Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 284: 116909, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39178761

RESUMO

T-2 toxin, a trichothecene mycotoxin, is an important environmental pollutant that poses a threat globally to the health of humans and animals. It has been found to induce nephrotoxicity; however, the precise molecular mechanism involved remains unclear. In this study, mice were administered at a single dose of 2 mg/kg body weight T-2 toxin intraperitoneally, and kidney function and ultrastructural observations were assessed after 1 d, 3 d, and 7 d. Histopathological findings revealed that exposure to T-2 toxin caused noticeable tubular degeneration, necrosis and epithelial cell shedding in mouse kidneys. Transmission electron microscopy indicated that exposure to T-2 toxin caused mitochondrial swelling and vacuolization. Transcriptomic data revealed significant differences in the expression of 1122, 58, and 391 genes in kidney tissues 1 d, 3 d, or 7 d after T-2 toxin exposure, respectively. Moreover, after 1 d, the downregulated differentially expressed genes (DEGs) were found to be involved in the cell cycle, p53 signaling, and cellular senescence pathways, while the upregulated DEGs were found to be associated with the ribosomal pathway. Temporal changes in gene expression patterns (i.e., after 3 d and 7 d) and disturbances in cellular metabolism during the recovery period (7 d) were detected in mouse kidneys after exposure to T-2 toxin. In conclusion, this study is the first to provide a comprehensive comparative transcriptomic analysis of T-2 toxin exposure-induced nephrotoxicity-related gene regulation at different time points and to investigate the mechanism underlying the nephrotoxicity of T-2 toxin at the mRNA expression level.

2.
Antioxidants (Basel) ; 13(7)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39061896

RESUMO

Colistin is commonly regarded as the "last-resort" antibiotic for combating life-threatening infections caused by multidrug-resistant (MDR) gram-negative bacteria. Neurotoxicity is a potential adverse event associated with colistin application in clinical settings, yet the exact molecular mechanisms remain unclear. This study examined the detrimental impact of colistin exposure on PC12 cells and the associated molecular mechanisms. Colistin treatment at concentrations of 0-400 µM decreased cell viability and induced apoptotic cell death in both time- and concentration-dependent manners. Exposure to colistin triggered the production of reactive oxygen species (ROS) and caused oxidative stress damage in PC12 cells. N-acetylcysteine (NAC) supplementation partially mitigated the cytotoxic and apoptotic outcomes of colistin. Evidence of mitochondrial dysfunction was observed through the dissipation of membrane potential. Additionally, colistin treatment upregulated the expression of AhR and CYP1A1 mRNAs in PC12 cells. Pharmacological inhibition of AhR (e.g., using α-naphthoflavone) or intervention with the CYP1A1 gene significantly decreased the production of ROS induced by colistin, subsequently lowering caspase activation and cell apoptosis. In conclusion, our findings demonstrate, for the first time, that the activation of the AhR/CYP1A1 pathway contributes partially to colistin-induced oxidative stress and apoptosis, offering insights into the cytotoxic effects of colistin.

3.
Environ Pollut ; 352: 124145, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38735462

RESUMO

Copper is an essential trace element, and excessive exposure could result in hepatoxicity, however, the underlying molecular mechanisms remain incompletely understood. The present study is aimed to investigate the molecular mechanisms of copper sulfate (CuSO4) exposure-induced hepatoxicity both in vivo and in vitro. In vitro, HepG2 and L02 cells were exposed to various doses of CuSO4 for 24 h. Cell viability, ROS production, oxidative stress biomarkers, mitochondrial functions, ultrastructure, intracellular calcium (Ca2+) concentration, and the expression of proteins related to mitochondrial apoptosis and endoplasmic reticulum (ER) stress were assessed. In vivo, C57BL/6 mice were treated with CuSO4 at doses of 10 and 30 mg/kg BW/day and co-treated with 4-PBA at 100 mg/kg BW/day for 35 days. Subsequently, liver function, histopathological features, and protein expression were evaluated. Results found that exposure to CuSO4 at concentrations of 100-400 µM for 24 h significantly decreased the viabilities of HepG2 and L02 cells and it was in a dose-dependent manner. Additionally, CuSO4 exposure induced significant oxidative stress and mitochondrial dysfunction in HepG2 cells, which were partially ameliorated by the antioxidant N-acetylcysteine (NAC). Furthermore, CuSO4 exposure prominently triggered ER stress, as evidenced by the upregulation of GRP94, GRP78, phosphorylated forms of PERK and eIF2α, and CHOP proteins in livers of mice and HepG2 cells. NAC treatment significantly inhibited CuSO4 exposure -induced ER stress in HepG2 cells. Pharmacological inhibition of ER stress through co-treatment with 4-PBA and the PERK inhibitor GSK2606414, as well as genetic knockdown of ATF4, partially mitigated CuSO4-induced cytotoxicity in HepG2 cells by reducing mitochondrial dysfunction and inhibiting the mitochondrial apoptotic pathway. Moreover, 4-PBA treatment significantly attenuated CuSO4-induced caspase activation and hepatoxicity in mice. In conclusion, these results reveal that CuSO4-induced hepatotoxicity involves mitochondrial dysfunction and ER stress by activating oxidative stress induction and PERK/ATF4 pathway.


Assuntos
Fator 4 Ativador da Transcrição , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Camundongos Endogâmicos C57BL , Mitocôndrias , Estresse Oxidativo , eIF-2 Quinase , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Animais , Estresse Oxidativo/efeitos dos fármacos , Humanos , Camundongos , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Células Hep G2 , eIF-2 Quinase/metabolismo , eIF-2 Quinase/genética , Cobre/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Sulfato de Cobre/toxicidade , Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Masculino , Fígado/efeitos dos fármacos , Fígado/metabolismo , Sobrevivência Celular/efeitos dos fármacos
4.
Antioxidants (Basel) ; 13(4)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38671900

RESUMO

Aflatoxin (AFT) contamination poses a significant global public health and safety concern, prompting widespread apprehension. Of the various AFTs, aflatoxin B1 (AFB1) stands out for its pronounced toxicity and its association with a spectrum of chronic ailments, including cardiovascular disease, neurodegenerative disorders, and cancer. Lycopene, a lipid-soluble natural carotenoid, has emerged as a potential mitigator of the deleterious effects induced by AFB1 exposure, spanning cardiac injury, hepatotoxicity, nephrotoxicity, intestinal damage, and reproductive impairment. This protective mechanism operates by reducing oxidative stress, inflammation, and lipid peroxidation, and activating the mitochondrial apoptotic pathway, facilitating the activation of mitochondrial biogenesis, the endogenous antioxidant system, and the nuclear factor erythroid 2-related factor 2 (Nrf2)/kelch-like ECH-associated protein 1 (KEAP1) and peroxisome proliferator-activated receptor-γ coactivator-1 (PGC-1) pathways, as well as regulating the activities of cytochrome P450 (CYP450) enzymes. This review provides an overview of the protective effects of lycopene against AFB1 exposure-induced toxicity and the underlying molecular mechanisms. Furthermore, it explores the safety profile and potential clinical applications of lycopene. The present review underscores lycopene's potential as a promising detoxification agent against AFB1 exposure, with the intent to stimulate further research and practical utilization in this domain.

5.
J Agric Food Chem ; 72(13): 6803-6814, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38507708

RESUMO

Neurodegenerative diseases pose a growing global health challenge, with limited effective therapeutic options. Mitochondrial dysfunction, oxidative stress, neuroinflammation, apoptosis, and autophagy are common underlying mechanisms in these diseases. Thymol is a phenolic monoterpene compound that has gained attention for its diverse biological properties, including antioxidant, anti-inflammatory, and immunomodulatory activities. Thymol supplementation could provide potential neuroprotection and improve cognitive deficits, depressant-like effects, learning, and memory impairments in rodents. Mechanistic investigations reveal that the neuroprotective effects of thymol involve the improvement of oxidative stress, mitochondrial dysfunction, and inflammatory response. Several signaling pathways, including mitochondrial apoptotic, NF-κB, AKT, Nrf2, and CREB/BDNF pathways are also involved. In this review, the neuroprotective effects of thymol, the potential molecular mechanisms, safety, applications, and current challenges toward development as a neuroprotective agent were summarized and discussed. We hope that this review provides valuable insights for the further development of this promising natural product as a promising neuroprotective agent.


Assuntos
Doenças Mitocondriais , Fármacos Neuroprotetores , Humanos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Timol/farmacologia , Transdução de Sinais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Estresse Oxidativo , Doenças Mitocondriais/tratamento farmacológico
6.
Environ Pollut ; 345: 123474, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309422

RESUMO

Aflatoxins (AFTs), a type of mycotoxin mainly produced by Aspergillus parasiticus and Aspergillus flavus, could be detected in food, feed, Chinese herbal medicine, grain crops and poses a great threat to public health security. Among them, aflatoxin B1 (AFB1) is the most toxic one. Exposure to AFB1 poses various health risks to both humans and animals, including the development of chronic inflammatory diseases, cardiovascular diseases, neurodegenerative diseases, and cancer. The molecular mechanisms underlying these risks are intricate and dependent on specific contexts. This review primarily focuses on summarizing the protective effects of quercetin, a natural phenolic compound, in mitigating the toxic effects induced by AFB1 in both in vitro experiments and animal models. Additionally, the review explores the molecular mechanisms that underlie these protective effects. Quercetin has been demonstrated to not only have the direct inhibitory action on the production of AFTs from Aspergillus, both also possess potent ameliorative effects against AFB1-induced cytotoxicity, hepatotoxicity, and neurotoxicity. These effects are attributed to the inhibition of oxidative stress, mitochondrial dysfunction, mitochondrial apoptotic pathway, and inflammatory response. It could also directly target several metabolic enzymes (i.e., CYP3As and GSTA1) to reduce the production of toxic metabolites of AFB1 within cells, then reduce AFB1-induced cytotoxicity. In conclusion, this review highlights quercetin is a promising detoxification agent for AFB1. By advancing our understanding of the protective mechanisms offered by quercetin, we aim to contribute to the development of effective detoxification agents against AFB1, ultimately promoting better health outcomes.


Assuntos
Aflatoxina B1 , Quercetina , Animais , Humanos , Aflatoxina B1/toxicidade , Quercetina/farmacologia , Estresse Oxidativo , Fenóis/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico
7.
Adv Healthc Mater ; 13(14): e2303839, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38334034

RESUMO

Metal-organic framework (MOF)-based drug delivery nanomaterials for cancer therapy have attracted increasing attention in recent years. Here, an enhanced chemodynamic anti-tumor therapy strategy by promoting the Fenton reaction by using core-shell zeolitic imidazolate framework-8 (ZIF-8)@Fe3O4 as a therapeutic platform is proposed. Carboxymethyl cellulose (CMC) is used as a stabilizer of Fe3O4, which is then decorated on the surface of ZIF-8 via the electrostatic interaction and serves as an efficient Fenton reaction trigger. Meanwhile, the pH-responsive ZIF-8 scaffold acts as a container to encapsulate the chemotherapeutic drug doxorubicin (DOX). The obtained DOX-ZIF-8@Fe3O4/CMC (DZFC) nanoparticles concomitantly accelerate DOX release and generate more hydroxyl radicals by targeting the lysosomes in cancer cells. In vitro and in vivo studies verify that the DZFC nanoparticles trigger glutathione peroxidase 4 (GPX4)-dependent ferroptosis via the activation of the c-Jun N-terminal kinases (JNK) signaling pathway, following to achieve the chemo/ferroptosis synergistic anti-tumor efficacy. No marked toxic effects are detected during DZFC treatment in a tumor-bearing mouse model. This composite nanoparticle remarkably suppresses the tumor growth with minimized systemic toxicity, opening new horizons for the next generation of theragnostic nanomedicines.


Assuntos
Doxorrubicina , Ferroptose , Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacologia , Animais , Humanos , Camundongos , Ferroptose/efeitos dos fármacos , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Antineoplásicos/química , Antineoplásicos/farmacologia , Carboximetilcelulose Sódica/química , Camundongos Nus , Zeolitas/química , Imidazóis
8.
Food Chem ; 439: 138170, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38118227

RESUMO

The carryover of trace allergens in complex food matrices poses challenges for detection techniques. Here, we demonstrate an accurate UPLC-MS/MS quantification assay for the shrimp allergen tropomyosin with a full-length isotope-labelled recombinant tropomyosin (TM-I) internal standard in complex food matrices. The TM-I, expressed based on the SILAC technique, exhibited a high isotope labelling ratio (>99%), purity, and alignment with the natural sequence. This method determined the tropomyosin ranging from 0.2 to 100 ng/mL. Mean recoveries ranged from 89 to 116%, with intra- and inter-day RSDs below 12%, for three signature peptides across three types of commercially processed food matrices. The limits of quantitation were 1 µg/g in pop food and sauce, and 10 µg/g in surimi product, respectively. This study supports the use of recombinant full-length isotope-labelled proteins rather than stable-isotope labelling peptides as internal standards to achieve more accurate quantitation of food allergens as the digestion error is corrected.


Assuntos
Hipersensibilidade Alimentar , Espectrometria de Massas em Tandem , Animais , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida , Tropomiosina , Espectrometria de Massa com Cromatografia Líquida , Alérgenos , Crustáceos , Peptídeos , Proteínas Recombinantes , Isótopos
9.
Antioxidants (Basel) ; 12(10)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37891961

RESUMO

Berberine (BBR), an isoquinoline alkaloid natural product, is isolated primarily from Coptis chinensis and other Berberis plants. BBR possesses various bioactivities, including antioxidant, anti-inflammation, anticancer, immune-regulation, and antimicrobial activities. Growing scientific evidence underscores BBR's substantial neuroprotective potential, prompting increased interest and scrutiny. In this comprehensive review, we elucidate the neuroprotective attributes of BBR, delineate the underlying molecular mechanisms, and assess its clinical safety and efficacy. The multifaceted molecular mechanisms responsible for BBR's neuroprotection encompass the attenuation of oxidative stress, mitigation of inflammatory responses, inhibition of apoptotic pathways, facilitation of autophagic processes, and modulation of CYP450 enzyme activities, neurotransmitter levels, and gut microbiota composition. Furthermore, BBR engages numerous signaling pathways, including the PI3K/Akt, NF-κB, AMPK, CREB, Nrf2, and MAPK pathways, to confer its neuroprotective effects. This comprehensive review aims to provide a substantial knowledge base, stimulate broader scientific discourse, and facilitate advancements in the application of BBR for neuroprotection.

10.
Zool Res ; 44(5): 894-904, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37551137

RESUMO

Conjugative transfer of antibiotic resistance genes (ARGs) by plasmids is an important route for ARG dissemination. An increasing number of antibiotic and nonantibiotic compounds have been reported to aid the spread of ARGs, highlighting potential challenges for controlling this type of horizontal transfer. Development of conjugation inhibitors that block or delay the transfer of ARG-bearing plasmids is a promising strategy to control the propagation of antibiotic resistance. Although such inhibitors are rare, they typically exhibit relatively high toxicity and low efficacy in vivo and their mechanisms of action are inadequately understood. Here, we studied the effects of dihydroartemisinin (DHA), an artemisinin derivative used to treat malaria, on conjugation. DHA inhibited the conjugation of the IncI2 and IncX4 plasmids carrying the mobile colistin resistance gene ( mcr-1) by more than 160-fold in vitro in Escherichia coli, and more than two-fold (IncI2 plasmid) in vivo in a mouse model. It also suppressed the transfer of the IncX3 plasmid carrying the carbapenem resistance gene bla NDM-5 by more than two-fold in vitro. Detection of intracellular adenosine triphosphate (ATP) and proton motive force (PMF), in combination with transcriptomic and metabolomic analyses, revealed that DHA impaired the function of the electron transport chain (ETC) by inhibiting the tricarboxylic acid (TCA) cycle pathway, thereby disrupting PMF and limiting the availability of intracellular ATP for plasmid conjugative transfer. Furthermore, expression levels of genes related to conjugation and pilus generation were significantly down-regulated during DHA exposure, indicating that the transfer apparatus for conjugation may be inhibited. Our findings provide new insights into the control of antibiotic resistance and the potential use of DHA.


Assuntos
Infecções por Escherichia coli , Camundongos , Animais , Escherichia coli/genética , Infecções por Escherichia coli/veterinária , beta-Lactamases/genética , Antibacterianos/farmacologia , Plasmídeos/genética
11.
Sheng Wu Gong Cheng Xue Bao ; 39(4): 1621-1632, 2023 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-37154327

RESUMO

The widespread of tigecycline resistance gene tet(X4) has a serious impact on the clinical efficacy of tigecycline. The development of effective antibiotic adjuvants to combat the looming tigecycline resistance is needed. The synergistic activity between the natural compound ß-thujaplicin and tigecycline in vitro was determined by the checkerboard broth microdilution assay and time-dependent killing curve. The mechanism underlining the synergistic effect between ß-thujaplicin and tigecycline against tet(X4)-positive Escherichia coli was investigated by determining cell membrane permeability, bacterial intracellular reactive oxygen species (ROS) content, iron content, and tigecycline content. ß-thujaplicin exhibited potentiation effect on tigecycline against tet(X4)-positive E. coli in vitro, and presented no significant hemolysis and cytotoxicity within the range of antibacterial concentrations. Mechanistic studies demonstrated that ß-thujaplicin significantly increased the permeability of bacterial cell membranes, chelated bacterial intracellular iron, disrupted the iron homeostasis and significantly increased intracellular ROS level. The synergistic effect of ß-thujaplicin and tigecycline was identified to be related to interfere with bacterial iron metabolism and facilitate bacterial cell membrane permeability. Our studies provided theoretical and practical data for the application of combined ß-thujaplicin with tigecycline in the treatment of tet(X4)-positive E. coli infection.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Humanos , Tigeciclina/farmacologia , Escherichia coli/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Espécies Reativas de Oxigênio/uso terapêutico , Plasmídeos , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Bactérias/genética , Testes de Sensibilidade Microbiana
12.
Antioxidants (Basel) ; 12(2)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36829928

RESUMO

Nootkatone (NKT), a major ingredient of Alpinia oxyphylla, exhibited potential nephroprotective effects; however, the precise molecular mechanisms remain poorly understood. This study aimed to study the nephroprotective effects of NKT and the underlying mechanisms in a mouse model. Our results showed that NKT pretreatment at the doses of 5, 10, and 20 mg/kg per day for 7 days significantly attenuates carbon tetrachloride (CCl4)-induced increases of serum BUN and CRE and kidney pathology injury. NKT pretreatment also markedly inhibited oxidative stress, inflammatory response, and the activation of caspases-9 and -3 in kidneys of mice exposed to CCl4. Meanwhile, NKT pretreatment downregulated the expression of NOX4, IL-1ß, IL-6, and TNF-α proteins and NO levels in the kidney tissues. Moreover, NKT pretreatment upregulated the expression of Nrf2 and HO-1 mRNAs, and downregulated the expression of NF-κB, IL-1ß, IL-6, TNF-α, and iNOS mRNAs in the kidneys of mice, compared to those in the CCl4 alone treatment group. In conclusion, our results reveal that NKT supplementation could protect against CCl4 exposure-induced oxidative stress and inflammatory response in the kidneys by inhibiting NOX4 and NF-κB pathways and activating the Nrf2/HO-1 pathway. Our current study highlights the therapeutic application of NKT for kidney diseases.

13.
Antioxidants (Basel) ; 12(1)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36671056

RESUMO

Acute liver injury is a type of liver diseases, and it has raised concerns worldwide due to the lack of effective therapies. The aim of this study is to investigate the protective effects of nootkatone (NOOT) on carbon tetrachloride (CCl4)-caused acute liver injury in mice. Mice were randomly divided into control, CCl4 model, NOOT, and NOOT (5, 10, and 20 mg/kg/day) plus CCl4 groups, respectively. Mice in the CCl4 plus NOOT groups were orally administrated with NOOT at 5, 10, and 20 mg/kg/days for seven days prior to 0.3% CCl4 injection at 10 mL/kg body weight, respectively. Our results showed that NOOT supplementation significantly ameliorated CCl4-induced increases of serum AST and ALT levels, hepatocyte necrosis, inflammatory response, oxidative stress, and caspases-9 and -3 activities in the livers of mice. Moreover, NOOT supplementation significantly upregulated the expression of Nrf2 and HO-1 mRNAs but downregulated the expression of NF-κB mRNAs and the levels of IL-1ß, IL-6, and TNF-α proteins in the liver tissues, compared to those in the CCl4 model group. In conclusion, for the first time, our results reveal that NOOT could offer protective effects against CCl4-caused oxidative stress and inflammatory response via the opposite regulation of Nrf2/HO-1 pathway and NF-κB pathway.

14.
Small ; 19(14): e2205682, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36604977

RESUMO

The self-preservation and intelligent survival abilities of methicillin-resistant Staphylococcus aureus (MRSA) result in the ineffective treatment of many antibiotics. Nano-drug delivery systems have emerged as a new strategy to overcome MRSA infection. ZIF-8 nanoparticles (ZIF-8 NPs) exhibit good antibacterial activities, while its molecular mechanisms are largely elusive. In this study, the ZIF-8 NPs are prepared using the room temperature solution reaction method. The values of minimum inhibitory concentration of ZIF-8 NPs against Escherichia coli and MRSA isolates are 25 and 12.5 µg mL-1 , respectively. Transcriptome and metabonomic analyses reveal that ZIF-8 NPs could trigger the inhibition of arginine biosynthesis pathway and the production of ROS, which lead to dysfunctional tricarboxylic acid cycle and disruption of cell membrane integrity, eventually killing MRSA isolates. Moreover, ZIF-8 NPs show desirable treatment and repair effects on mice model of MRSA isolates wound infected-model. The results, for the first time, reveal that the inhibition of arginine biosynthesis mediates the production of ROS and energy metabolism dysfunction contributes to the antibacterial ability of ZIF-8 NPs against MRSA. This study offers a new insight into ZIF-8 NPs combating MRSA isolates.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Zeolitas , Animais , Camundongos , Espécies Reativas de Oxigênio , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Arginina/farmacologia
15.
Ecotoxicol Environ Saf ; 249: 114480, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38321692

RESUMO

Chronic copper exposure could cause potential nephrotoxicity and effective therapy strategies are limited. This study investigated the protective effects of curcumin on copper sulfate (CuSO4)-induced renal damage in a mouse model and the underlying molecular mechanisms. Mice were administrated orally with CuSO4 (100 mg/kg per day) in combination with or without curcumin (50, 100 or 200 mg/kg per day, orally) for 28 days. Results showed that curcumin supplementation significantly reduce the Cu accumulation in the kidney tissues of mice and improved CuSO4-induced renal dysfunction. Furthermore, curcumin supplantation also significantly ameliorated Cu exposure-induced oxidative stress and tubular necrosis in the kidneys of mice. Moreover, compared to the CuSO4 alone group, curcumin supplementation at 200 mg/kg per day significantly decreased CuSO4-induced the expression of p53, Bax, IL-1ß, IL-6, and TNF-α proteins, levels of NF-κB mRNA, levels of caspases-9 and - 3 activities, and cell apoptosis, and significantly increased the levels of Nrf2 and HO-1 mRNAs in the kidney tissues. In conclusion, for the first time, our results reveal that curcumin could trigger the inhibition of oxidative stress, mitochondrial apoptotic, p53, and NF-κB pathways and the activation of Nrf2/HO-1 pathway to ameliorate Cu overload-induced nephrotoxicity in a mouse model. Our study highlights that curcumin supplementation may be a promising treatment strategy for treating copper overload-caused nephrotoxicity.


Assuntos
Curcumina , NF-kappa B , NF-kappa B/metabolismo , Curcumina/farmacologia , Sulfato de Cobre , Cobre/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Estresse Oxidativo , Rim , Apoptose
16.
Antioxidants (Basel) ; 11(10)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36290754

RESUMO

One of the most significant classes of mycotoxins, aflatoxins (AFTs), can cause a variety of detrimental outcomes, including cancer, hepatitis, aberrant mutations, and reproductive issues. Among the 21 identified AFTs, aflatoxin B1 (AFB1) is the most harmful to humans and animals. The mechanisms of AFB1-induced toxicity are connected to the generation of excess reactive oxygen species (ROS), upregulation of CYP450 activities, oxidative stress, lipid peroxidation, apoptosis, mitochondrial dysfunction, autophagy, necrosis, and inflammatory response. Several signaling pathways, including p53, PI3K/Akt/mTOR, Nrf2/ARE, NF-κB, NLRP3, MAPKs, and Wnt/ß-catenin have been shown to contribute to AFB1-mediated toxic effects in mammalian cells. Curcumin, a natural product with multiple therapeutic activities (e.g., anti-inflammatory, antioxidant, anticancer, and immunoregulation activities), could revise AFB1-induced harmful effects by targeting these pathways. Therefore, the potential therapeutic use of curcumin against AFB1-related side effects and the underlying molecular mechanisms are summarized. This review, in our opinion, advances significant knowledge, sparks larger discussions, and drives additional improvements in the hazardous examination of AFTs and detoxifying the application of curcumin.

17.
Antioxidants (Basel) ; 11(9)2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36139911

RESUMO

Chelerythrine (CHE) is a majorly harmful isoquinoline alkaloid ingredient in Chelidonium majus that could trigger potential hepatotoxicity, but the pivotal molecular mechanisms remain largely unknown. In the present study, CHE-induced cytotoxicity and the underlying toxic mechanisms were investigated using human HepG2 cells in vitro. Data showed that CHE treatment (at 1.25-10 µM)-induced cytotoxicity in HepG2 cells is dose-dependent. CHE treatment increased the production of ROS and induced oxidative stress in HepG2 cells. Additionally, CHE treatment triggered the loss of mitochondrial membrane potential, decreased the expression of mitochondrial complexes, upregulated the expression of Bax, CytC, and cleaved-PARP1 proteins and the activities of caspase-9 and caspase-3, and downregulated the expression of Bcl-XL, and HO-1 proteins, finally resulting in cell apoptosis. N-acetylcysteine supplementation significantly inhibited CHE-induced ROS production and apoptosis. Furthermore, CHE treatment significantly downregulated the expression of phosphorylation (p)-Akt (Ser473), p-mTOR (Ser2448), and p-AMPK (Thr172) proteins in HepG2 cells. Pharmacology inhibition of Akt promoted CHE-induced the downregulation of HO-1 protein, caspase activation, and apoptosis. In conclusion, CHE-induced cytotoxicity may involve the inhibition of Akt pathway and the activation of oxidative stress-mediated mitochondrial apoptotic pathway in HepG2 cells. This study sheds new insights into understanding the toxic mechanisms and health risks of CHE.

18.
Antioxidants (Basel) ; 11(8)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-36009217

RESUMO

Quinocetone (QCT), a member of the quinoxaline 1,4-di-N-oxides (QdNOs) family, can cause genotoxicity and hepatotoxicity, however, the precise molecular mechanisms of QCT are unclear. This present study investigated the protective effect of quercetin on QCT-induced cytotoxicity and the underlying molecular mechanisms in human L02 and HepG2 cells. The results showed that quercetin treatment (at 7.5-30 µM) significantly improved QCT-induced cytotoxicity and oxidative damage in human L02 and HepG2 cells. Meanwhile, quercetin treatment at 30 µM significantly inhibited QCT-induced loss of mitochondrial membrane potential, an increase in the expression of the CytC protein and the Bax/Bcl-2 ratio, and an increase in caspases-9 and -3 activity, and finally improved cell apoptosis. Quercetin pretreatment promoted the expression of the phosphorylation of p38, Nrf2, and HO-1 proteins. Pharmacological inhibition of p38 significantly inhibited quercetin-mediated activation of the Nrf2/HO-1 pathway. Consistently, pharmacological inhibitions of the Nrf2 or p38 pathways both promoted QCT-induced cytotoxicity and partly abolished the protective effects of quercetin. In conclusion, for the first time, our results reveal that quercetin could improve QCT-induced cytotoxicity and apoptosis by activating the p38/Nrf2/HO-1 pathway and inhibiting the ROS/mitochondrial apoptotic pathway. Our study highlights that quercetin may be a promising candidate for preventing QdNOs-induced cytotoxicity in humans or animals.

19.
J Fungi (Basel) ; 8(8)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35893129

RESUMO

T-2 toxin exposure could cause neurotoxicity; however, the precise molecular mechanisms remain unclear. In the present study, we investigated T-2 toxin-induced cytotoxicity and underlying molecular mechanisms using a mouse microglia BV2 cell line. The results show that T-2 toxin treatment-induced cytotoxicity of BV2 cells was dose- and time-dependent. Compared to the control, T-2 toxin treatment at 1.25-5 ng/mL significantly increased reactive oxygen species (ROS) production and triggered oxidative stress. T-2 toxin treatment also caused mitochondrial dysfunction in BV2 cells, which was evidenced by decreased mitochondrial transmembrane potential, upregulated expression of Bax protein, and decreased expression of Bcl-2 protein. Meanwhile, T-2 toxin treatment upregulated the expression of cleaved-caspase-3, cleaved-PARP-1 proteins, and downregulated the expression of HO-1 and nuclear Nrf2 proteins, finally inducing cell apoptosis in BV2 cells. N-acetylcysteine (NAC) supplementation significantly attenuated T-2 toxin-induced cytotoxicity. Moreover, T-2 toxin treatment activated autophagy and upregulated autophagy flux, and the inhibition of autophagy significantly promoted T-2 toxin-induced cell apoptosis. Taken together, our results reveal that T-2 toxin-induced cytotoxicity in BV2 cells involves the production of ROS, the activation of the mitochondrial apoptotic pathway, and the inhibition of the Nrf2/HO-1 pathway. Our study offers new insight into the underlying molecular mechanisms in T-2 toxin-mediated neurotoxicity.

20.
Food Chem Toxicol ; 167: 113262, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35792220

RESUMO

T-2 toxin is one of the most toxic and common trichothecene mycotoxins, and can cause various cardiovascular diseases. In this review, we summarized the current knowledge-base and challenges as it relates to T-2 toxin related cardiotoxicity. The molecular mechanisms and potential treatment approaches were also discussed. Pathologically, T-2 toxin-induced cardiac toxicity is characterized by cell injury and death in cardiomyocyte, increased capillary permeability, necrosis of cardiomyocyte, hemorrhage, and the infiltration of inflammatory cells in the heart. T-2 toxin exposure can cause cardiac fibrosis and finally lead to cardiac dysfunction. Mechanistically, T-2 toxin exposure-induced cardiac damage involves the production of ROS, mitochondrial dysfunction, peroxisome proliferator-activated receptor-gamma (PPAR-γ) signaling pathway, endoplasmic reticulum (ER stress), transforming growth factor beta 1 (TGF-ß1)/smad family member 2/3 (Smad2/3) signaling pathway, and autophagy and inflammatory responses. Antioxidant supplementation (e.g., catalase, vitamin C, and selenium), induction of autophagy (e.g., rapamycin), blockade of inflammatory signaling (e.g., methylprednisolone) or treatment with PPAR-γ agonists (e.g., pioglitazone) may provide protective effects against these detrimental cardiac effects caused by T-2 toxin. We believe that our review provides new insights in understanding T-2 toxin exposure-induced cardiotoxicity and fuels effective prevention and treatment strategies against this important food-borne toxin-induced health problems.


Assuntos
Toxina T-2 , Autofagia , Cardiotoxicidade , Humanos , Miócitos Cardíacos/metabolismo , PPAR gama/metabolismo , Toxina T-2/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...