Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Ecology ; 101(10): e03136, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32691871

RESUMO

As the earth warms, populations will be faced with novel environments to which they may not be adapted. In the short term, populations can be buffered against the negative effects, or maximize the beneficial effects, of such environmental change via phenotypic plasticity and, in the longer term, via adaptive evolution. However, the extent and direction of these population-level responses will be dependent on the degree to which responses vary among the individuals within them (i.e., within population variation in plasticity), which is, itself, likely to vary among populations. Despite this, we have estimates of among-individual variation in plastic responses across multiple populations for only a few systems. This lack of data limits our ability to predict the consequences of environmental change for population and species persistence accurately. Here, we utilized a 16-yr data set from climatically distinct populations of the viviparous skink Niveoscincus ocellatus tracking over 1,200 litters from more than 600 females from each population to examine inter- and intrapopulation variability in the response of parturition date to environmental temperature. We found that these populations share a common population-mean reaction norm but differ in the degree to which reaction norms vary among individuals. These results suggest that even where populations share a common mean-level response, we cannot assume that they will be affected similarly by altered environmental conditions. If we are to assess how changing climates will impact species and populations accurately, we require estimates of how plastic responses vary both among and within populations.


Assuntos
Lagartos , Adaptação Fisiológica , Animais , Clima , Mudança Climática , Feminino , Humanos , Temperatura
2.
J Exp Zool A Ecol Integr Physiol ; 329(4-5): 262-270, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29791071

RESUMO

Populations at the climatic margins of a species' distribution can be exposed to conditions that cause developmental stress, resulting in developmental abnormalities. Even within the thermal range of normal development, phenotypes often vary with developmental temperature (i.e., thermal phenotypic plasticity). These effects can have significant consequences for organismal fitness and, thus, population persistence. Reptiles, as ectotherms, are particularly vulnerable to thermal effects on development and are, therefore, considered to be at comparatively high risk from changing climates. Understanding the extent and direction of thermal effects on phenotypes and their fitness consequences is crucial if we are to make meaningful predictions of how populations and species will respond as climates warm. Here, we experimentally manipulated the thermal conditions experienced by females from a high-altitude, cold-adapted population of the viviparous skink, Niveoscincus ocellatus, to examine the consequences of thermal conditions at the margins of this population's normal temperature range. We found strong effects of thermal conditions on the development of key phenotypic traits that have implications for fitness. Specifically, we found that offspring born earlier as a result of high temperatures during gestation had increased growth over the first winter of life, but there was no effect on offspring survival, nor was there an effect of developmental temperature on the incidence of developmental abnormalities. Combined, our results suggest that advancing birth dates that result from warming climates may have positive effects in this population via increased growth.


Assuntos
Adaptação Fisiológica , Lagartos/fisiologia , Viviparidade não Mamífera/fisiologia , Animais , Regulação da Temperatura Corporal , Mudança Climática , Clima Frio , Feminino , Estações do Ano , Temperatura
3.
Biol Lett ; 13(5)2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28566543

RESUMO

The extent to which key biological processes, such as sex determination, respond to environmental fluctuations is fundamental for assessing species' susceptibility to ongoing climate change. Few studies, however, address how climate affects offspring sex in the wild. We monitored two climatically distinct populations of the viviparous skink Niveoscincus ocellatus for 16 years, recording environmental temperatures, offspring sex and date of birth. We found strong population-specific effects of temperature on offspring sex, with female offspring more common in warm years at the lowland site but no effect at the highland site. In contrast, date of birth advanced similarly in response to temperature at both sites. These results suggest strong population-specific effects of temperature on offspring sex that are independent of climatic effects on other physiological processes. These results have significant implications for our understanding of the ecological and evolutionary consequences of variation in sex ratios under climate change.


Assuntos
Lagartos , Animais , Regulação da Temperatura Corporal , Clima , Mudança Climática , Feminino , Masculino , Razão de Masculinidade , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...