Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 858(Pt 3): 159918, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36368389

RESUMO

The still significant uncertainties associated with the future capacity of terrestrial systems to mitigate climate change are linked to the lack of knowledge of the biotic and abiotic processes that regulate CO2 net ecosystem exchange (NEE) in space/time. Mainly, rates and controls of CO2 exchange from arid ecosystems, despite dominating the global trends in interannual variability of the terrestrial CO2 sink capacity, are probably the most poorly understood of all. We present a study on rates and controls of CO2 exchange measured with the eddy covariance (EC) technique in the Chihuahuan Desert in the Northeast of Mexico, to understand how the environmental controls of the NEE switch throughout the year using a multilevel approach. Since this is a water-limited ecosystem, the hydroecological year, based on the last precipitation and the decay of air temperature, was used to compare the wet (from May 16 to October 30, 2019) and dry (November 1, 2019 to May 15, 2020) seasons' controlling mechanisms, both at diurnal and nocturnal times. Annual NEE was -303.5 g C m-2, with a cumulative Reco of 537.7 g C m-2 and GPP of 841.3 g C m-2. NEE showed radiation, temperature, and soil moisture sensitivity along the day, however, shifts in these controls along the year and between seasons were identified. The winter precipitations during the dry season led to fast C release followed by lagged C uptake. Despite this flux pulse, the ecosystem was a net sink throughout most of the year because the local vegetation is well adapted to grow and uptake C under these arid conditions, even during the dry season. Understanding the controls of the sink-source shifts is relevant since the predictions for future climate include changes in the precipitation patterns.


Assuntos
Dióxido de Carbono , Ecossistema , México
2.
New Phytol ; 235(6): 2237-2251, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35491749

RESUMO

Climate change and pathogen outbreaks are the two major causes of decline in Mediterranean holm oak trees (Quercus ilex L. subsp. ballota (Desf.) Samp.). Crown-level changes in response to these stressful conditions have been widely documented but the responses of the root systems remain unexplored. The effects of environmental stress over roots and its potential role during the declining process need to be evaluated. We aimed to study how key morphological and architectural root parameters and nonstructural carbohydrates of roots are affected along a holm oak health gradient (i.e. within healthy, susceptible and declining trees). Holm oaks with different health statuses had different soil resource-uptake strategies. While healthy and susceptible trees showed a conservative resource-uptake strategy independently of soil nutrient availability, declining trees optimized soil resource acquisition by increasing the phenotypic plasticity of their fine root system. This increase in fine root phenotypic plasticity in declining holm oaks represents an energy-consuming strategy promoted to cope with the stress and at the expense of foliage maintenance. Our study describes a potential feedback loop resulting from strong unprecedented belowground stress that ultimately may lead to poor adaptation and tree death in the Spanish dehesa.


Assuntos
Quercus , Adaptação Fisiológica , Mudança Climática , Quercus/fisiologia , Solo , Estresse Fisiológico , Árvores/fisiologia
3.
Tree Physiol ; 42(2): 208-224, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33611551

RESUMO

Dehesas, human-shaped savannah-like ecosystems, where the overstorey is mainly dominated by the evergreen holm oak (Quercus ilex L. subsp. ballota (Desf.) Samp.), are classified as a global conservation priority. Despite being Q. ilex a species adapted to the harsh Mediterranean environmental conditions, recent decades have witnessed worrisome trends of climate-change-induced holm oak mortality. Holm oak decline is evidenced by tree vigour loss, gradual defoliation and ultimately, death. However, before losing leaves, trees undergo leaf-level physiological adjustments in response to stress that may represent a promising field to develop biochemical early markers of holm oak decline. This study explored holm oak photoprotective responses (pigments, tocopherols and photosynthetic performance) in 144 mature holm oak trees with different health statuses (i.e., crown defoliation percentages) from healthy to first-stage declining individuals. Our results indicate differential photochemical performance and photoprotective compounds concentration depending on the trees' health status. Declining trees showed higher energy dissipation yield, lower photochemical efficiency and enhanced photoprotective compounds. In the case of total violaxanthin cycle pigments (VAZ) and tocopherols, shifts in leaf contents were significant at very early stages of crown defoliation, even before visual symptoms of decline were evident, supporting the value of these biochemical compounds as early stress markers. Linear mixed-effects models results showed an acute response, both in the photosynthesis performance index and in the concentration of foliar tocopherols, during the onset of tree decline, whereas VAZ showed a more gradual response along the defoliation gradient of the crown. These results collectively demonstrate that once a certain threshold of leaf physiological damage is surpassed, that leaf cannot counteract oxidative stress and progressive loss of leaves occurs. Therefore, the use of both photosynthesis performance indexes and the leaf tocopherols concentration as early diagnostic tools might predict declining trends, facilitating the implementation of preventive measures to counteract crown defoliation.


Assuntos
Quercus , Ecossistema , Fotossíntese , Folhas de Planta/fisiologia , Quercus/fisiologia , Árvores/fisiologia
4.
PeerJ ; 9: e10707, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33520468

RESUMO

New knowledge on soil structure highlights its importance for hydrology and soil organic matter (SOM) stabilization, which however remains neglected in many wide used models. We present here a new model, KEYLINK, in which soil structure is integrated with the existing concepts on SOM pools, and elements from food web models, that is, those from direct trophic interactions among soil organisms. KEYLINK is, therefore, an attempt to integrate soil functional diversity and food webs in predictions of soil carbon (C) and soil water balances. We present a selection of equations that can be used for most models as well as basic parameter intervals, for example, key pools, functional groups' biomasses and growth rates. Parameter distributions can be determined with Bayesian calibration, and here an example is presented for food web growth rate parameters for a pine forest in Belgium. We show how these added equations can improve the functioning of the model in describing known phenomena. For this, five test cases are given as simulation examples: changing the input litter quality (recalcitrance and carbon to nitrogen ratio), excluding predators, increasing pH and changing initial soil porosity. These results overall show how KEYLINK is able to simulate the known effects of these parameters and can simulate the linked effects of biopore formation, hydrology and aggregation on soil functioning. Furthermore, the results show an important trophic cascade effect of predation on the complete C cycle with repercussions on the soil structure as ecosystem engineers are predated, and on SOM turnover when predation on fungivore and bacterivore populations are reduced. In summary, KEYLINK shows how soil functional diversity and trophic organization and their role in C and water cycling in soils should be considered in order to improve our predictions on C sequestration and C emissions from soils.

5.
Sci Total Environ ; 751: 141851, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32898748

RESUMO

Worldwide increases in droughts- and heat-waves-associated tree mortality events are destabilizing the future of many forests and the ecosystem services they provide. Along with climate, understanding the impact of the legacies of past forest management is key to better explain current responses of different tree species to climate change. We studied tree mortality events that peaked in 2012 affecting one native (silver fir; growing within its natural distribution range) and two introduced (black pine and Scots; growing outside their natural distribution range) conifer species from the Romanian Carpathians. The three conifers were compared in terms of mortality events, growth trends, growth resilience to severe drought events, climate-growth relationships, and regeneration patterns. The mortality rates of the three species were found to be associated with severe drought events. Nevertheless, the native silver fir seems to undergo a self-thinning process, while the future of the remaining living black pine and Scots pine trees is uncertain as they register significant negative growth trends. Overall, the native silver fir showed a higher resilience to severe drought events than the two introduced pine species. Furthermore, and unlike the native silver fir, black pine and Scots pine species do not successfully regenerate. A high diversity of native broadleaf species sprouts and develops instead under them suggesting that we might be witnessing a process of ecological succession, with broadleaves recovering their habitats. As native species seem to perform better in terms of resilience and regeneration than introduced species, the overall effect of the black pine and Scots pine mortality might be compensated. Legacies of past forest management should be taken into account in order to better understand current responses of different tree species to ongoing climate change.


Assuntos
Secas , Traqueófitas , Ecossistema , Florestas , Romênia , Árvores
6.
PeerJ ; 8: e9750, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32974092

RESUMO

The relatively poor simulation of the below-ground processes is a severe drawback for many ecosystem models, especially when predicting responses to climate change and management. For a meaningful estimation of ecosystem production and the cycling of water, energy, nutrients and carbon, the integration of soil processes and the exchanges at the surface is crucial. It is increasingly recognized that soil biota play an important role in soil organic carbon and nutrient cycling, shaping soil structure and hydrological properties through their activity, and in water and nutrient uptake by plants through mycorrhizal processes. In this article, we review the main soil biological actors (microbiota, fauna and roots) and their effects on soil functioning. We review to what extent they have been included in soil models and propose which of them could be included in ecosystem models. We show that the model representation of the soil food web, the impact of soil ecosystem engineers on soil structure and the related effects on hydrology and soil organic matter (SOM) stabilization are key issues in improving ecosystem-scale soil representation in models. Finally, we describe a new core model concept (KEYLINK) that integrates insights from SOM models, structural models and food web models to simulate the living soil at an ecosystem scale.

7.
Sci Total Environ ; 672: 106-120, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30954809

RESUMO

Woody encroachment is a widespread phenomenon resulting from the abandonment of mountain agricultural and pastoral practices during the last century. As a result, forests have expanded, increasing biomass and necromass carbon (C) pools. However, the impact on soil organic carbon (SOC) is less clear. The main aim of this study was to investigate the effect of woody encroachment on SOC stocks and ecosystem C pools in six chronosequences located along the Italian peninsula, three in the Alps and three in the Apennines. Five stages along the chronosequences were identified in each site. Considering the topsoil (0-30 cm), subsoil (30 cm-bedrock) and whole soil profile, the temporal trend in SOC stocks was similar in all sites, with an initial increment and subsequent decrement in the intermediate phase. However, the final phase of the woody encroachment differed significantly between the Alps (mainly conifers) and the Apennines (broadleaf forests) sites, with a much more pronounced increment in the latter case. Compared to the previous pastures, after mature forest (>62 years old) establishment, SOC stocks increased by: 2.1(mean) ±â€¯18.1(sd) and 50.1 ±â€¯25.2 Mg C·ha-1 in the topsoil, 7.3 ±â€¯17.4 and 93.2 ±â€¯29.7 Mg C·ha-1 in the subsoil, and 9.4 ±â€¯24.4 and 143.3 ±â€¯51.0 Mg C·ha-1 in the whole soil profile in Alps and Apennines, respectively. Changes in SOC stocks increased with mean annual air temperature and average minimum winter temperature, and were negatively correlated with the sum of summer precipitation. At the same time, all other C pools (biomass and necromass) increased by 179.1 ±â€¯51.3 and 304.2 ±â€¯67.6 Mg C·ha-1 in the Alps and the Apennines sites, respectively. This study highlights the importance of considering both the subsoil, since deep soil layers contributed 38% to the observed variations in carbon stocks after land use change, and the possible repercussions for the carbon balance of large areas where forests are expanding, especially under pressing global warming scenarios.

8.
PeerJ ; 6: e5857, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30397552

RESUMO

We studied key mechanisms and drivers of soil functioning by analyzing soil respiration and enzymatic activity in Mediterranean holm oak forest fragments with different influence of the agricultural matrix. For this, structural equation models (SEM) were built including data on soil abiotic (moisture, temperature, organic matter, pH, nutrients), biotic (microbial biomass, bacterial and fungal richness), and tree-structure-related (basal area) as explanatory variables of soil enzymatic activity and respiration. Our results show that increased tree growth induced by forest fragmentation in scenarios of high agricultural matrix influence triggered a cascade of causal-effect relations, affecting soil functioning. On the one hand, soil enzymatic activity was strongly stimulated by the abiotic (changes in pH and microclimate) and biotic (microbial biomass) modifications of the soil environment arising from the increased tree size and subsequent soil organic matter accumulation. Soil CO2 emissions (soil respiration), which integrate releases from all the biological activity occurring in soils (autotrophic and heterotrophic components), were mainly affected by the abiotic (moisture, temperature) modifications of the soil environment caused by trees. These results, therefore, suggest that the increasing fragmentation of forests may profoundly impact the functioning of the plant-soil-microbial system, with important effects over soil CO2 emissions and nutrient cycling at the ecosystem level. Forest fragmentation is thus revealed as a key albeit neglected factor for accurate estimations of soil carbon dynamics under global change scenarios.

9.
Oecologia ; 182(1): 27-41, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26879544

RESUMO

How forests cope with drought-induced perturbations and how the dependence of soil respiration on environmental and biological drivers is affected in a warming and drying context are becoming key questions. The aims of this study were to determine whether drought-induced die-off and forest succession were reflected in soil respiration and its components and to determine the influence of climate on the soil respiration components. We used the mesh exclusion method to study seasonal variations in soil respiration (R S) and its components: heterotrophic (R H) and autotrophic (R A) [further split into fine root (R R) and mycorrhizal respiration (R M)] in a mixed Mediterranean forest where Scots pine (Pinus sylvestris L.) is undergoing a drought-induced die-off and is being replaced by holm oak (Quercus ilex L.). Drought-induced pine die-off was not reflected in R S nor in its components, which denotes a high functional resilience of the plant and soil system to pine die-off. However, the succession from Scots pine to holm oak resulted in a reduction of R H and thus in an important decrease of total respiration (R S was 36 % lower in holm oaks than in non-defoliated pines). Furthermore, R S and all its components were strongly regulated by soil water content-and-temperature interaction. Since Scots pine die-off and Quercus species colonization seems to be widely occurring at the driest limit of the Scots pine distribution, the functional resilience of the soil system over die-off and the decrease of R S from Scots pine to holm oak could have direct consequences for the C balance of these ecosystems.


Assuntos
Secas , Solo , Florestas , Pinus sylvestris , Quercus
10.
Microb Ecol ; 69(4): 798-812, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25724140

RESUMO

Ecological transformations derived from habitat fragmentation have led to increased threats to above-ground biodiversity. However, the impacts of forest fragmentation on soils and their microbial communities are not well understood. We examined the effects of contrasting fragment sizes on the structure and functioning of soil microbial communities from holm oak forest patches in two bioclimatically different regions of Spain. We used a microcosm approach to simulate the annual summer drought cycle and first autumn rainfall (rewetting), evaluating the functional response of a plant-soil-microbial system. Forest fragment size had a significant effect on physicochemical characteristics and microbial functioning of soils, although the diversity and structure of microbial communities were not affected. The response of our plant-soil-microbial systems to drought was strongly modulated by the bioclimatic conditions and the fragment size from where the soils were obtained. Decreasing fragment size modulated the effects of drought by improving local environmental conditions with higher water and nutrient availability. However, this modulation was stronger for plant-soil-microbial systems built with soils from the northern region (colder and wetter) than for those built with soils from the southern region (warmer and drier) suggesting that the responsiveness of the soil-plant-microbial system to habitat fragmentation was strongly dependent on both the physicochemical characteristics of soils and the historical adaptation of soil microbial communities to specific bioclimatic conditions. This interaction challenges our understanding of future global change scenarios in Mediterranean ecosystems involving drier conditions and increased frequency of forest fragmentation.


Assuntos
Florestas , Quercus/microbiologia , Quercus/fisiologia , Microbiologia do Solo , Secas , Solo/química , Espanha
11.
FEMS Microbiol Ecol ; 91(2): 1-12, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25764545

RESUMO

This study reports the relationship between the diversity and functioning of fungal and bacterial soil communities with vegetation in Mediterranean woodland that experienced severe die-off after a drought episode. Terminal restriction fragment length polymorfism (TRFLP) was used to describe microbial community structure and diversity five years after the episode in different habitats (Juniperus woodland, shrubland, grassland), when the vegetation had not yet recovered. Vegetation diversity was positively related to TRF bacterial richness under unaffected canopies and was higher in diverse grassland. Fungal TRF richness correlated with vegetation type, being greater in Juniperus woodland. Microbial respiration increased in grassland, whereas microbial biomass, estimated from soil substrate-induced respiration (SIR), decreased with bacterial diversity. Die-off increased bacterial richness and changed bacterial composition, particularly in Juniperus woodland, where herbaceous species increased, while fungal diversity was reduced in Juniperus woodland. Die-off increased microbial respiration rates. The impact on vegetation from extreme weather episodes spread to microbial communities by modifying vegetation composition and litter quantity and quality, particularly as a result of the increase in herbaceous species. Our results suggest that climate-induced die-off triggers significant cascade effects on soil microbial communities, which may in turn further influence ecosystem C dynamics.


Assuntos
Bactérias/crescimento & desenvolvimento , Secas , Florestas , Fungos/crescimento & desenvolvimento , Consórcios Microbianos , Biodiversidade , Biomassa , Clima , Plantas/microbiologia , Polimorfismo de Fragmento de Restrição , Solo , Microbiologia do Solo
12.
FEMS Microbiol Ecol ; 90(1): 54-67, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24965891

RESUMO

We investigated the relationship between taxonomy and functioning of soil bacterial communities in soils from a Mediterranean holm oak forest using a high-throughput DNA pyrosequencing technique. We used nonparametric tests (Mann-Whitney U-test) to evaluate the sensitivity of each single bacterial genus within the community to the fluctuations of plant physiological and environmental abiotic variables, as well as to fluctuations in soil microbial respiration. Within-lineage (phylum/class) functional similarities were evaluated by the distribution of the Mann-Whitney U-test standardized coefficients (z) obtained for all genera within a given lineage. We further defined different ecological niches and within-lineage degree of functional diversification based on multivariate analyses (principal component analyses, PCA). Our results indicate that strong within-lineage functional diversification causes extensive functional overlapping between lineages, which hinders the translation of taxonomic diversity into a meaningful functional classification of bacteria. Our results further suggest a widespread colonization of possible ecological niches as taxonomic diversity increases. While no strong functional differentiation could be drawn from the analyses at the phylum/class level, our results suggest a strong ecological niche differentiation of bacteria based mainly on the distinct response of Gram-positive and Gram-negative bacteria to fluctuations in soil moisture.


Assuntos
Bactérias/classificação , Florestas , Microbiologia do Solo , Bactérias/isolamento & purificação , Biodiversidade , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...