Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
Ageing Res Rev ; 95: 102215, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325754

RESUMO

Aging can lead to various disorders in organisms and with the escalating impact of population aging, the incidence of age-related diseases is steadily increasing. As a major risk factor for chronic illnesses in humans, the prevention and postponement of aging have become focal points of research among numerous scientists. Aging biomarkers, which mirror molecular alterations at diverse levels in organs, tissues, and cells, can be used to monitor and evaluate biological changes associated with aging. Currently, aging biomarkers are primarily categorized into physiological traits, imaging characteristics, histological features, cellular-level alterations, and molecular-level changes that encompass the secretion of aging-related factors. However, in the context of the musculoskeletal soft tissue system, aging-related biological indicators primarily involve microscopic parameters at the cellular and molecular levels, resulting in inconvenience and uncertainty in the assessment of musculoskeletal soft tissue aging. To identify convenient and effective indicators, we conducted a comprehensive literature review to investigate the correlation between ectopic mineralization and age-related changes in the musculoskeletal soft tissue system. Here, we introduce the concept of ectopic mineralization as a macroscopic, reliable, and convenient biomarker for musculoskeletal soft tissue aging and present novel targets and strategies for the future management of age-related musculoskeletal soft tissue disorders.


Assuntos
Calcinose , Ossificação Heterotópica , Humanos , Idoso , Osteogênese , Ossificação Heterotópica/etiologia , Ossificação Heterotópica/patologia , Envelhecimento , Biomarcadores
2.
World J Orthop ; 14(10): 741-754, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37970626

RESUMO

BACKGROUND: Geriatric hip fractures are one of the most common fractures in elderly individuals, and prolonged hospital stays increase the risk of death and complications. Machine learning (ML) has become prevalent in clinical data processing and predictive models. This study aims to develop ML models for predicting extended length of stay (eLOS) among geriatric patients with hip fractures and to identify the associated risk factors. AIM: To develop ML models for predicting the eLOS among geriatric patients with hip fractures, identify associated risk factors, and compare the performance of each model. METHODS: A retrospective study was conducted at a single orthopaedic trauma centre, enrolling all patients who underwent hip fracture surgery between January 2018 and December 2022. The study collected various patient characteristics, encompassing demographic data, general health status, injury-related data, laboratory examinations, surgery-related data, and length of stay. Features that exhibited significant differences in univariate analysis were integrated into the ML model establishment and subsequently cross-verified. The study compared the performance of the ML models and determined the risk factors for eLOS. RESULTS: The study included 763 patients, with 380 experiencing eLOS. Among the models, the decision tree, random forest, and extreme Gradient Boosting models demonstrated the most robust performance. Notably, the artificial neural network model also exhibited impressive results. After cross-validation, the support vector machine and logistic regression models demonstrated superior performance. Predictors for eLOS included delayed surgery, D-dimer level, American Society of Anaesthesiologists (ASA) classification, type of surgery, and sex. CONCLUSION: ML proved to be highly accurate in predicting the eLOS for geriatric patients with hip fractures. The identified key risk factors were delayed surgery, D-dimer level, ASA classification, type of surgery, and sex. This valuable information can aid clinicians in allocating resources more efficiently to meet patient demand effectively.

3.
Crit Rev Food Sci Nutr ; 63(25): 7510-7528, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35234534

RESUMO

Osteoporosis (OP) is a systemic disease characterized by decreased bone mass and degeneration of bone microstructure. In recent years, more and more researches have focused on the close relationship between gut microbiota (GM) and the occurrence and progression of OP, and the regulation of probiotics and prebiotics on bone metabolism has gradually become a research hotspot. Based on the influence of brain-gut-bone axis on bone metabolism, this review expounds the potential mechanisms of probiotics and prebiotics on OP from next perspectives: regulation of intestinal metabolites, regulation of intestinal epithelial barrier function, involvement of neuromodulation, involvement of immune regulation and involvement of endocrine regulation, so as to provide a novel and promising idea for the prevention and treatment of OP in the future.


Assuntos
Osteoporose , Probióticos , Humanos , Prebióticos , Probióticos/uso terapêutico , Intestinos , Encéfalo/metabolismo , Osteoporose/prevenção & controle
4.
Stem Cell Rev Rep ; 19(3): 680-693, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36520409

RESUMO

Age-related tendon disorder, a primary motor system disease, is characterized by biological changes in the tendon tissue due to senescence and seriously affects the quality of life of the elderly. The pathogenesis of this disease is not well-understood. Tendon stem/progenitor cells (TSPCs) exhibit multi-differentiation capacity. These cells are important cellular components of the tendon because of their roles in tendon tissue homeostasis, remodeling, and repair. Previous studies revealed alterations in the biological characteristics and tenogenic differentiation potential of TSPCs in senescent tendon tissue, in turn contributing to insufficient differentiation of TSPCs into tenocytes. Poor tendon repair can result in age-related tendinopathies. Therefore, targeting of senescent TSPCs may restore the tenogenic differentiation potential of these cells and achieve homeostasis of the tendon tissue to prevent or treat age-related tendinopathy. In this review, we summarize the biological characteristics of TSPCs and histopathological changes in age-related tendinopathy, as well as the potential mechanisms through which TSPCs contribute to senescence. This information may promote further exploration of innovative treatment strategies to rescue TSPCs from senescence.


Assuntos
Qualidade de Vida , Tendinopatia , Humanos , Idoso , Tendões/patologia , Células-Tronco , Diferenciação Celular , Tendinopatia/terapia , Tendinopatia/patologia
5.
J Orthop Translat ; 37: 46-60, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36196151

RESUMO

Background: Osteoporosis (OP) is a systemic metabolic bone disease characterized by decreased bone mass and destruction of bone microstructure, which tends to result in enhanced bone fragility and related fractures. The postmenopausal osteoporosis (PMOP) has a relatively high proportion, and numerous studies reveal that estrogen-deficiency is related to the imbalance of gut microbiota (GM), impaired intestinal mucosal barrier function and enhanced inflammatory reactivity. However, the underlying mechanisms remain unclear and the existing interventions are also scarce. Methods: In this study, we established a mouse model induced by ovariectomy (OVX) and conducted fecal microbiota transplantation (FMT) by gavage every day for 8 weeks. Subsequently, the bone mass and microarchitecture of mice were evaluated by the micro computed tomography (Micro-CT). The intestinal permeability, pro-osteoclastogenic cytokines expression, osteogenic and osteoclastic activities were detected by the immunohistological analysis, histological examination, enzyme-linked immunosorbent assay (ELISA) and western blot analysis accordingly. Additionally, the composition and abundance of GM were assessed by 16S rRNA sequencing and the fecal short chain fatty acids (SCFAs) level was measured by metabolomics. Results: Our results demonstrated that FMT inhibited the excessive osteoclastogenesis and prevented the OVX-induced bone loss. Specifically, compared with the OVX group, FMT enhanced the expressions of tight junction proteins (zonula occludens protein 1 (ZO-1) and Occludin) and suppressed the release of pro-osteoclastogenic cytokines (tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß)). Furthermore, FMT also optimized the composition and abundance of GM, and increased the fecal SCFAs level (mainly acetic acid and propionic acid). Conclusions: Collectively, based on GM-bone axis, FMT prevented the OVX-induced bone loss by correcting the imbalance of GM, improving the SCFAs level, optimizing the intestinal permeability and suppressing the release of pro-osteoclastogenic cytokines, which may be an alternative option to serve as a promising candidate for the prevention and treatment of PMOP in the future. The translational potential of this article: This study indicates the ingenious involvement of GM-bone axis in PMOP and the role of FMT in reshaping the status of GM and ameliorating the bone loss in OVX-induced mice. FMT might serve as a promising candidate for the prevention and treatment of PMOP in the future.

6.
J Foot Ankle Surg ; 61(6): 1197-1202, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35183455

RESUMO

Supination external rotation (SER) type ankle fracture is the most common ankle fracture in the Lauge-Hansen classification and is often accompanied with syndesmotic injury. However, the mechanism of this injury is indistinct and a suggestive role can be given by preoperative imaging. This study was to preoperatively predict whether SER type ankle fractures are accompanied with syndesmotic injuries by the means of lateral malleolus fracture mapping. One hundred and forty-eight patients diagnosed with SER type ankle fractures were retrospectively enrolled in this study. The baseline data were collected and computed tomography data were reconstructed in 3-dimensional (3D) model. Patients were divided into stable and unstable groups according to intraoperative Cotton test and whether the inferior tibiofibular screw was placed. All fracture lines were superimposed on the ankle template to create a fracture map, and the data on the fracture map were further measured. Logistic regression was conducted to identify relevant factors and the cutoff values were given using receiver operating characteristic curves. Forty-one patients were enrolled in the unstable group and 107 patients were enrolled in the stable group. The lateral malleolus fracture lines of the unstable group were higher and steeper than that in the stable group on lateral and posterior views. The fracture height of the posterior cortex and peak height were the significant contributing factors, and the cut-off values of posterior cortex, peak height and inclination angle were 40.35 mm (sensitivity: 78%, specificity: 82%), 55.34 mm (sensitivity: 85%, specificity: 70%) and 55.6° (sensitivity: 66%, specificity: 86%), respectively. In general, when the fracture lines of the lateral malleolus were high and steep, it was usually indicative of a syndesmotic injury and can be predicted by the preoperative 3D reconstruction of fracture height of posterior cortex, peak height and inclination angle. If the cut-off values of these indicators are exceeded, the syndesmotic injuries may be presented and need to be verified in the intraoperative Cotton test to decide whether to insert an inferior tibiofibular screw.

7.
World J Stem Cells ; 13(9): 1338-1348, 2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34630866

RESUMO

Tendinopathy is a challenging complication observed in patients with diabetes mellitus. Tendinopathy usually leads to chronic pain, limited joint motion, and even ruptured tendons. Imaging and histological analyses have revealed pathological changes in various tendons of patients with diabetes, including disorganized arrangement of collagen fibers, microtears, calcium nodules, and advanced glycation end product (AGE) deposition. Tendon-derived stem/ progenitor cells (TSPCs) were found to maintain hemostasis and to participate in the reversal of tendinopathy. We also discovered the aberrant osteochondrogenesis of TSPCs in vitro. However, the relationship between AGEs and TSPCs in diabetic tendinopathy and the underlying mechanism remain unclear. In this review, we summarize the current findings in this field and hypothesize that AGEs could alter the properties of tendons in patients with diabetes by regulating the proliferation and differentiation of TSPCs in vivo.

8.
Food Funct ; 12(14): 6442-6451, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34076003

RESUMO

Currently, little is known regarding the association between dietary choline intake and osteoporosis in elderly individuals, as well as if such intakes affect bone health and result in fractures. This study was aimed to examine associations between daily dietary choline intake and osteoporosis in elderly individuals. A total of 31 034 participants from the National Health and Nutritional Examination Survey (NHANES) during 2005-2010 were enrolled, and 3179 participants with complete data and aged 65 years and older were identified. Baseline characteristics and dietary intake data were obtained through method of in-home administered questionnaires. Of 3179 individuals with a mean age of 73.7 ± 5.6 years, female (P < 0.001) and non-hispanic white (P < 0.001) occupied a higher proportion in the osteoporosis group. The logistic regression analysis indicated that the prevalence of osteoporosis in three tertile categories with gradually enhanced dietary choline intake was decreased progressively (P for trend <0.001). The restricted cubic spline (RCS) showed that the risk of osteoporosis generally decreased with increasing daily dietary choline intake (P < 0.001), while this trend was not apparent in relation between the daily dietary choline intake and risk of hip fracture (P = 0.592). The receiver operating characteristic (ROC) analysis identified a daily dietary choline intake of 232.1 mg as the optimal cutoff value for predicting osteoporosis. Our nationwide data suggested that a lower level of daily dietary choline intake was positively associated with the increased risk of osteoporosis in the US elderly population.


Assuntos
Colina/administração & dosagem , Dieta/métodos , Osteoporose/epidemiologia , Idoso , Idoso de 80 Anos ou mais , Estudos Transversais , Ingestão de Alimentos , Feminino , Fraturas do Quadril/epidemiologia , Humanos , Masculino , Inquéritos Nutricionais , Prevalência , Curva ROC , Fatores de Risco
9.
Food Funct ; 12(13): 5703-5718, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34048514

RESUMO

Osteoporosis (OP) is a kind of systemic metabolic disease characterized by decreased bone mass and destruction of the bone microstructure. In recent years, it has become an expected research trend to explore the cross-linking relationship in the pathogenesis process of OP so as to develop reasonable and effective intervention strategies. With the further development of intestinal microbiology and the profound exploration of the gut microbiota (GM), it has been further revealed that the "brain-gut" axis may be a potential target for the bone, thereby affecting the occurrence and progression of OP. Hence, based on the concept of "brain-gut-bone" axis, we look forward to deeply discussing and summarizing the cross-linking relationship of OP in the next three parts, including the "brain-bone" connection, "gut-bone" connection, and "brain-gut" connection, so as to provide an emerging thought for the prevention strategies and mechanism researches of OP.


Assuntos
Microbioma Gastrointestinal , Osteoporose/prevenção & controle , Animais , Osso e Ossos/metabolismo , Encéfalo/metabolismo , Feminino , Trato Gastrointestinal/metabolismo , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Imunitário/metabolismo , Masculino , Camundongos , Vias Neurais/metabolismo , Osteoporose/patologia , Osteoporose/terapia , Transdução de Sinais
10.
Clin Interv Aging ; 16: 177-185, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33542622

RESUMO

OBJECTIVE: This cross-sectional study was aimed to update the assessment of prevalence, characteristics, and risk factors of the elderly with hip fractures in a non-institutionalized American population. METHODS: This current study included a total of 31,034 participants from the existing National Health and Nutritional Examination Survey (NHANES) database from 2005 to 2010, and 4,265 participants aged 65 years and older were ultimately identified. Their condition of hip fractures was determined by method of questionnaires according to the orthopedic surgeons' diagnosis, and related epidemiological and demographic data were further collected. The univariate analysis was used to screen the risk factors of hip fractures in the elderly, and the logistic regression model was established to conduct the multivariate analysis. RESULTS: Of the total 4,265 participants with clear information of hip fractures in elderly, 127 individuals with hip fractures were identified according to results of questionnaires, exhibiting a prevalence of 28.49 per 1,000 (95% confidence interval [CI]=21.38-35.60) for males and 31.03 per 1,000 (95% CI=23.72-38.35) for females. The mean age of the elderly with hip fractures was 77.12±5.88 years and tumble (48.0%) was the primary factor. In univariate analysis, age, race, smoking, drinking alcohol, and combined with osteoporosis were regarded as risk factors. Multivariate analysis showed that age (80 years and older), living alone, smoking, combined with diabetes and osteoporosis were the independent risk factors. CONCLUSION: Our nationwide data indicate the prevalence of hip fractures in the elderly is generally on the rise, and the female occupies a higher proportion. Age (especially aged 80 years and older), race (mainly Non-Hispanic white), smoking, drinking alcohol, living alone, combined with diabetes and osteoporosis may be closely linked to the occurrence of hip fractures in the elderly, although these variables still need to be verified in further prospective investigations.


Assuntos
Fraturas do Quadril/epidemiologia , Fraturas do Quadril/patologia , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Consumo de Bebidas Alcoólicas/epidemiologia , Comorbidade , Estudos Transversais , Feminino , Fraturas do Quadril/etnologia , Humanos , Modelos Logísticos , Masculino , Inquéritos Nutricionais , Osteoporose/epidemiologia , Prevalência , Fatores de Risco , Fatores Sexuais , Fumar/epidemiologia
11.
World J Stem Cells ; 12(11): 1255-1275, 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33312397

RESUMO

There is accumulating evidence of an increased incidence of tendon disorders in people with diabetes mellitus. Diabetic tendinopathy is an important cause of chronic pain, restricted activity, and even tendon rupture in individuals. Tenocytes and tendon stem/progenitor cells (TSPCs) are the dominant cellular components associated with tendon homeostasis, maintenance, remodeling, and repair. Some previous studies have shown alterations in tenocytes and TSPCs in high glucose or diabetic conditions that might cause structural and functional variations in diabetic tendons and even accelerate the development and progression of diabetic tendinopathy. In this review, the biomechanical properties and histopathological changes in diabetic tendons are described. Then, the cellular and molecular alterations in both tenocytes and TSPCs are summarized, and the underlying mechanisms involved are also analyzed. A better understanding of the underlying cellular and molecular pathogenesis of diabetic tendinopathy would provide new insight for the exploration and development of effective therapeutics.

12.
Stem Cells Int ; 2019: 6257537, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31827530

RESUMO

Aged tendon-derived stem/progenitor cells (TSPCs) lead to age-related tendon disorders and impair tendon healing. However, the underlying molecular mechanisms of TSPC aging remain largely unknown. Here, we investigated the role of connective tissue growth factor (CTGF) in TSPC aging. CTGF protein and mRNA levels were markedly decreased in the aged TSPCs. Moreover, recombinant CTGF attenuates TSPC aging and restores the age-associated reduction of self-renewal and differentiation of TSPCs. In addition, cell cycle distribution of aged TSPCs was arrested in the G1/S phase while recombinant CTGF treatment promoted G1/S transition. Recombinant CTGF also rescued decreased levels of cyclin D1 and CDK4 and reduced p27kip1 expression in aged TSPCs. Our results demonstrated that CTGF plays a vital role in TSPC aging and might be a potential target for molecular therapy of age-related tendon disorders.

13.
World J Stem Cells ; 11(9): 677-692, 2019 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-31616543

RESUMO

Tendon ageing is a complicated process caused by multifaceted pathways and ageing plays a critical role in the occurrence and severity of tendon injury. The role of tendon stem/progenitor cells (TSPCs) in tendon maintenance and regeneration has received increasing attention in recent years. The decreased capacity of TSPCs in seniors contributes to impaired tendon functions and raises questions as to what extent these cells either affect, or cause ageing, and whether these age-related cellular alterations are caused by intrinsic factors or the cellular environment. In this review, recent discoveries concerning the biological characteristics of TSPCs and age-related changes in TSPCs, including the effects of cellular epigenetic alterations and the mechanisms involved in the ageing process, are analyzed. During the ageing process, TSPCs ageing might occur as a natural part of the tendon ageing, but could also result from decreased levels of growth factor, hormone deficits and changes in other related factors. Here, we discuss methods that might induce the rejuvenation of TSPC functions that are impaired during ageing, including moderate exercise, cell extracellular matrix condition, growth factors and hormones; these methods aim to rejuvenate the features of youthfulness with the ultimate goal of improving human health during ageing.

14.
Stem Cell Res Ther ; 10(1): 27, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30646947

RESUMO

BACKGROUND: Patients with diabetes mellitus (DM) often suffered with many musculoskeletal disorders, such as tendon rupture and tendinopathy. However, the understanding of the pathogenesis of these alternations is limited. This study was designed to investigate the role of tendon-derived stem cells (TDSCs) in histopathological alterations of DM tendons. METHODS: Forty-two SD rats were randomly and equally divided into a diabetes group (DG) and control group (CG). DM was induced by streptozotocin (65 mg/kg). The patellar tendons were isolated at weeks 1, 2, and 4 for histological analysis. TDSCs were isolated at week 2 for osteo-chondrogenic differentiation analysis. Mann-Whitney U test was used with SPSS. p < 0.050 was statistically significant. RESULTS: Micro-tears of collagen fibers and altered appearance of tendon cells were observed in DG tendons. DG tendons exhibited significantly higher expression of OPN, OCN, SOX9, and Col II and decreased expression of Col I and tenomodulin (TNMD) at week 2. Diabetic TDSCs (dTDSCs) demonstrated significantly decreased proliferation ability and increased osteogenic and chondrogenic differentiation ability. Osteo-chondrogenic markers BMP2, ALP, OPN, OCN, Col II, and SOX9 were also significantly increased while tenogenic markers Col I and TNMD were decreased in dTDSCs. CONCLUSION: These results suggested the erroneous differentiation of dTDSCs might account for the structural and non-tenogenic alternations in DM tendons, which provided new cues for the pathogenesis of tendon disorders in DM.


Assuntos
Diabetes Mellitus Experimental/complicações , Células-Tronco/metabolismo , Tendões/anormalidades , Tendões/fisiopatologia , Animais , Humanos , Masculino , Ratos , Ratos Sprague-Dawley
15.
Oncotarget ; 8(11): 17518-17528, 2017 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-28407683

RESUMO

Patients with diabetes are at great risk to suffer many musculoskeletal disorders, such as tendinopathy, tendon rupture and impaired tendon healing. However, the pathogenesis of these tendon disorders still remains unclear. In this study, we aimed to investigate the effects of high glucose on cell proliferation, cell apoptosis and tendon-related markers expression of tendon-derived stem cells (TDSCs) in vitro. These findings might provide new insights into the pathogenesis of diabetic tendon disorders. The cell proliferative ability and apoptosis rate of TDSCs in different groups were evaluated by MTT assay and Annexin V-FITC/PI staining assay. The mRNA expression of tendon-related markers (Scleraxis and Collagen I alpha 1 chain) were assessed by qRT-PCR. The protein expression of tendon-related markers (Tenomodulin and Collagen I) were measured by Western blotting. The proliferative ability of TDSCs treated with high glucose (15mM and 25mM) decreased significantly at day1, day3 and day5. The cell apoptosis of TDSCs increased significantly when they were cultured with high glucose for 48h in vitro. The gene expression of Scleraxis and Collagen I alpha 1 chain in TDSCs decreased significantly when they were treated with high glucose for 24h and 48h. The protein expression of Tenomodulin and Collagen I in TDSCs decreased significantly when they were treated with high glucose for 24h and 48h. High glucose could inhibit cell proliferation, induce cell apoptosis and suppress the tendon-related markers expression of TDSCs in vitro. These findings might account for some pathological mechanisms underlying the pathogenesis of diabetic tendon disorders.


Assuntos
Complicações do Diabetes/induzido quimicamente , Glucose/toxicidade , Células-Tronco/efeitos dos fármacos , Tendões/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Complicações do Diabetes/etiologia , Diabetes Mellitus , Reação em Cadeia da Polimerase , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA