RESUMO
BACKGROUND: Cervical ripening is a multifactorial outcome, and the association between cervical ripening and vaginal microbiota remains unexplored in term primiparous women. A new sequencing technology, microbiome 2bRAD sequencing (2bRAD-M) that provides a higher level of species discrimination compared to amplicon sequencing. We applied 2bRAD-M to analyze the vaginal microbiota in a population with variations in cervical ripeness and to explore potential microbiota factors influencing cervical ripening. METHODS: A total of 30 full-term primigravid women participated in this study, with 15 belonging to the low scoring group of cervical ripeness and 15 to the high scoring group. Clinical information was collected from the participants, and the vaginal microbiota and community structure of both groups were analyzed using 2bRAD-M sequencing. Microbiota diversity and differential analyses were conducted to explore potential factors influencing cervical ripening. RESULTS: A total of 605 species were detected. There was no difference in vaginal microbiota diversity between the two groups, and the vaginal microbial composition was structurally similar. In the two groups, Lactobacillus crispatus and Lactobacillus iners were identified as the two pivotal species through random forest analysis. Concurrent, extensive and close connections between species within the two groups were observed in the correlation analysis, influencing the aforementioned two species. Pairwise comparisons showed that Sphingomonas (P = 0.0017) and three others were abundant in high scoring group, while Alloprevotella (P = 0.0014), Tannerella (P = 0.0033), Bacteroides (P = 0.0132), Malassezia (P = 0.0296), Catonella (P = 0.0353) and Pseudomonas (P = 0.0353) and so on showed higher abundance in low scoring group. Linear discriminant analysis effect size identified 29 discriminative feature taxa. CONCLUSION: For the first time, vaginal microbiota was sequenced using 2bRAD-M. With a relatively simple structure, a more stable vaginal microbiota is associated with higher cervical ripeness, and certain microorganisms, such as Sphingomonas, may play a beneficial role in cervical ripening.
Assuntos
Bactérias , Microbiota , Vagina , Humanos , Feminino , Vagina/microbiologia , Microbiota/genética , Gravidez , Adulto , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Colo do Útero/microbiologia , Adulto Jovem , Lactobacillus/genética , Lactobacillus/isolamento & purificação , Lactobacillus/classificação , Lactobacillus crispatus/genética , Lactobacillus crispatus/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodosRESUMO
Petroleum hydrocarbons (PHs) in contaminated sites may threaten human health and ecological safety, while the environmental behaviors of PHs with varying carbon chains and critical influencing factors need to be elucidated, thus facilitating efficient risk management. This study explored the occurrence characteristics and spatial variations of different PHs at the depths of 0-10 m in an abandoned industrial site, as well as evaluated the effects of solid organic matter (SOM), dissolved organic matter (DOM), and soil texture on the migration potentials of PHs with varying carbon chains. Furthermore, the leaching potentials of different PHs were integrated into their risk assessment. The total concentrations of PHs in contaminated soils ranged from 22.7 to 397 mg/kg in contaminated soils, and the long-chained PHs (C22-C40) represented the major components with an average contribution of 46.9 %, followed by short-chained PHs (C10-C12, 32.0 % average) and medium-chained PHs (C13-C21, 21.1 % average). As soil depth increased, a declining trend was observed in the proportions of long-chain PHs, with an augmentation in the relative abundance of short-chain PHs. The random forest model coupling redundancy analysis showed that SOM was the major contributor to the occurrence and vertical attenuation of PHs with longer carbon chains in underground soils, with clay component exerting a greater additional effect than silt and sand components. While DOM in soils exhibited a relatively high contribution to the retention of PHs with short carbon chains. These results demonstrated the significant influence of SOM and clay on the behavior of long-chained PHs and DOM on that of short-chained ones. Besides direct human exposure, the leaching potentials of PHs, particularly short-chained ones, in soils should be considered for a more comprehensive risk assessment. The findings of this study may assist with the behavior modelling and prediction of different PHs as well as the corresponding risk control.
RESUMO
Backgrounds: A contemporary public health challenge is the increase in the prevalence rates of herpes zoster (HZ) worldwide. Methods: In this work, the gE gene structure was analyzed using bioinformatics techniques, and three plasmids of varying lengths, tgE537, tgE200, and tgE350, were expressed in Chinese hamster ovary (CHO) cells. These proteins were used to immunize BALB/c mice with Al/CpG adjuvant; ELISPOT and FCM were used to evaluate cellular immunity; and ELISA, VZV microneutralization, and FAMA assays were performed to detect antibody titers. Results: Target protein concentrations of 1.8 mg/mL for tgE537, 0.15 mg/mL for tgE200 and 0.65 mg/mL for tgE350 were effectively produced. The ability of the three protein segments to stimulate CD4+ and CD8+ T cells, as well as to cause lymphocytes to secrete IFN-γ and IL-4, did not significantly differ from one another. Both tgE537 and tgE350 were capable of generating VZV-specific antibodies and neutralizing antibodies, while tgE350 had the highest neutralizing antibody titer (4388). There was no equivalent humoral immune response induced by tgE200. Conclusions: The results of this investigation provide the groundwork for the creation of HZ recombinant vaccines using truncated proteins as antigens.
RESUMO
Influenza B viruses (IBVs) primarily infect humans and are a common cause of respiratory infections in humans. Here, to systematically analyze the antigenicity of the IBVs Hemagglutinin (HA) protein, 31 âB/Victoria and 19 âB/Yamagata representative circulating strains were selected from Global Initiative of Sharing All Influenza Data (GISAID), and pseudotyped viruses were constructed with the vesicular stomatitis virus system. Guinea pigs were immunized with three doses of vaccines (one dose of DNA vaccines following two doses of pseudotyped virus vaccines) of the seven IBV vaccine strains, and neutralizing antibodies against the pseudotyped viruses were tested. By comparing differences between various vaccine strains, we constructed several pseudotyped viruses that contained various mutations based on vaccine strain BV-21. The vaccine strains showed good neutralization levels against the epidemic virus strains of the same year, with neutralization titers ranging from 370 to 840, while the level of neutralization against viruses prevalent in previous years decreased 1-10-fold. Each of the high-frequency epidemic strains of B/Victoria and B/Yamagata not only induced high neutralizing titers, but also had broadly neutralizing effects against virus strains of different years, with neutralizing titers ranging from 1000 to 7200. R141G, D197 âN, and R203K were identified as affecting the antigenicity of IBV. These mutation sites provide valuable references for the selection and design of a universal IBV vaccine strain in the future.
RESUMO
Crop contamination of perfluoroalkyl substances (PFASs) may threaten human health, with root and leaves representing the primary uptake pathways of PFASs in crops. Therefore, it is imperative to elucidate the uptake characteristics of PFASs by crop roots and leaves as well as the critical influencing factors. In this study, the uptake and translocation of PFASs by roots and leaves of pak choi and radish were systematically explored based on perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), and perfluorooctane sulfonate (PFOS). Additionally, the roles of root Casparian strips, leaf stomata, and PFAS structures in the aforementioned processes were elucidated. Compared with pak choi, PFASs are more easily transferred to leaves after root uptake in radish, resulting from the lack of root Casparian strips. In pak choi root, the bioaccumulation of C4-C8 perfluoroalkyl carboxylic acids (PFCAs) showed a U-shaped trend with the increase of their carbon chain lengths, and the translocation potentials of individual PFASs from root to leaves negatively correlated with their chain lengths. The leaf uptake of PFOA in pak choi and radish mainly depended on cuticle sorption, with the evidence of a slight decrease in the concentrations of PFOA in exposed leaves after stomatal closure induced by abscisic acid. The leaf bioaccumulation of C4-C8 PFCAs in pak choi exhibited an inverted U-shaped trend as their carbon chain lengths increased. PFASs in exposed leaves can be translocated to the root and then re-transferred to unexposed leaves in vegetables. The longer-chain PFASs showed higher translocation potentials from exposed leaves to root. PFOS demonstrated a higher bioaccumulation than PFOA in crop roots and leaves, mainly due to the greater hydrophobicity of PFOS. Planting root vegetables lacking Casparian strips is inadvisable in PFAS-contaminated environments, in view of their higher PFAS bioaccumulation and considerable human intake.
Assuntos
Fluorocarbonos , Folhas de Planta , Raízes de Plantas , Fluorocarbonos/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Poluentes do Solo/metabolismo , Caprilatos/metabolismo , Ácidos Alcanossulfônicos/metabolismo , Verduras/metabolismo , Raphanus/metabolismo , Caproatos/metabolismo , Monitoramento AmbientalRESUMO
Background: Lung cancer remains one of the leading causes of cancer-related mortality worldwide, with a substantial proportion of patients suffering from concurrent pulmonary infections. Despite advances in treatment modalities, the early diagnosis of lung cancer complicated by pulmonary infection remains challenging, often resulting in delayed intervention and poorer prognosis. Objective: This study aimed to investigate the expression and significance of serum long non-coding RNA (lncRNA) NEAT1 and microRNA-31 in patients with advanced lung cancer complicated by pulmonary infection. Methods: A total of 48 patients diagnosed with lung cancer complicated by pulmonary infection and admitted to the hospital between January 2021 and December 2021 constituted the experimental group, while 48 healthy volunteers recruited during the same period served as the healthy control group. The expression levels of NEAT1 and microRNA-31 in plasma samples obtained from peripheral blood were measured using quantitative real-time polymerase chain reaction (qRT-PCR), and their differential expression in plasma was compared between the two groups. Results: Significantly elevated levels of serum lncRNA NEAT1 and microRNA-31 were observed in the experimental group compared to the healthy control group. Furthermore, the expression levels of NEAT1 and microRNA-31 showed correlations with patient age and tumor size. Notably, the expression of NEAT1 exhibited no significant association with smoking status, whereas microRNA-31 expression displayed a significant relationship with smoking. Conclusions: Our findings demonstrate that lncRNA NEAT1 and microRNA-31 are markedly upregulated in the plasma of patients with advanced lung cancer complicated by pulmonary infection. These molecules hold promise as potential diagnostic markers for advanced lung cancer complicated by pulmonary infection and may provide early auxiliary diagnostic value for lung cancer.
RESUMO
China faces a healthcare challenge due to its aging population, necessitating an integrated old-age healthcare system considering multiple stakeholders' interests. Conflict and inequality may arise from varying stakeholder interests. This study develops a conflict resolution strategy for the coordination of stakeholders involved in the old-age healthcare service system, promoting harmonization and minimizing conflict to establish an equitable system meeting elderly needs. It contributes to a robust healthcare system for comprehensive, quality care. The focus of the study is to identify relevant stakeholders and decision-makers involved in developing an integrated old-age healthcare service system and explore a feasible solution through stakeholder analysis using the Mitchell score-based technique and stakeholder theory. Decision-makers' preferences are estimated using the Analytic Hierarchy Process (AHP). Solution strategies are developed through multiple stability concepts within the graph model for conflict resolution (GMCR). The conflict resolution analysis based on the integrated AHP-GMCR approach reveals that the development of an integrated old-age healthcare system is feasible by addressing potential conflicts among the stakeholders. Considering the current predicament of comprehensive medical services in China, governments should distribute authority, simplify procedures, and improve the insurance system. Furthermore, medical institutions should explore funding options, expand services, and enhance accessibility. Elderly individuals should prioritize healthy aging and seek suitable healthcare providers. Stakeholder participation is crucial for effective implementation. These recommendations enable China to advance integrated elderly care successfully, addressing challenges posed by the aging population.
RESUMO
BACKGROUND: Irrational pharmacotherapy and increasing pharmacy costs remain major concerns in healthcare systems. Pharmacists are expected to employ diagnosis-related group (DRG) data to analyse inpatient pharmacy utilization. OBJECTIVE: This project aimed to pilot an efficient pharmacist-led programme to analyse factors related to pharmacy expenses, evaluate the rational use of drugs in batch processing, and make further interventions based on DRG data. METHODS: Patients from the OB25 (caesarean section without comorbidities or complications) DRG were selected in 2018, and the most relevant factors were identified through statistical analysis. Interventions were implemented by sending monthly reports on prescribing data and drug review results for the same DRGs to the department starting in 2019. Pre-post comparisons were conducted to demonstrate changes in pharmacy costs and appropriateness at a tertiary teaching hospital with 2,300 beds in China. RESULTS: A total of 1,110 patients were identified from the OB25 DRG data in 2018. Multivariate linear analysis indicated that the number of items prescribed and wards substantially influenced pharmacy expenditure. Drugs labelled as vital, essential, and non-essential revealed that 46.6% of total pharmacy costs were spent on non-essential drugs, whereas 38.7% were spent on vital drugs. The use of inappropriate pharmaceuticals and drug items was substantially reduced, and the average pharmacy cost after intervention was 336.7 RMB in 2020. The benefit-cost ratio of the programme was 9.86. CONCLUSION: Interventions based on DRG data are highly efficient and feasible for reducing inpatient pharmacy costs and non-essential drug use.
RESUMO
Colorectal cancer (CRC) is among the most prevalent malignant tumors, known for its high heterogeneity. Although many treatments and medications are available, the long-term survival rate of CRC patients is far from satisfactory. Pyroptosis is closely related to tumor progression. This study aimed to identify pyroptosis-related genes (PRGs) and candidate biomarkers to predict the prognosis of CRC patients. Used bioinformatics, we identified PRGs and subsequently screened 288 co-expression genes between pyroptosis-related modules and differentially expressed genes in CRC. Among these hub genes, we selected the top 24 for further analysis and found that Radical S-Adenosyl Methionine Domain Containing 2 (RSAD2) was a novel biomarker associated with the progression of CRC. We developed a risk model for RSAD2, which proved to be an independent prognostic indicator. The receiver operator characteristic analysis showed that the model had an acceptable prognostic value for patients with CRC. In addition, RSAD2 also affects the tumor immune microenvironment and prognosis of CRC. We further validated RSAD2 expression in CRC patients using RT-qPCR and the role of RSAD2 in pyroptosis. Taken together, this study comprehensively assessed the expression and prognostic value of RSAD2 in patients with CRC. These findings may offer a new direction for early CRC screening and development of future immunotherapy strategies.
RESUMO
SARS-CoV-2 evolves gradually to cause COVID-19 epidemic. One of driving forces of SARS-CoV-2 evolution might be activation of apolipoprotein B mRNA editing catalytic subunit-like protein 3 (APOBEC3) by inflammatory factors. Here, we aimed to elucidate the effect of the APOBEC3-related viral mutations on the infectivity and immune evasion of SARS-CoV-2. The APOBEC3-related C > U mutations ranked as the second most common mutation types in the SARS-CoV-2 genome. mRNA expression of APOBEC3A (A3A), APOBEC3B (A3B), and APOBEC3G (A3G) in peripheral blood cells increased with disease severity. A3B, a critical member of the APOBEC3 family, was significantly upregulated in both severe and moderate COVID-19 patients and positively associated with neutrophil proportion and COVID-19 severity. We identified USP18 protein, a key molecule centralizing the protein-protein interaction network of key APOBEC3 proteins. Furthermore, mRNA expression of USP18 was significantly correlated to ACE2 and TMPRSS2 expression in the tissue of upper airways. Knockdown of USP18 mRNA significantly decreased A3B expression. Ectopic expression of A3B gene increased SARS-CoV-2 infectivity. C > U mutations at S371F, S373L, and S375F significantly conferred with the immune escape of SARS-CoV-2. Thus, APOBEC3, whose expression are upregulated by inflammatory factors, might promote SARS-CoV-2 evolution and spread via upregulating USP18 level and facilitating the immune escape. A3B and USP18 might be therapeutic targets for interfering with SARS-CoV-2 evolution.
RESUMO
This study explored the impact of different maintenance therapies on survival outcomes in patients with multiple myeloma (MM), focusing on changes in minimal residual disease (MRD) during maintenance. Conducted at a single center, this retrospective study included 259 newly diagnosed MM patients who did not undergo autologous stem cell transplantation (ASCT). The results indicated that patients receiving lenalidomide as maintenance therapy showed significantly better progression-free survival (PFS) and overall survival (OS) compared to those treated with bortezomib or no maintenance therapy. However, bortezomib proved more effective in high-risk MM cases. Patients who were MRD-negative prior to starting maintenance therapy had a better prognosis than MRD-positive patients. Notably, lenalidomide was the most effective regimen irrespective of MRD status. Patients maintaining or achieving MRD-negativity within the first year of lenalidomide treatment exhibited improved prognoses, confirming lenalidomide as the optimal maintenance choice.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Lenalidomida , Quimioterapia de Manutenção , Mieloma Múltiplo , Neoplasia Residual , Humanos , Mieloma Múltiplo/terapia , Mieloma Múltiplo/mortalidade , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Estudos Retrospectivos , Prognóstico , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Lenalidomida/uso terapêutico , Lenalidomida/administração & dosagem , Bortezomib/uso terapêutico , Bortezomib/administração & dosagem , Resultado do Tratamento , Idoso de 80 Anos ou maisRESUMO
In this article, ferric ion-doped floral graphite carbon nitride (Fe-CN-3, energy donor) was used to construct the substrate of the immunosensor and copper oxide nanocubes (Cu2O, energy acceptor) were taken as an efficient ECL quenching probe. A sandwich quench electrochemiluminescence (ECL) immunosensor for soluble cytokeratin 19 fragment (Cyfra21-1) detection was preliminarily developed based on a novel resonant energy transfer donor-acceptor pair. Fe-CN-3, a carbon nitride that combines the advantages of metal ion doping as well as morphology modulation, is used in ECL luminophores to provide more excellent ECL performance, which makes a significant contribution to the application and development of carbon nitride in the field of ECL biosensors. The regular shape, high specific surface area and excellent biocompatibility of the quencher Cu2O nanocubes facilitate the labeling of secondary antibodies and the construction of sensors. Meanwhile, as an energy acceptor, the UV absorption spectrum of Cu2O can overlap efficiently with the energy donor's ECL emission spectrum, making it prone to the occurrence of ECL-RET and thus obtaining an excellent quenching effect. These merits of the donor-acceptor pair enable the sensor to have a wide detection range of 0.00005-100 ng/mL and a low detection limit of 17.4 fg/mL (S/N = 3), which provides a new approach and theoretical basis for the clinical detection of lung cancer.
Assuntos
Antígenos de Neoplasias , Técnicas Biossensoriais , Cobre , Técnicas Eletroquímicas , Grafite , Queratina-19 , Medições Luminescentes , Cobre/química , Queratina-19/análise , Queratina-19/imunologia , Técnicas Eletroquímicas/métodos , Humanos , Grafite/química , Técnicas Biossensoriais/métodos , Medições Luminescentes/métodos , Imunoensaio/métodos , Antígenos de Neoplasias/análise , Antígenos de Neoplasias/imunologia , Limite de Detecção , Compostos de Nitrogênio/química , Nitrilas/químicaRESUMO
Background: KLRB1 is downregulated in various cancer types. Nevertheless, the specific involvement of KLRB1 in the context of breast cancer (BRCA) has not been fully elucidated. This research aimed to explore its clinical value in BRCA. Methods: A dataset comprising 1,109 BRCA samples and 113 healthy samples was retrieved from The Cancer Genome Atlas (TCGA) database to establish the association between KLRB1 expression and pan-cancer. Subsequently, an analysis was executed to explore the link between KLRB1 and BRCA. T-tests and Chi-squared tests were conducted to assess the expression of KLRB1 and its clinical implications in BRCA. The prognosis-predictive value of KLRB1 in BRCA was assessed using the Kaplan-Meier method and Cox regression analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses screened biological pathways to analyze the association between the immune infiltration level and KLRB1 expression in BRCA. Lastly, the conclusion was validated through quantitative polymerase chain reaction (qPCR), immunohistochemistry (IHC), and Cell Counting Kit-8 (CCK8) assays. Results: KLRB1 exhibited low expression in patients with BRCA. Furthermore, KLRB1 demonstrated strong diagnostic potential, as indicated by an area under curve (AUC) of 0.712. Kaplan-Meier survival and Cox regression analyses indicated that attenuated expression of KLRB1 was independently linked to unfavorable clinical outcomes. GO and KEGG enrichment analyses were performed on the top 10 genes that exhibited positive and negative correlations with KLRB1. Analysis of genes positively correlated with KLRB1 revealed associations with signaling receptor activator activity, lymphocyte proliferation, mononuclear cell proliferation, leukocyte proliferation, receptor-ligand activity, immunoglobulin binding, and hematopoietic cell lineage signaling pathway. KLRB1 expression exhibited significant correlations with all immune cells. Furthermore, qPCR and IHC outcomes demonstrated that KLRB1 was significantly downregulated in BRCA tissues. CCK8 findings showed a decrease in the proliferation of BRCA MCF7 cells upon knockout of KLRB1. Conclusions: This research investigated the mechanism and potential therapeutic target of the KLRB1 gene in BRCA. By analyzing the expression and function of the KLRB1 gene, the study aims to find its significant role in the onset and progression of BRCA. This research endeavors to offer novel strategies and approaches for treating BRCA.
RESUMO
Metal-organic frameworks (MOFs) are promising adsorbents for legacy per-/polyfluoroalkyl substances (PFASs), but they are being replaced by emerging PFASs. The effects of varying carbon chains and functional groups of emerging PFASs on their adsorption behavior on MOFs require attention. This study systematically revealed the structure-adsorption relationships and interaction mechanisms of legacy and emerging PFASs on a typical MOF MIL-101(Cr). It also presented an approach reflecting the average electronegativity of PFAS moieties for adsorption prediction. We demonstrated that short-chain or sulfonate PFASs showed higher adsorption capacities (µmol/g) on MIL-101(Cr) than their long-chain or carboxylate counterparts, respectively. Compared with linear PFASs, their branched isomers were found to exhibit a higher adsorption potential on MIL-101(Cr). In addition, the introduction of ether bond into PFAS molecule (e.g., hexafluoropropylene oxide dimeric acid, GenX) increased the adsorption capacity, while the replacement of CF2 moieties in PFAS molecule with CH2 moieties (e.g., 6:2 fluorotelomer sulfonate, 6:2 FTS) caused a decrease in adsorption. Divalent ions (such as Ca2+ and SO42-) and solution pH have a greater effect on the adsorption of PFASs containing ether bonds or more CF2 moieties. PFAS adsorption on MIL-101(Cr) was governed by electrostatic interaction, complexation, hydrogen bonding, π-CF interaction, and π-anion interaction as well as steric effects, which were associated with the molecular electronegativity and chain length of each PFAS. The average electronegativity of individual moieties (named Me) for each PFAS was estimated and found to show a significantly positive correlation with the corresponding adsorption capacity on MIL-101(Cr). The removal rates of major PFASs in contaminated groundwater by MIL-101(Cr) were also correlated with the corresponding Me values. These findings will assist with the adsorption prediction for a wide range of PFASs and contribute to tailoring efficient MOF materials.
Assuntos
Fluorocarbonos , Estruturas Metalorgânicas , Adsorção , Fluorocarbonos/química , Estruturas Metalorgânicas/química , Carbono/química , Poluentes Químicos da Água/químicaRESUMO
Emerging pathogenic tick-borne viruses (TBVs) have attracted a great deal of attention due to their significant impact on human and animal health. A novel orthonairovirus named Dadong virus (DDV) was isolated from Haemaphysalis concinna ticks in the Changbai Mountain region on the China-North Korea border. DDV can induce cytopathic effects in mammalian and human cell lines. Phylogenetic analysis showed that it belongs to the genus Orthonairovirus, family Nairoviridae, exhibiting 72.4%-81.3% nucleic acid identity to Tofla orthonairovirus, known to cause lethal infection in IFNAR KO mice. The first serological evidence of DDV circulating in cattle and mice was also obtained, with 4.0% (1/25) of cattle and 2.27% (1/44) of mice seropositive for DDV. Further investigations, including serological surveys using human samples, are required to assess the public health risk posed by DDV.
Assuntos
Vírus de RNA , Carrapatos , Vírus , Animais , Humanos , Bovinos , Camundongos , República Democrática Popular da Coreia , Filogenia , MamíferosRESUMO
Background: With the rapid advancement of the One Health approach, the transmission of human infectious diseases is generally related to environmental and animal health. Coronavirus disease (COVID-19) has been largely impacted by environmental factors regionally and globally and has significantly disrupted human society, especially in low-income regions that border many countries. However, few research studies have explored the impact of environmental factors on disease transmission in these regions. Methods: We used the Xinjiang Uygur Autonomous Region as the study area to investigate the impact of environmental factors on COVID-19 variation using a dynamic disease model. Given the special control and prevention strategies against COVID-19 in Xinjiang, the focus was on social and environmental factors, including population mobility, quarantine rates, and return rates. The model performance was evaluated using the statistical metrics of correlation coefficient (CC), normalized absolute error (NAE), root mean square error (RMSE), and distance between the simulation and observation (DISO) indices. Scenario analyses of COVID-19 in Xinjiang encompassed three aspects: different population mobilities, quarantine rates, and return rates. Results: The results suggest that the established dynamic disease model can accurately simulate and predict COVID-19 variations with high accuracy. This model had a CC value of 0.96 and a DISO value of less than 0.35. According to the scenario analysis results, population mobilities have a large impact on COVID-19 variations, with quarantine rates having a stronger impact than return rates. Conclusion: These results provide scientific insight into the control and prevention of COVID-19 in Xinjiang, considering the influence of social and environmental factors on COVID-19 variation. The control and prevention strategies for COVID-19 examined in this study may also be useful for the control of other infectious diseases, especially in low-income regions that are bordered by many countries.
Assuntos
COVID-19 , Doenças Transmissíveis , Saúde Única , Animais , Humanos , COVID-19/epidemiologia , Simulação por Computador , PobrezaRESUMO
Xinjiang has been one of the high incidence areas of pulmonary tuberculosis (PTB) in China. Besides being infected by direct contacting with active PTB individuals (direct infection), the susceptible would be infected because of the exposure to the environment contaminated by Mycobacterium tuberculosis (indirect infection). Active PTB individuals include not only the smear-positive PTB (PTB+) but also the smear-negative PTB (PTB-) who are infectious due to their ability to release tiny Mycobacterium tuberculosis particles even in the absence of visible Mycobacterium tuberculosis in sputum. By taking account of direct/indirect infection and the difference between PTB+ and PTB- individuals in transmission capability, a periodic dynamical PTB transmission model is proposed. The model is fitted to the newly monthly PTB+ and PTB- cases in Xinjiang from 2008 to 2017 by Markov Chain Monte Carlo algorithm. Moreover, global sensitivity analysis is constructed to address the uncertainty of some key parameters by using Latin hypercube sampling and partial rank correlation coefficient methods. Basic reproduction number R0 for PTB transmission in Xinjiang is estimated to be 2.447 (95% CrI:(1.203, 3.844)), indicating that PTB has been prevalent in Xinjiang over the study period. Our results suggest that reducing the direct/indirect transmission rates, early screening, isolating and treating the latent, PTB+ and PTB- individuals, and enhancing the clearance of Mycobacterium tuberculosis in the environment could more effectively control PTB transmission in Xinjiang. The model fits the reported PTB data well and achieves acceptable prediction accuracy. We believe that our model can provide heuristic support for controlling PTB transmission in Xinjiang.
Assuntos
Mycobacterium tuberculosis , Escarro , Tuberculose Pulmonar , China/epidemiologia , Humanos , Mycobacterium tuberculosis/isolamento & purificação , Tuberculose Pulmonar/transmissão , Tuberculose Pulmonar/epidemiologia , Tuberculose Pulmonar/microbiologia , Escarro/microbiologia , Número Básico de Reprodução , Adulto , Masculino , Feminino , Pessoa de Meia-Idade , Método de Monte CarloRESUMO
Wuxiang virus (WUXV) is the first sandfly-borne Phlebovirus isolated from Phlebotomus chinensis collected in China and has been established as a consistent viral presence in the local sandfly populations of both Wuxiang County and Yangquan City. However, its distribution in the Shanxi Province remains unclear. In this study, three novel WUXV strains were isolated from sandflies collected from Jiexiu City, Shanxi Province, China, in 2022. Subsequently, whole-genome sequences of these novel strains were generated using next-generation sequencing. The open reading frame (ORF) sequences of the WUXV strains from the three locations were subjected to gene analysis. Phylogenetic analysis revealed that WUXV belongs to two distinct clades with geographical differences. Strains from Wuxiang County and Yangquan City belonged to clade 1, whereas strains from Jiexiu City belonged to clade 2. Reassortment and recombination analyses indicated no gene reassortment or recombination between the two clades. However, four reassortments or recombination events could be detected in clade 1 strains. By aligning the amino acid sequences, eighty-seven mutation sites were identified between the two clades, with seventeen, sixty, nine, and one site(s) in the proteins RdRp, M, NSs, and N, respectively. Additionally, selection pressure analysis identified 17 positively selected sites across the entire genome of WUXV, with two, thirteen, one, and one site(s) in the proteins RdRp, M, NSs, and N, respectively. Notably, sites M-312 and M-340 in the M segment not only represented mutation sites but also showed positive selective pressure effects. These findings highlight the need for continuous nationwide surveillance of WUXV.
Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Psychodidae , Animais , Filogenia , China/epidemiologia , Sequência de Aminoácidos , RNA Polimerase Dependente de RNARESUMO
The ingestion of fruits containing perfluoroalkyl acids (PFAAs) presents potential hazards to human health. This study aimed to fill knowledge gaps concerning the tissue-specific distribution patterns and bioaccumulation behavior of PFAAs and their isomers, alternatives, and precursors (collectively as per-/polyfluoroalkyl substances, PFASs) within citrus trees growing in contaminated fields. It also assessed the potential contribution of precursor degradation to human exposure risk of PFASs. High concentrations of total target PFASs (∑PFASstarget, 92.45-7496.16 ng/g dw) and precursors measured through the total oxidizable precursor (TOP) assay (130.80-13979.21 ng/g dw) were found in citrus tree tissues, and short-chain PFASs constituted the primary components. The total PFASs concentrations followed the order of leaves > fruits > branches, bark > wood, and peel > pulp > seeds. The average contamination burden of peel (∑PFASstarget: 57.75%; precursors: 71.15%) was highest among fruit tissues. Bioaccumulation factors (BAFs) and translocation potentials of short-chain, branched, or carboxylate-based PFASs exceeded those of their relatively hydrophobic counterparts, while ether-based PFASs showed lower BAFs than similar PFAAs in above-ground tissues of citrus trees. In the risk assessment of residents consuming contaminated citruses, precursor degradation contributed approximately 36.07% to total PFASs exposure, and therefore should not be ignored.
Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Humanos , Árvores , Bioacumulação , Fluorocarbonos/análise , Poluentes Químicos da Água/química , Medição de Risco , Ácidos Alcanossulfônicos/análise , Monitoramento AmbientalRESUMO
Human calcium sensing receptor (CaSR) senses calcium ion concentrations in vivo and is an important class of drug targets. Mutations in the receptor can lead to disorders of calcium homeostasis, including hypercalcemia and hypocalcemia. Here, 127 CaSR-targeted nanobodies were generated from camels, and four nanobodies with inhibitory function were further identified. Among these nanobodies, NB32 can effectively inhibit the mobilization of intracellular calcium ions (Ca2+i) and suppress the G12/13 and ERK1/2 signaling pathways downstream of CaSR. Moreover, it enhanced the inhibitory effect of the calcilytics as a negative allosteric modulator (NAM). We determined the structure of complex and found NB32 bound to LB2 (Ligand-binding 2) domain of CaSR to prevent the interaction of LB2 domains of two protomers to stabilize the inactive state of CaSR.