislative strides, including the EU Emission Trading System, highlight global efforts. In the U.S., despite legislative commitment, consensus hurdles impede cross-regional carbon management. Prevailing top-down emissions estimation methods warrant scrutiny. This paper unveils U.S. maritime emissions intricacies, focusing on carbon accounting, transfer, and compensation for cargo and tanker vessels. Leveraging AIS data (2018-2022), an activity-based/bottom-up approach navigates emissions calculations, aiming to reshape understanding and foster strategic reductions. The study bridges gaps in U.S. maritime emission research, promising insights into transfer and compensation dynamics. By concentrating on high-impact vessel types, it contributes to emissions mitigation strategies, steering towards a sustainable U.S. maritime future.

16.
bioRxiv ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38559219

RESUMO

Real-time tracking of intracellular carbohydrates remains challenging. While click chemistry allows bio-orthogonal tagging with fluorescent probes, the reaction permanently alters the target molecule and only allows a single snapshot. Here, we demonstrate click-free mid-infrared photothermal (MIP) imaging of azide-tagged carbohydrates in live cells. Leveraging the micromolar detection sensitivity for 6-azido-trehalose (TreAz) and the 300-nm spatial resolution of MIP imaging, the trehalose recycling pathway in single mycobacteria, from cytoplasmic uptake to membrane localization, is directly visualized. A peak shift of azide in MIP spectrum further uncovers interactions between TreAz and intracellular protein. MIP mapping of unreacted azide after click reaction reveals click chemistry heterogeneity within a bacterium. Broader applications of azido photothermal probes to visualize the initial steps of the Leloir pathway in yeasts and the newly synthesized glycans in mammalian cells are demonstrated.

17.
Nanoscale ; 16(18): 9108-9122, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38646798

RESUMO

Nanoparticles' (NPs) permeation through cell membranes, whether it happens via passive or active transport, is an essential initial step for their cellular internalization. The NPs' surface coating impacts the way they translocate through the lipid bilayer and the spontaneity of the process. Understanding the molecular details of NPs' interaction with cell membranes allows the design of nanosystems with optimal characteristics for crossing the lipid bilayer: computer simulations are a powerful tool for this purpose. In this work, we have performed coarse-grained molecular dynamics simulations and free energy calculations on spherical titanium dioxide NPs conjugated with polymer chains of different chemical compositions. We have demonstrated that the hydrophobic/hydrophilic character of the chains, more than the nature of their terminal group, plays a crucial role in determining the NPs' interaction with the lipid bilayer and the thermodynamic spontaneity of NPs' translocation from water to the membrane. We envision that this computational work will be helpful to the experimental community in terms of the rational design of NPs for efficient cell membrane permeation.


Assuntos
Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Nanopartículas , Polímeros , Titânio , Bicamadas Lipídicas/química , Titânio/química , Polímeros/química , Nanopartículas/química , Interações Hidrofóbicas e Hidrofílicas , Termodinâmica , Membrana Celular/química , Membrana Celular/metabolismo
18.
Sci Data ; 11(1): 284, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461334

RESUMO

Since 2006, the rapid development of China's aviation industry has been accompanied by a significant increase in one of its emissions, namely, PM2.5, which poses a substantial threat to human health. However, little data is describing the PM2.5 concentration caused by aircraft activities. This study addresses this gap by initially computing the monthly PM2.5 emissions of the landing-take-off (LTO) stage from Jan. 2006 to Dec. 2023 for 175 Chinese airports, employing the modified BFFM2-FOA-FPM method. Subsequently, the study uses the Gaussian diffusion model to measure the 24-hour average PM2.5 concentration resulting from flight activities at each airport. This study mainly draws the following conclusions: Between 2006 and 2023, the highest recorded PM2.5 concentration data at all airports was observed in 2018, reaching 5.7985 micrograms per cubic meter, while the lowest point was recorded in 2022, at 2.0574 micrograms per cubic meter. Moreover, airports with higher emissions are predominantly located in densely populated and economically vibrant regions such as Beijing, Shanghai, Guangzhou, Chengdu, and Shenzhen.

19.
J Am Chem Soc ; 146(11): 7628-7639, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38456823

RESUMO

High binding affinity and selectivity of metal ions are essential to the function of metalloproteins. Thus, understanding the factors that determine these binding characteristics is of major interest for both fundamental mechanistic investigations and guiding of the design of novel metalloproteins. In this work, we perform QM cluster model calculations and quantum mechanics/molecular mechanics (QM/MM) free energy simulations to understand the binding selectivity of Ca2+ and Mg2+ in the wild-type carp parvalbumin and its mutant. While a nonpolarizable MM model (CHARMM36) does not lead to the correct experimental trend, treatment of the metal binding site with the DFTB3 model in a QM/MM framework leads to relative binding free energies (ΔΔGbind) comparable with experimental data. For the wild-type (WT) protein, the calculated ΔΔGbind is ∼6.6 kcal/mol in comparison with the experimental value of 5.6 kcal/mol. The good agreement highlights the value of a QM description of the metal binding site and supports the role of electronic polarization and charge transfer to metal binding selectivity. For the D51A/E101D/F102W mutant, different binding site models lead to considerable variations in computed binding affinities. With a coordination number of seven for Ca2+, which is shown by QM/MM metadynamics simulations to be the dominant coordination number for the mutant, the calculated relative binding affinity is ∼4.8 kcal/mol, in fair agreement with the experimental value of 1.6 kcal/mol. The WT protein is observed to feature a flexible binding site that accommodates a range of coordination numbers for Ca2+, which is essential to the high binding selectivity for Ca2+ over Mg2+. In the mutant, the E101D mutation reduces the flexibility of the binding site and limits the dominant coordination number of Ca2+ to be seven, thereby leading to reduced binding selectivity against Mg2+. Our results highlight that the binding selectivity of metal ions depends on both the structural and dynamical properties of the protein binding site.


Assuntos
Proteínas de Ligação ao Cálcio , Metaloproteínas , Sítios de Ligação , Ligação Proteica , Metaloproteínas/química , Íons
20.
Elife ; 122024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470714

RESUMO

The complex of methyltransferase-like proteins 3 and 14 (METTL3-14) is the major enzyme that deposits N6-methyladenosine (m6A) modifications on messenger RNA (mRNA) in humans. METTL3-14 plays key roles in various biological processes through its methyltransferase (MTase) activity. However, little is known about its substrate recognition and methyl transfer mechanism from its cofactor and methyl donor S-adenosylmethionine (SAM). Here, we study the MTase mechanism of METTL3-14 by a combined experimental and multiscale simulation approach using bisubstrate analogues (BAs), conjugates of a SAM-like moiety connected to the N6-atom of adenosine. Molecular dynamics simulations based on crystal structures of METTL3-14 with BAs suggest that the Y406 side chain of METTL3 is involved in the recruitment of adenosine and release of m6A. A crystal structure with a BA representing the transition state of methyl transfer shows a direct involvement of the METTL3 side chains E481 and K513 in adenosine binding which is supported by mutational analysis. Quantum mechanics/molecular mechanics (QM/MM) free energy calculations indicate that methyl transfer occurs without prior deprotonation of adenosine-N6. Furthermore, the QM/MM calculations provide further support for the role of electrostatic contributions of E481 and K513 to catalysis. The multidisciplinary approach used here sheds light on the (co)substrate binding mechanism, catalytic step, and (co)product release, and suggests that the latter step is rate-limiting for METTL3. The atomistic information on the substrate binding and methyl transfer reaction of METTL3 can be useful for understanding the mechanisms of other RNA MTases and for the design of transition state analogues as their inhibitors.


Assuntos
Metiltransferases , RNA , Humanos , RNA/metabolismo , Metiltransferases/metabolismo , Adenosina/metabolismo , S-Adenosilmetionina , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...