Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 8(1): e08688, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35028465

RESUMO

Afzelia africana Sm - a multipurpose leguminous tree species - is threatened in West Africa - a climate change hotspot region. Yet, although the impacts of land use on this species dynamics have been widely reported, there is a little literature on the impacts of climate change on its spatial distribution. This study aimed to predict the impacts of climate change on the geographic distribution of A. africana in Burkina Faso. A total of 4,066 records of A. africana was compiled from personal fieldwork and vegetation database. Current and future bioclimatic variables were obtained from WorldClim website. For future climatic projections, six global climate models (GCMs) were selected under two emission scenarios (RCP 4.5 & RCP 8.5) and two horizons (2050 & 2070). Presence data and bioclimatic variables were processed in ArcGIS software and used in the algorithm MaxEnt (maximum of entropy) to predict the species distribution. Findings showed that maximum temperature of warmest month and mean temperature of coldest quarter mostly affect the habitat suitability of A. africana. About 25.54% of Burkina Faso land surface was currently suitable for A. africana conservation. Under future climatic projections, all the climate models predict climate-driven habitat loss of the species with a southward range shift. Across the two emission scenarios, the spatial extent of suitable habitats was predicted to decline from 9.43 to 23.99% and from 12.29 to 25% by the horizons 2050 and 2070, respectively. Habitat loss and range shifts predicted in this study underline the high vulnerability of A. africana to future climate change. Reforestation actions and the protection of predicted suitable habitats are recommended to sustain the species conservation.

2.
PLoS One ; 12(9): e0184457, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28880962

RESUMO

Over the last decades agroforestry parklands in Burkina Faso have come under increasing demographic as well as climatic pressures, which are threatening indigenous tree species that contribute substantially to income generation and nutrition in rural households. Analyzing the threats as well as the species vulnerability to them is fundamental for priority setting in conservation planning. Guided by literature and local experts we selected 16 important food tree species (Acacia macrostachya, Acacia senegal, Adansonia digitata, Annona senegalensis, Balanites aegyptiaca, Bombax costatum, Boscia senegalensis, Detarium microcarpum, Lannea microcarpa, Parkia biglobosa, Sclerocarya birrea, Strychnos spinosa, Tamarindus indica, Vitellaria paradoxa, Ximenia americana, Ziziphus mauritiana) and six key threats to them (overexploitation, overgrazing, fire, cotton production, mining and climate change). We developed a species-specific and spatially explicit approach combining freely accessible datasets, species distribution models (SDMs), climate models and expert survey results to predict, at fine scale, where these threats are likely to have the greatest impact. We find that all species face serious threats throughout much of their distribution in Burkina Faso and that climate change is predicted to be the most prevalent threat in the long term, whereas overexploitation and cotton production are the most important short-term threats. Tree populations growing in areas designated as 'highly threatened' due to climate change should be used as seed sources for ex situ conservation and planting in areas where future climate is predicting suitable habitats. Assisted regeneration is suggested for populations in areas where suitable habitat under future climate conditions coincides with high threat levels due to short-term threats. In the case of Vitellaria paradoxa, we suggest collecting seed along the northern margins of its distribution and considering assisted regeneration in the central part where the current threat level is high due to overexploitation. In the same way, population-specific recommendations can be derived from the individual and combined threat maps of the other 15 food tree species. The approach can be easily transferred to other countries and can be used to analyze general and species specific threats at finer and more local as well as at broader (continental) scales in order to plan more selective and efficient conservation actions in time. The concept can be applied anywhere as long as appropriate spatial data are available as well as knowledgeable experts.


Assuntos
Conservação dos Recursos Naturais/métodos , Alimentos , Acacia , Adansonia , Anacardiaceae , Annona , Balanites , Bombax , Burkina Faso , Mudança Climática , Ecossistema , Olacaceae , Tamarindus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...